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Noise in a Driven Josephson Oscillator
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The effect of noise on the microwave-induced steps in the current-voltage characteristic of a Josephson
junction is investigated theoretically. The dynamic resistance of a step is obtained in the limit that the
capacitance of the junction is small. The phase Quctuations of the junction are greatly reduced in the
presence of the microwave signal, and the dynamic resistance can be extremely small.

I. INTRODUCTION

HEN microwave radiation of an appropriate
frequency is applied to a Josephson junction

it is found that steps of nearly constant voltage are
induced in the dc current-voltage characteristic of the
junction. ' This effect was predicted by Josephson. ' The
steps occur at voltages V which are related to the
applied circular frequency v by ekv=2eV, where e is
an integer. This effect has been made use of recently
by Parker et al.' to obtain an extremely accurate value
of 2e/h. They found that for superconductor-oxide-
superconductor junctions and point contacts of low
resistance ((0.1 0) the steps had very narrow voltage
widths. However, for junctions and point contacts of
larger resistance, between 0.1 and 1 0, the width of a
step varied between 10 and 200 nV. Recently, Clarke, 4

using junctions made of superconductor-copper-super-
conductor, put an upper limit on the width of a micro-
wave-induced step in these junctions of 10 '~ V.

In the present paper we investigate the effects of
noise on the microwave-induced steps and obtain an
expression for the current-voltage relation of a step.
It was shown previously' that a Josephson oscillator,
in the absence of any applied signal, is neutrally stable
towards changes in the phase of the oscillator. This is
because the oscillator is autonomous, and it costs no
energy to change its phase. Fluctuations in the system
cause the phase to diffuse, and it is this phase diffusion
which leads to the linewidth of the emitted radiation.
The phase fluctuations are analogous to the Brownian
motion of a free particle.

In the present case we suppose that the external
oscillator supplying microwave radiation to the junc-
tion produces monochromatic radiation with a definite
phase. If the applied signal is sufficiently strong the
Josephson oscillator "locks" on to the external oscilla-

tor; i.e., the phase of the Josephson oscillator is de-
termined by the phase of the applied radiation. In this
case the phase fluctuations in the Josephson oscillator
are greatly reduced. The phase fIuctuations are now

'S. Shapiro, Phys. Rev. Letters 11, 80 (1963); S. Shapiro,
A. R. Janus, and S. Holly, Rev. Mod. Phys. 36, 223 (1964).' B. D. Josephson, Phys. Rev. Letters I, 251 (1962).' W. H. Parker, D. N. Langenberg, A. Denenstein, and B. N.
Taylor, Phys. Rev. 1??, 639 (1969).

4 J. Clarke, Phys. Rev. Letters 21, 1566 (1968).
'M. J. Stephen, Phys. Rev. Letters 21, 1639 (1968); Phys.

Rev. 182, 531 (1969), hereafter referred to as II.
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analogous to the Brownian motion of a particle on a
periodic potential. The height of the potential maxima
is determined by the strength of the applied signal.
Under the influence of noise the phase of the Josephson
oscillator generally fluctuates around one of the minima
in the potential, but occasionally may pass over the
potential barrier into an adjacent minimum. This phase
diffusion leads to a small broadening of the step, i.e.,
gives it a finite resistance.

A similar problem to the above arises in connection
with the effect of noise on the dc Josephson effect and
has been investigated recently by Ambegaokar and
Halperin. ' This problem can also be interpreted as the
Brownian motion of a particle on a one-dimensional
periodic potential. The Brownian motion of a particle
in one dimension in a field of force has been considered

by Kramers. ' In the case of large viscosity, he showed
that the problem can be reduced to the simpler single
variable Smoluchowski equation. In the present con-
text, large viscosity is equivalent to a small junction
capacitance. This is the case considered here and in
Ref. 6. The theory of the phase locking of two oscilla-
tors in the presence of noise has been investigated
extensively by Stratonovitch. '

II. LANGEVIN EQUATIONS

We suppose that a microwave signal of circular
frequency v is applied to the Josephson oscillator. In
accordance with the notation of II, we take the vector
potential of the applied radiation A, ' in the form

A, ' = 4(7rhc'/evlL. L„)—Isrr sin vl. (2.1)

The corresponding voltage across the junction produced
by the radiation is

V,' =4(7rftvl/eL, Lv)'"n cosvl, (2.2)

when / is the thickness of the oxide layer, e is the
dielectric constant of the oxide, and L,l„ is the area
of the junction. The parameter o.' is then the number of
photons in the cavity formed by two superconductors
due to the external signal. The total vector potential
describing the radiation in the junction is A, '+A,

V. Ambegaokar and B. I. Halperin, Phys. Rev. Letters 22,
1364 (1969);23, 274 (E) (1969).' H. Kramers, Physica 7, 284 (1940).

'R. L. Stratonovitch, Topics in the Theory of Random Noise
(Gordon and Breach, Science Publishers, Inc. , New York, 1963).
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where 2, is the contribution froiu. the cavity mode
closest to resonance with the Josephson frequency. As

in II we suppose that the cavity modes are well sepa-
rated so that we only need consider them one at a time.

The current through the junction in the weak-

coupling limit is

Jr ——ji sinH+ (2e/hei) (A, '+A, )ji cosH+ J„(V), (2.3)

In order t;o solve (2.6)—(2.8), we use a niethod of
slowly varying phase and set

0(t) =~t+Hp(t), (2.12)

where Hp(t) will be regarded as slowly varying so that
the voltage (h/2e)8p(t) is small. We define a voltage
corresponding to the frequency v by

where 0 is the phase difference between the two super-
conductors and J'„(V) is the normal (quasiparticle)
current. We will neglect the rapidly varying first term
and make the rotating approximation on the second
term. This leads to

Vp ——hi /2e,

so that the total voltage across the junction is

V= Vp+(h/2e)Hp(t) .

In (2.8) we substitute b=b'e P('& and then

(2.13)

(2.14)

Jr 4eT——ei sin(8 i t)+—2eT(be" +bte ")+J„(V), (2.4)
db'/dt = Pi (v 0)+i8—o ,'y]b'+—T-+fe" (2.15)

where b and b~ are annihilation and creation operators
for photons in the cavity mode. T is the coupling con-
stant introduced in II,

and approximately for large p

b'= (T+fe P)/Li(0 —i) imp—+,'75- (2.16)

T=j i(7rl/he QL,L„)'t' (2.5)

dH/dt=2eV/h, (2.6)

Cd V/dt =I 4eTu sin (8——i t) 2eT(be" +b"—e ")
—J„(V)+F(t), (2.7)

db/dt= (—iQ —-', y)b+Te "+f(t), (2.8)

when U is the voltage across the junction, C is the
capacitance of the junction, and y is the cavity band-
width. We suppose that the junction is connected to a
constant-current source which supplies a current I to
the junction. The noise sources are exactly the same
as in II and have the correlation functions

(~(t&)~(t2)) 2D H(t& t&) (2.9)

In the amplitude of the first term of (2.4) we have
neglected the difference between the frequency v and
the cavity mode frequency Q, so that it is proportional
to T.

We can now write I.angevin equations describing the
oscillator. These are essentially identical to those ob-
tained in II apart from the extra term in the current
involving the external signal. The I.angevin equations
are

For most junctions, p is the most rapid decay constant
so that this is an adequate approximation. Substituting
(2.16) in (2.7), we obtain the single equation

Cd V/dt=I 4eTn sinHp ——J,(V) —J (V)+G(t), (2.17)

where

J,(V) = (2eT'p)/$(i —0)'+8 ]'+-'y' (2.18)

The pair tunneling current is the sum of the second and
third terms on the right-hand side of (2.17). G(t) is a
noise source with correlation function

(G(ti)G(tp)) =2(D.+D.)~(ti —tp) (2 19)

where D, is given by (2.10) and

2D, =4e'T'y (2n+1)/$(i —0)'+-,'y')
=2eJ, (Vp) (2n+1) . (2.20)

This noise source arises from dissipation of radiation
in the cavity. As discussed in II, it leads to shot noise
in the pair current which explains the form of (2.20).
We have neglected the small voltage (h/2e) 8, in (2.20).
At temperatures such that kT&eUO we can combine
the two terms in (2.19) to give

2D, =eJ (V) coth(eV/2hT), (2.10)

(f(ti)f'(tp)) =v(n+1)H (ti —t2),

(ft(ti) f(4)) =pnb(ti —tp).
(2.11)

Thus the noise source J'(t) arises from the shot noise as-
sociated with normal currents in the junction and the
noise source f from the dissipation of radiation in the
cavity. The term n is the Planck function (eP"iver —1) '.

The Langevin equations (2.6)—(2.8) diBer from those
of II only by the term involving the externally applied
radiation. This term is important because it explicitly
involves the time and has the effect of determining the
phase of the oscillator.

D =D,+D,
= (&T/V.) (J.+J-)= (&T/Vp) J, (2.21)

where J is the total current in the junction in the
absence of the microwave field.

In Eq. (2.17) we expand the currents in terms of
the small voltage (h/2e)Hp. Thus

J,(V) =J,LVp+ (h/2e)Hp]

J, (Vp)+(h/—2eR, )8p, (2.22)

J (V) =J (Vp)+(h/2eE )5p. (2.23)

where R, =(BJ,/BU)z, ' is the dynamic resistance for
supercurrent. Similarly,
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Substitut;ing (2.22) and (2.23) in (2.17), we get

(AC/2e) 8'0 AI——(A/—2eR) Ho —4eTu sin80+G(I), (2.24)

where E is the total dynamic resistance of the junction:

R '=R, '+R„'.
Also,

AI =I J,, (V—O)
—J„(VO),

and is the difference between the actual current I and
the current that would Aow in the junction in the
absence of the applied signal at the voltage Vp.

Equation (2.24) is of exactly the same form as the
circuit equation that would be obtained in the dc
Josephson effect. In the present case, however, the
height of the dc step is determined by the strength of
the applied microwave radiation. In the absence of
noise (2.24) has the steady-state solution

sin800=6I/ j2 (AI( j2), (2.25)

I'Or 4I & j2 the oscillator is phase locked to the external
signal. When AI exceeds the height of the step j&, an
extra voltage appears across the junction proportional
to the square root of the excess current.

A useful mechanical analogy to (2.28) is that of a
particle executing Brownian motion in a potential
proportional to AIHO+j ~ cosHO. Generally the particle
oscillates in one of the minima of the potential, but
every now and again it may pass over the potential
maximum to an adjacent minimum.

IIL FOKKER-PLANCK EQUATION

To investigate the phase-locking equation (2.28) in
the presence of noise, it is more convenient to consider
the equivalent Fokker-Planck equation for the dis-
tribution function I'(Ho, t). From (2.28), using the prop-
erties of the noise source G(I) in (2.19) and (2.21), the
Fokker-Planck equation is

where j~——4eTo. and is one-half the height of the dc
step.

It is also of interest to investigate the frequencies of
small oscillation around the steady solution (2.25). By
linearizing the equation around 0p it is easily found
that the frequencies of small oscillation are

BP

4e'E' O'P
—D==-

O' Bop' ()Op

(3 1)

i tt'2ej2
&dy =—

2RC 0 AC

) i/2

cos80' —
~

. (2.26)
4R'C')

These oscillations are analogous to the Josephson
plasma frequency. ' Near the top of the step where
80' approaches 2s, Eq. (2.26) reduces to

or+ = —i(2eR j&/A) cos8o',

(o = i/RC. — (2.27)

sinHp ——AI/ j2 (DI( jp),
8o = (2eR/A) ((~I)'—j2')'"

+periodic terms (jm( AI) . (2.29)

The co mode is damped very rapidly and would not
be expected to inhuence the system in an important
way. The co+ mode, on the other hand, approaches
zero and will be very important in determining how
the system behaves near the top of the step. We note
in passing that it is this zero-frequency mode which
gives rise to the linewidth of the emitted radiation
discussed in II. The mode or~ in (2.27) is independent
of the capacitance C, and this suggests that we can
simplify (2.24) by setting C=o. The validity of this
approximation is discussed further below. Then (2.24)
becomes

(A/2eR) 8p =AI—jy sinHg+ G(t) . (2.28)

In the absence of noise the solution of this equation is
simply

I' (Ho) d80 = 1 (3.5)

the extra dc voltage 4V due to noise appearing across
the junction is related to m by

8,V =Aw/2e. (3.6)

The periodic solution of (3.4) given in Ref. 8 is

This equation is known as the Smoluchowski equation.
The solution of (3.1) required here corresponds to the
situation where the phase ep is diffusing at a steady
rate. This corresponds to the case where m is a constant
and P is periodic in Op with period 2~. Such a solution
has been given by Stratonovitch' and for completeness
we will brieQy outline the derivation. We introduce the
dimensionless variables

ai ——(A/2eRD)AI = (ADI/2ekT) (V/RJ), (3.2)

a2 ——(A/2eRD)j 2
——(Aj2/2ekT) (U/RJ), (3.3)

where we have used (2.21). Then (3.1) takes the form

HI'/88, (a, a, sin80)I' —= A—'w/4e'R'D. —(3.4)

%hen P is normalized according to

' B. D. Josephson, in QNuetum F/Nids, edited by D. F. Brewer
(North-Holland Publishing Co., Amsterdam, 1966), p. 174.

P(Hp) =
4e'E'D

dHo'G (80,80') (3.7)
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1.0-
the dynamic resistance R, at the center of the step is

R, =R/Ip'(as) . (3.11)

.8

.6

-20
Log —. —aV

R

-10

For a2 ——0,
'

and hence no microwave signal, this reduces
to the dynamic resistance R of the junction. As Ip(ap)
increases exponentially with a2 this resistance can be
extremely small.

(b) For large ai and as (as) ai) the integrals in (3.9)
can be carried out by steepest descents with the result

~U =2j2E cosop' sinhxa&

X exp( —2ai8p' —2as cos8p'), (3.12)

where sin8p' is given by (2.25). It is interesting to
note that the prefactor in (3.12) is exactly 0/ej(p+~,
where (p+ is given by (2.27). Thus the phase-diffusion
process corresponds to thermal activation over an
energy barrier. The approximation (3.12) breaks down
as a& approaches a2 and cos8p'~0. It is adequate,
however, over most of the interesting part of the step
where a~(a2.

It should be noted that the only junction parameters
appearing in (3.9) are the dynamic resistance R and j&,
one-half of the height of the microwave-induced step
in the absence of noise. While j2 is not directly mea-
sureable, it can be estimated accurately from experi-
mental data. Thus while we have obtained (3.9) for
the special case of a resonant cavity we can expect
that a similar result will hold for other kinds of devices,
e.g. , point contacts and superconductor-metal-super-
conductor junctions.

For the junctions used by Clarke4 we find from (3.3)
that a2 3.10', corresponding to the values 8=10 ' 0,
J=10 mA, Vp ——10 ' V, j2=~ mA, and T=4'K. Thus
from (3.11), since Ip(as) e ' the dynamic resistance
at the center of the step will be exceedingly small.
From (3.12) we find that the voltage deviation from
the center of the step will be about 10 "V, the upper
limit found by Clarke, only when a&/ap 0.97 or 97%
of the height of the step.

Parker et al.3 found for their tunnel junctions and
point contacts of low resistance (R(0.1 0) that, in
agreement with Clarke, the microwave-induced steps
had negligible voltage width. They also found that as
the resistance of the junction was increased from about
0.1 to 1 0, the voltage width of the step increased
from about 10 to 200 nV. If we assume that this
measured width is at 95% of the height of the step
and take j&=—', mA and R=0.1 0, then from (3.12) we
And a2 300. Using the above values of j~ and E.
together with J=50 mA, V0=6.10 4 V, and T=4'K,
which are typical for the junctions used in Ref. 3, we
find a2 400. It should be noted that the dynamic
resistance at the center of the step is still exceedingly
small. In Fig. 1 a plot of the noise voltage hV, calcu-
lated from (3.12), is given for various values of the
parameter a2.

FIG. I. Plot of log10(AV/ j2R) against AI/j2 for diferent
values of a2 Lsee Eq. (3.12)].

where the Green's function is

&&expfai(8 —8') —ap(sin8 —sin8') 7, (3.8)

where il(8 —8') is the step function

g(8 —8') =1 8)8'

=0 0(0'.

The quantity w is determined by substituting (3.7) in
the normalization condition (3.5). Hence from (3.6) we

obtain the current-voltage relation for the step:

4s.eR~D
5V= d8 G(8,8)

~

. (3.9)
p

The validity of the approximation C=O which was
used in obtaining this result has been investigated by
framers. ' In the present notation it is necessary that

A V« (kT/C)"'

(2eRC/A) (kT/C)i(&«1.
(a)

(b)

to

AV =PR/I ps (as) )AI, (3 10).
where Io is a Bessel function of the second kind. Thus

The erst condition requires that the noise voltage AV
be much less than the thermal voltage (kT/C)"'.
Secondly, the change in the phase produced by the
thermal voltage in a relaxation time EC must be much
less than one. Both these conditions can be satisfied if
C is small enough.

The integral in (3.9) has been evaluated by Stratono-
vitch. The physically most interesting cases are the
following.

(a) For very small AI where ai is small (3.9) reduces
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The sects of 6nite capacitance on the noise voltage
have not been investigated in detail, but it would be
expected that hV would be larger in this case than
C= 0.

Note added i' proof R.ecently, T. F. Finnegan, A.
Denenstein, D. N. Langenberg, J. C. McMenamin,
D. E. Novoseller, and L. Cheng LPhys. Rev. Letters
23, 229 (1969)) have shown that the "nonvertical"
steps observed by Parker et al. are not an intrinsic

property of the high-resistance junctions. If care is

taken to screen out external noise the steps are vertical
in agreement with the results found here.
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A technique has been developed for tunneling from thin Pb films into Pb single crystals formed by a
high-vacuum melting process. A preliminary investigation of the energy-gap anisotropy has been carried
out. Data are presented from ten separate junctions, including ones on the (001) and (111)crystal facets.
fn all cases, two energy gapa, Ai and n& (ni(ns), were apparent in the characteristics and differed from

each other by 10—15%.The maximum variation of b, & was 5 j& over the tunneling directions studied, while

r4 varied by considerably less than this. The maximum observed value of 262(0) was 2.78+0.01 meV and
the minimum value of 2ni(0) was 2.36&0.01 meV. A comparison was made with a published theory of

the energy-gap anisotropy. In some respects the agreement is fairly good, while in other respects it is poor.
No evidence was found for the predicted structure due to critical points of the energy-gap surface in k
space. Second-derivative measurements (d'V/dP versus V) showed an extra (compared to results from thin-

film Pb junctions) peak in the group of structures associated with the transverse phonon modes.

' PREVIOUS tunneling investigations" of energy-gap
anisotropy in superconducting Pb have been

carried out using thick-film (thickness)) coherence
length) specimens. In such cases the tunneling direction
is not known and this limits the information about
anisotropy which can be obtained. Specimens involving
a single crystal do not su6er from this limitation but
the technical difIiculties are considerably increased. A
technique has now been developed for tunneling from
thin Pb 6lms into Pb single crystals formed by a high
vacuum (10 '—10 r Torr) melting process. ' Using the
technique, a preliminary investigation of the energy-gap
anisotropy has been carried out.

The crystals form in the shape of oblate spheroids

( 1 cm maximum diameter) and the surfaces compare
favorably with evaporated films as far as cleanliness
and smoothness are concerned. I.aue back-reQection

$ Work supported in part by a grant in aid from the National
Research Council of Canada.

*Part of a Ph.D. thesis by B. L. Blackford, Dalhousie Uni-
versity, 1969 (unpublished).

f Supported in part by a Studentship from the National
Research Council of Canada.
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photographs gave a mosaic spread of 1' or less and

resistivity ratio measurements by the eddy-current

decay method gave ratios of greater than 5000. Flat
facets (1—2 mm in diam) develop on the (001) and (111)
faces and are very convenient for forming tunnel

junctions in these directions.
Masking of the crystal surface was achieved by

painting on G.E.' varnish except for a narrow ( s mm

wide) strip. The exposed strip was then oxidized in Os

at atmospheric pressure and 60'C for about 1.6 h. After
cooling to room temperature two narrow Pb films

(1500 4 thickX-', mrn wide) were evaporated at right
angles to the oxidized strip to complete the tunnel

junctions. Copper electrical leads were attached to the
films and the crystal using a conducting Epoxy' which

was cured in air at 50'C for 1—2 h. The ratio of good
to shorted junctions has been about 1 to 3 thus far
and in only one case were the two junctions at a given

crystal both of good quality.

4 General Electric Corp. No. 7031. Thinned to about 50% with
a 50:50 mixture of toluene and methanol.

'The energy gap b,y of the thin films was determined inde-
pendently from thin-film specimens deposited on glass slides.
by =1.39&0.005 MeV, where the error represents the precision
of the number but not absolute accuracy. The films were thin
enough to make Ay isotropic.

6 Eccobond 56C. Emerson and Cuming Corp. , Canton, Mass.


