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Mossbauer Diffraction. II. Dynamical Theory of Mossbauer Optics*
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The dynamical theory of Mossbauer optics is developed utilizing the multiple-scattering equations derived
in the preceding paper (I). The general optical equations obtained are analogous to the equations of the
dynamical theory of x-ray diGraction, but are generalized to account for the very strong polarization mixing
which occurs in Mossbauer optics. This polarization mixing leads to a number of interesting features, such as
Faraday effects, selective absorption, and selective critical reflection. The cases of Bragg reflection, Laue
transmission, critical reflection, and off-Bragg transmission are treated in detail.

I. INTRODUCTION

" "N a preceding paper' we used the Feynman tech-
~ ~ niques of quantum electrodynamics to obtain the
equations governing the interaction of p rays and x
rays with a system of scatterers.

The purpose of this paper is to utilize these multiple-
scattering equations to develop the dynamical theory of
Mossbauer optics.

Much of the theory, of course, is directly parallel to
the dynamical theory of x-ray diffraction, ' 5 but it is
necessary to generalize the x-ray theory to account for
the very strong polarization mixing which occurs in
Mossbauer optics. This polarization mixing leads to a
number of interesting features, such as Faraday e6ects,
selective absorption, and selective critical reQection.

Some features of the dynamical theory have been
considered in Refs. 6—17, but these aspects have ex-

*Work supported in part by the Office of Naval Research
under project THEMIS.
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eluded the polarization mixing effects (with the excep-
tion of Refs. 14 and 15). The present paper is the first
general treatment of the dynamical theory of Mossbauer
optics.

In Sec. II, we erst discuss the general form of the
scattering operators, in Sec. III the dynamical theory
is developed using a Darwin-Prins-type approach. The
Laue formulation of Mossbauer optics is given in Ap-
pendix D.

In Sec. IIIA we treat the cases of Bragg reQection
and Laue transmission. As discussed in a preceding
paper, ' and developed in more detail here, when a crys-
tal containing resonant nuclei is excited at a Bragg
angle, there is an enhancement of the effective coherent
elastic radiative width and a consequent suppression of
absorptive and inelastic processes which leads to large
reflection and/or transmission amplitudes.

In Sec. III B we treat the off-Bragg transmission
through a Mossbauer medium. We show for this case
that there are two generally nonorthogonal eigenwaves
in a Mossbauer medium which have different complex
indices of refraction. The general expressions are given
for the polarization and amplitude of the transmitted
wave, and we discuss the associated Faraday effects.

In Sec. III C we treat the case of grazing incidence,
and discuss the selective critical reQection of the
eigenwaves.

II. SCATTERING FROM A MOSSBAUER ATOM

In I, the multiple-scattering equations were developed
in terms of the scattering operators SIC„,~&' of the in-
dividual scatterers. For an arbitrary incident field 2„('),
M„„(&) determines the scattering "response" of the jth

"J.P. Hannon and G. T. Trammell, Bull. Am. Phys. Soc. 10,
162 (1965); 11, 771 (1966)."M. K. F. Wong, Proc. Phys. Soc. (London) 85, 723 (1965).
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lished); Ph.D. thesis, Rice University, 1967 (unpublished).' M. Blurne and O. C. Kistner, Phys. Rev. 171, 417 (1968)."D.A. O' Connor, Proc. Roy. Soc. (London) 1, 973 (1968).

"Yu. M. Kagan, A. M. Afanas'ev, and I. P. Perstnev, Zh.
Eksperim. i Teor. Fiz. 54, 1530 (1968) LEnglish transl. : Soviet
Phys. —JETP 27, 819 {1968)g.
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k/
(a) (c) (d) (e)

FzG. ].. Feynman diagrams representing the scattering processes
from a Mossbauer atom.

A. Sharp Resonant Scattering

We first consider the contribution of T(J„(x)J„(y))
to the sharp resonant scattering by the nucleus [Fig.
1(a)$. As discussed in Appendix A, this leads to the
contribution to the Feynman potential of the scattered
photon:

[~.'(z)3"
=6„;+(kf)[1V &'& (kg, ko) jf'A„'(R,),
=~*,"(4)(X~I~ '""'Ixo)

XZ [J -(—1,)J„-o(1,)(u, —E.„+E,+-,'ir„)- )
&&(xo

I

~'""'Ixo)~.'(R') (2)

atom, i.e., the coupling to the incident wave, and the
amplitude and polarization of the scattered photon.
For Mossbauer scattering this response is quite com-
plex, depending upon the direction of incidence, the
polarization and frequency of the incident photon, the
structure and time dependence of the internal fields at
the nucleus, and the direction of the scattered photon.
In this section we give a brief discussion of the explicit
form of M„„for a Mossbauer atom.

In terms of the nuclear and electronic Heisenberg
current operators J„(x) and j„(x), the scattering oper-
ator is given by [Eq. (2) of I]
M p,~'(x,y) = (i/A—o') (yf I T([Jp(*)+jp(x)j

&[J.(y)+j (y) j)leo)
= —(/ ')(Pal ( .(*) (y)+j.(*)j.(y)

+J.(*)j (y)+j.(x)J (y)) l to) (1)

where g, and Pf are the initial and final Heisenberg
state vectors of the crystal and T is the time-ordering
operator.

The first two terms, T(J„(x)J„(y)) and T(j„(x)j„(y)),
give the nuclear and electronic scattering operators,
corresponding to Figs. 1(a) and 1(b). The remaining
two terms, T(J„(x)j„(y)) and T(j„(x)J„(y)), give the
"screening" processes, corresponding to Figs. 1(c) and
1(d). The second-order screening process, represented
by Fig. 1(e), is obtained from T(j„(x)j„(y)). In the
notation of I, the processes in Figs. 1(a) and 1(c)—1(e)
contribute to the resonant scattering operator E„„,
while 1(b) gives the nonresonant electronic scattering
operator E„„.

In Eq. (2), ko, is the wave vector of the incident photon,
and

(z—R,)
k, =[a, (E—fye, E—, e,—))

lz —R;I

is the wave vector of the scattered photon; 5,„+(k~)
= lz —R;I 'e'~f~* "*'~ '"&" and A„'(x)e '""*isthe Feyn-
man potential of the incident photon. In the 6rst line
of Eq. (2), the superscripts 0, f refer to the initial and
final states

I go, xo), Ipf, xf). Here p represents the state
of the crystal, excluding the vibrational state, and E
represents its energy (e.g. , p includes the magnetic state
of the crystal and the internal state of the nucleus),
while X and e represent the vibrational state and vibra-
tional energy, respectively. In the second line of Eq. (2),

J„(ak)= e+'" *J„(x)dx

is the Fourier transform of the current density J„(x),
and the superscripts fm (n0) indicate the matrix element
of J„(+k) between the states p~ and p„(p„and po).
Finally, I'„ is the total width of the excited state P„,
including the radiation width I'~, and the internal con-
version width F .

In the fast relaxation cases (relaxation times very
much smaller than the nuclear Larmor precession times
rz,), we may take p and E in Eq. (2) as the state and
energy of the nucleus i in the external fields and the
"static effective fields" of the surrounding medium.
Similarly, in the slow relaxation limit, p and E may be
taken as the state and energy of the atom i, but unless
the hyperfine energy is negligible relative to the elec-
tronic Larmor frequency, one can no longer consider the
transitions between nuclear states in an effective 6eld
but must allow for the dynamic effects of the nucleus
on the atomic electrons, and treat the nucleus plus
atomic electrons as a coupled quantum-mechanical
system. "The modifications necessary when the relaxa-
tion times are on the order of vl, are discussed brieQy
in Appendix A.

In terms of the scattering operator (N„,&'&)f of Eq.
(2), the amplitude for scattering an in.cident photon
with wave vector ko and polarization eo into a photon
with wave vector kf and polarization si, with a change
of the crystalline vibration state from Xo to X~, and
change of the internal atomic state from @o to @i, is
given by

(f(kf Rf,
' ko Ro))~ = t„~*(xp„~ (k/ kp))f 6 (3)

3IIultiPole exPamsiom. The Mossbauer transitions are
generally good multipole transitions [e.g. , M(1), E(2),
etc.$, or a multipole mixture [e.g. , 3II(1)-E(2), etc.).
For simplicity, we consider the fast relaxation case,

» T.. P. Hirst considers this problem in relation to his results
on Mossbauer absorption measurements in dilute rare-earth alloys
(unpublished).
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where the eRective fields acting on the nucleus have a
common axis of symmetry (s), so that the ground and
excited nuclear states are states of good J,. The general-
izations when J, is not conserved are given in Appendix
C.

Making a multipole expansion of the four vectors
J(x)e+'~'* in terms of the vector spherical harmonics
Yr, M&"&(k), and evaluating the reduced nuclear matrix
elements in terms of the multipole radiative widths
P~(L,X), the scattering amplitude is given by (see Ap-
pendix 3 and Refs. 9, 15, and 19—21)

(f(kr, er, kp, ep))& =( 4s/rk)p( xrl o' I' 'Ixp)(xplc' ' 'Ixp)

X P P C(j pL'j„; mp'M'm„)C(j pLj„;mpMm„)er*
L'X' LX

.Yr,.iver. o"i(ks)Yrsr&~~(kp)* ept I', (L',X')P,(L,l~)]'"

XP 'I expi(iver,
~' —rii,")]Ix(mpM) —i] ', (4)

where x(mpM) = 2LE(j„,mp+M) —E(jp,mp) —kp]/I',
3f=m„—mo, M'=&=ma —mo', the notation for the
Clebsch-Gordan coeKcients is that of Rose,"and (L,X),
),=0 or 1 designates the inultipole L(L, I)=—E(L)=elec-
tric 2~ pole, (L,,O)=M(L, )=magnetic 2~ pole]. The
irli, ", as defined by Eq. (BS), give the phase of the re-
duced nuclear matrix elements (for emission). If T in-
variance is valid, then gL,

~' —g~~= 0 or m-. 23

For some purposes it is convenient to have the
scattering amplitude expressions in terms of the
right- and left-hand circularly polarized bases q(+~= W(ep&ieo)/V2. From Eq. (87), we obtain

q„.* Yi.~.&'~(k,) Yi~&"(kp)* g,
= (g~) '(~') "'+'(~)"+'L(2L'+ 1)(2L+ 1)]'"

X&, ~ "'(kr,s)& ~"'(kp &)* (5)

where the notation for the rotation matrices S is that
of Rose," and p, p,'=&1. The scattering amplitude
(f(kr, q„;k, p1„))i'P is then given by (4) with the sub-
stitution (5).

B. Electronic Scattering

The electronic scattering processes are well known
and careful treatments can be found in Refs. 2—4. Here
we give only a brief outline of the electronic scattering
from a Mossbauer atom.

Equation (A12) gives the scattering operator to order
e' if we take j„(x)=e:ib(x)y„p(x):, where we mean by

the Kick normal product and include the filled
negative-energy sea as well as the normally occupied

» H. Frauenfelder, D. E. Nagle, R. D. Taylor, D. R. F. Coch-
ran, and W. M. Visscher, Phys. Rev. 126, 1065 (1962)."J.P. Hannon and G. T. Trammell, Phys. Rev. Letters 21,
726 (1968)."R. W. Hayward, in Handbook of Pkysscs, edited by E. V.
Condon and Hugh Odishaw (McGraw-Hill Book Co., New York,
1967), Part 9, Chap. 6, p. 172.

"M. K. Rose, Zlemenatry Theory of Angular Momentum (John
Wiley 8z Sons, Inc. , New York, 1957), pp. 32—48."S. P. Lloyd, Phys. Rev. 83, 716 (1951).

positive-energy electron states in ~(x).P4 It will be suK-
cient for our purposes to treat the electrons in the non-
relativistic approximation. In the sum over the nega-
tive-energy k's of (A12) the energy denominators may
be replaced by —2mc', and after some manipulation"
this term results in the nonrelativistic A' scattering
term, which from the relativistic point of view is due
to the presence of the atomic electrons inhibiting virtual
pair production. In the remaining sum over positive
energy k's and p's, we may take the Pauli nonrelativistic
form for the current operators j„(x)."We then obtain
the expression

where

p(x) =j,(x) =e p 8(x—x,), (7)

j(x) = (e/2m)P [p;8(x—x;)+b(x—x;)p;

C. Screening Effects

As discussed in a preceding paper, " when the
"screening" processes represented by Figs. 1(c)—1(e) are
added to the direct nuclear scattering process of Fig.

~4 G. C. Wick, Phys. Rev. 80, 268 (1950).
"See for example, R. P. Feynman, Quantum EEectrodynamics

(W. A. Benjamin, Inc. , New York, 1958), p. 153.
2' A. Messiah, Quantum 2I/mechanics (North-Holland Publishing

Co., Amsterdam, 1965), Vol. II, p. 937.

+i8(x—x,)p;Xe, —ip;Xe,5(x—x;)]. (8)

In (6)—(8) c is the electron charge, the summation is
over the atomic electrons, and the operators referring
to the electrons are the usual nonrelativistic Heisenberg
operators for the atomic electrons. The Rayleigh elec-
tronic scattering is given by the first term in (6), while
the photoelectric dispersion and anomolous scattering
are given by the second term.

It is easily verified that the nonrelativistic form for
E„„(x,y) satisfies 8,"E„„(x,y) = 8„"E„.(x,y) =0, so that
gauge invariance is manifest.

For many cases the Mossbauer frequency is large in
comparison with any natural electronic absorption fre-
quency, and the scattering amplitude obtained from
(6) is then

I to order (v/c)P]

(f,(kg)er) kp)ep))rp=er 'ep(xrle '&»-"' "fix
XL

—(e'/mc')F (0)+i(kp/4sr) o.„,], (9)

where F(e) = (col p; e'&~p &'"'I ep) is the electronic form
factor, and tT„, is the photoelectric cross section. In this
approximation the polarization response is that of an
isotropic electric dipole oscillator, and gives no polari-
zation mixing. The inclusion of more complicated elec-
tronic scattering processes, such as small polarization
mixing terms on anomolous scattering, does not alter
the general optical theory presented in Sec. III.
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1(a), the effect is to replace et* Jr"(—kJ) in Eq. (2)
by er* af"(—kf), which in a multipole expansion is

given by

ef n$ ( kt') 2 ef 'Y&&&r (kf)(1+E& )

X(fl Alar'"&(x) J(x)dxlrt), (10)

as for the 6.25-keV Ta'" Ej, p ray, gives an observable
dispersion effect in the absorption spectrum. '0 "

Writing Er,"=if'", we see that the effects of the
screening processes are given by making the replacement

expi(rt~ "'—rtr, ~) —+

(1+ifr, ')I expi(rtr, "'—r&1~)](1+i$z&')
~expi (rtr,

"' rtl—."+Pr, "'+
gL,") (14)

in Eq. (4).
(i) Conversion screening. The principal contribution

where A is only to be summed over 1 and 0 in (10'.
x

', ' . ' " ' to the imaginary part of ELK comes from the conversion
EI," represents the effect of the atomic electrons on the

pole term in 11,
outgoing wave from the nucleus, and is given by

ik
EI."——— dxdy Q L(OI j(x) Ar te&'&(x)*IP)

4x u

i&1,"='erk Q B(Eo+k—E„)(OI dx j(x) Arse&"&(x) IP)

where

X(PI ~~~'(y) I0)(Eo+k+ie —E.) '

+(oI ~~~"(y) I P)(P I j(x) A~~'"'(x)*l o)

X(Eo+ie—k —E ) '], (11)

&r.»r"'(y) = —j(y) 111.& "'(ky),

(y) = 1(y) '11L3E(1&(ky)+(L/L+ 1)1/s (12)

XLt (y)c'i~(ky) —j(y) 11'~' "(ky)].

The vector spherical notation in Eqs. (10)—(12) is that
of Akhiezer and Berestetskii" (also see Rose"), and
the basic definitions are summarized in Appendix B.

In (10) and (11) we have assumed that the effect of
the unfilled electronic shells is negligible, so that EI,~

does not depend upon M or the direction of kf.
Similarly, J"'(ko) eo in Eq. (2) is replaced by

wino(k ) .e

x(PI dy&i~'"'(y)lo). (15)

The BI,trit"& matrix element appearing in (15) is that
which is involved in internal-conversion coeKcient cal-
culations, while the AL, ~&"' matrix element is that in-
volved in (L,lt) photoelectron emission.

Using the relativistic form for the electronic current
density, j(x) =P; rrt'&8(x —x;), and following Rose's
development for calculating the internal-conversion
coeS.cient, ""we obtain the following expressions for
the MI. and EL conversion screening:

i $(ML) =i )Ls = —ornkLL(L—+1)(2L+1)] '

XQ B„„r„„(m)R„„(m), (16)

ig(EL) =i $r, ' = —ortrkLL—(L+1)(2L+1)]

XP C.„.r„„.(e)R„„(e). (17)

3"'(ko) eo ——P (rtI dx Al, »r&"&(x) J(x) IO)
)LM

The notation used in Eqs. (16) and (17) is that of Rose:
k= &ttoo/mc' rr= 1/137, and

X(1+El,")Yr, »I &"&(k,)*.eo, (13)
R» (m) = kI, &'&(kr) tLf„(pr)g„+g„(pr)f„]r'dr, (18)

where El." is again given by (11).
The real part of E~" gives the effect of the induced

electronic currents in (or 180' out of) phase with the
nuclear currents, and gives a small correction to the
nuclear radiation width which we may neglect. The
imaginary part of Er,", although quite small (=10 '-
10 ' rad), is of importance in analyzing the results of
T-invariance experiments, 2 "and in certain cases, such

R- (e) =( t ') kz-r'"(kr—)

XLf.(pr) g'+g. (pr) f;]r'«

+L (k —"'(k )Lf.(P )g' —g.(P )f']
'7A. I. Akhiezer and V. B. Berestetskii, QNantlm ELectro-

dynamics (Wiley-Interscience Publishers, Inc. , New York, 1965),
pp. 27-29, 537—541.

"M. K. Rose, in Alpha-, Beta-, and Gamma-Ray Spectroscopy,
edited by K. Sieghan (North-Holland Publishing Co., Amsterdam,
1965), Vol. II, Chap. XVI, p. 887.' A detailed analysis of such experiments using the dynamical
theory developed in this paper is presently being written up for
publication.

Itr. t'&)f„(pr)f„+g„—(pr) f„))rsdr. (19)

3' C. Sauer, E. Matthias, and R. L. Mossbauer, Phys. Rev.
Letters 21, 961 (1968).

3' Q. T. Trammell and J. P. Hannon, Phys. Rev. 180, 337
(1969).» M. E. Rose, Internal Conversion Coegcients (North Holland-
Publishing Co. , Amsterdam, 1958).
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The r(rn) and r(e) integrals appearing in (16) and (17)
are given by"

r» (rn) = j z, (kr) $f„(pr)g„+g„(pr)f„]r'dr, (2o)

r„„(e)= ', (L Iz-'+ p—) j z, i(kr) f„(pr)g„r'dr

z (L+& &) 2r i(kr)—gl (Pr)f~'r'«

L
+ —I(L+1+~'—4 ) j~t(kr)

2L+2) 0

L
Xf„(pr)g r'«

I

— I(I+1 14'+14)—
(2Ly2i

X j r+t(kr) g„(Pr)f„.r'dr (21).

'3 There are, of course, a number of alternative expressions for
the r» (e) which are obtained by utilizing the gauge invariance.
See, for example, Ref. 27, p. 349.

'4 I. M. Band, M. A. Listengarten, and L. A. Sliv, in A/pha-,
Beta-, and Gamma-Ray Spectroscopy, edited by K. Siegbahn
(North-Holland Publishing Co., Amsterdam, 1965), Vol. II, pp.
1673—1680.

In (18)—(21), g„and f„are the upper and lower com-
ponent radial wave functions for the bound state, and
g„(pr) and f„(pr) are the radial wave functions for the
continuum state. In (18) and (19) the kl, &' 's are spher-
ical'Hankel functions of the first type, and in (21) and
(22) the jr, 's are spherical Bessel functions. Finally, the
coeflicients B» adnC» 8» /(14 p')P ——are given i—n
Table (b) of Ref. 33.

The dominant contributions to (16) and (17) come
from the inner electronic shells for which kr((1. In this
region kl, (kr) —i(kr) ', while j r, (kr) (kr) .

We have computed the $r,
" for the 90-keV Ru" and

the 73-keV Ir'" Mossbauer transition, and obtained

)ir~(E2) = —6.7X10 ', fir~(M1) = —0.2X10 ',
b,(E2)=+1.4X 10-', P,„(M1)=+0.5X 10-P.

In making these computations, we used the tabulated
values of the E» given by Rose" and by Band, Listen-
garten, and Sliv. ' The r» integrals were computed,
using Dirac Coulomb wave functions. We also mention
that the E-shell conversion channel is closed for the
73-keV Ir"' transition, and the Ir results in (22) repre-
sent the L-shell contribution,

We note that the sign of the b," can be either (+)
or (—), and there is some destructive interference
among the various contributions of (16) and (17). Un-
less there is strong cancellation, however, we will
usually have

I
$(E2) I

)
I
$(M1) I

. This occurs because
of the suppression of the r» (iM'1) matrix element. This

then for a mixed 3E(L)—E(L+1) transition the Ray-
leigh screening contribution gives

Rr,=E&+t'= El,'=——iskoro( jr (kor)4, "'(kor)). (23)

In Eq. (23) rp= e'/rnc' and

&jtk~'") =& (4i+2)«-iI j~k""IR-~)/Z
n, l

We see from (23) that the Rayleigh screening gives
identical shifts to photons emitted by M(L) and
E(I.+1) nuclear transitions. To obtain an upper esti-
mate of EI,, we assume d'or((1 for all electronic shells.
Then

and
jr,kr, &'& = —iI (2L+1)kpr] '

Rr, = srp(2L+ 1)——'(1/r) .

Taking (1/r) =s'~'/ap, then

Rr, = —s4~'L(2L+ 1)(137)P7—i

which gives R~= —2.8/10 ' for Ru" and E~= —5.8
X10 ' for Ir'". We can generally neglect El., since it is
primarily real and much less than unity.

III. DYNAMICAL THEORY OF MOSSBAUER
OPTICS

The multiple-scattering equations which describe the
interaction of a p ray with a Mossbauer medium are
given by Eqs. (50) and (51) of I. These equations are
identical in form to the semiclassical equations used to
develop the dynamical theory of x-ray diffraction, ' '
and as a consequence, much of the x-ray theory can be
taken over directly. However, it is necessary to general-
ize the x-ray theory to account for the very strong
polarization mixing which occurs in Mossbauer optics.

'5 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Acaflf. mic Press Inc. . New York, 1957),
p. 282.

latter point is most easily seen from the nonrelativistic
approximation of the (OIj AtoroIp) matrix element,
which gives the leading term proportional to (OIIMIIp),
where M is the magnetic moment operator. In the de-
rivation of (16) and (17) a Russell-Saunders —type ap-
proximation is used for the electronic wave functions.
For this case, however, as discussed by Bethe and Sal-
peter, " (0IIMIIp)=0 unless the states belong to the
same one structure multiplet.

(ii) Rayleigk screening Awa. y from the absorption
edge, the primary real contribution to El," comes from
the Rayleigh term of E„„.Making the nonrelativistic
approximation as in Eq. (6), and taking the electronic
ground-state wave function

I ep) as a product of wave
functions of the form

(n
R-i(*)I'i-(x)

I

&8)
'
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where

&&[expi(g(. ) Is I+(k*.'+~( )) R)]

)&M„„( i~R, —ks)a„s, (24)

g = [ksP —(k,„'+~( ))']'" (25a)

»n4 (.&
=g(.)/~o, (25b)

and n' is the number of unit cells/cm'. M„„is understood
to be the coherent scattering operator of the unit ce/t

M„„(k',k) =P [M„„(»(k',k)],e—*'&"'—» ~. (26)

The ~(,&
in Eqs. (24) and (25) are the ptanar reciprocal-

lattice vectors for the unit cells, and the sum is over all

~&,) for which g&, &
is real (the sum over the ~, for which

g, is imaginary gives an exponentially damped contribu-
tion on the order of e ~0I'I~~0~'~. The scattered photon
amplitude is thus a superposition of a finite number of
plane-wave channels (s+) having wave vectors k(,+)
=(+g(,&, k,„'+~(,&). These channels are symmetric
about the scattering plane, i.e., for each forward scat-

"An exact treatment of planar scattering, i.e. , including
mutliple scattering within the plane, is given in Refs. 6 and 15.
The primary efFect of the multiple scattering is to add a width
contribution to the resonance denominator= —V~0.(coh. elastic
scatt. )/~(total), where F~ is the radiative width for an isolated
nucleus. For most cases this contribution is negligible.

We will generally limit our discussion here to perfect
single crystals (except for the cases of critical reflection
and transmission off Bragg, where the expressions are
independent of crystal structure). The reflection and
transmission coefficients depend somewhat upon the
shape of the crystal, and, as in the usual x-ray develop-
ment, we take the form shown in Fig. 2(a): We assume
that some set of infinite crystalline planes is parallel
to the surface, which we take as the xy plane, and that
the crystal is of finite thickness t in the s direction,
t=Md, where 3f is the number of "planes, " and d is
the interplanar distance. The thickness of the layers is
rather arbitrary, but they must be sufficiently thin so
that the Born approximation is good within the layer.
We generally assume a unit cell thickness (chemical or
magnetic, whichever is larger). For example, if there is
a magnetic spiral axis 0, it is convenient to use the
magnetic unit cell, which contains the full spiral, so
that each unit cell in the crystal has the same internal
field structure. The assumption that one set of crystal-
line planes is parallel to the surface is slightly restric-
tive, but the resulting optical solutions are essentially
the same as for the Laue formulation, where no such
assumption is made (see Appendix D).

If a photon A s(s) =a„' expi(k&) E—
o&&)),',) is incident on

a plane layer (at s= 0), then in the Born approximation
the coherent elastic photon amplitude at R is given by"

A„(R)=A„'(R)+A„'(R)

=A „'(R)+P (iXpn'/sing(, ))

~—x rr
z

(b)

I+

Q+

+ko

Fto. 2. (a) Schematic representation of the crystal geometry
used in developing dynamical theory (dashed lines indicate
crystal planes); (b) representation of open radiation channels for
a plane layer; (c) Bragg reQection; (d) Laue transmission.

where d is the interplanar distance and n is the unit-cell
density (cm '). M„„( '& is the unit-cell scattering oper-
ator of the (ns —1)th plane. We will generally limit our
considerations to uniform Mossbauer crystals (i.e.,
crystals with a uniform distribution of Mossbauer

' For a discussion of the Darwin-Prins and I-aue formulations
of the dynamical theory of x-ray difFraction, see, for example,
Ref. 3, pp. 52-90, 413-436.

tered wave in the k(,+& direction [the (s+) channel],
there is a reflected wave in the k(, &

direction [the
(s—) channel] [see Fig. 2(b)].

In a crystal of finite thickness, any wave of appreci-
able magnitude within the crystal is built up by con-
structive interference of the planar radiation channels.
All the (open) planar channels contribute to the general
dynamical equations [Eq. (27) below], but in the usual
approximation, only constructively interfering channels
need be considered open for the crystal. Thus, there will

generally be only one or two radiation channels open
in a crystal [off Bragg, only the (0+) channel is open,
for single-Bragg reflection, the (0+) and a (1—) channel
are open, and for I.aue transmission, the (0+) channel
and a (1+) channel are open].

This approach to the problem follows the Darwin-
Prins development of the dynamical x-ray diffraction.
The alternative Laue formulation is discussed in Ap-
pendix D.'~

The generalization of the Darwin-Prins dynamical
equations is straightforward: Denoting by A„(~&(k(,+&)
the wave incident on the nsth plane (from "above")
in the (s+) channel, and similarly, by A„( )(k(, &) the
wave incident on the nsth plane (from "below" ) in the
(s —) channel, then the waves incident from above on
the mth plane are related to the waves incident on the
(ns —1)th plane as given by

A ("&(k(,+g)) =e'«'+&"[A &"—'&(k(,+))+(ih&)nd/sing(, &)

xp p 3II„„( '&(k(, ),k„„)A„& '&(k, „))], (27)
S
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atoms, and for which the unit-cell internal field struc-
ture is the same throughout the crystal) for which the
plane designation of the scattering operator can be
omitted. Equation (27) is an obvious result: The ampli-
tude that a wave A„(k(,+&) is incident on the mth plane
(from above) is equal to the amplitude that such a wave
is incident on the (m —1) plane, plus the forward scatter-
ing

2xkped
(k(s+)tk(s+))As (k( +&)

sinttt (,&

of this wave by the (m —1) plane, plus the amplitudes
of all other channels incident on the (m —1) plane being
scattered into the (s+) channel by this plane. These
effects are propagated to the mth plane by the phase
factor e'«»".

Similarly, the waves incident on the mth plane from
below are related to the waves incident on the (m+1)
plane, with A„(m'(k(, &) given by Eq. (27) with the
replacements (s+) s (s —), (m —1) s (m+1).

Denoting the first plane as the m=0 plane, and the
last plane as the m=3II plane, then the general boundary
conditions to be satisfied are

A (™=P&(k(,~&) = i),pa„'e'~g'RP (28a)
(m=M) (k )

—0 (2gb)

That is, the only wave incident from above on the first
plane is A„', and there are no waves incident from below
on the last plane.

It has already been implicitly assumed in deriving
Eq. (27) that kpd))1, which is well satisfied for Moss-
bauer frequencies. Thus the longitudinal and scalar
components need not be considered and it is convenient
to express Eq. (27) in terms of orthogonal transverse
amplitudes.

We define by e, ('p&, e„('p&(t&=+ or —) any conven-
ient orthogonal bases perpendicular to k&,». In terms
of this basis, the transverse part of A„& &(k&,») is given

by

A(m)(k )—(e (s+)T (s)+e (s+)T (s+))

Xexpik, „('+' R, (29a)

A&"&(k,, ))=(.' )&., "+,' )&,, ")
&(expik „'—& R, (29b)

where

( &=e,(+&+ A& &(k(,~)) exp( —ik(,+)*g R„), etc. ,

so that g ('~ gives the scalar ampl. itude that a photon

j e, (s+&,k(,+&) is incident on the mth layer from above,
etc. We will denote the (s+) channels by the index t,
and the (s—) channels by r, and define the column
vectors T ', R " as

The "planar" scattering matrix F&"'& (and f(s"&)

(s, s'= t or r) for scattering an (s') channel into an (s)
channel is'defined by

where

p'(~tt') = (P ss P ss

f'—"'=I
Slnttt(s) EFgs Fggss )

(31)

+i P F("&R„ 1"), (33a)

R =e*«)d(R„+,"+iP P(""'&R +,"
+i g P("&T +1'), (33b)

with the boundary conditions,

p(t&Tp'= btpap(k, (p),

Rsr"= 0.
(34a)

(34b)

In (34), p(" is the row vector (e ', e„t).
Equations (33) are the generalization of the Darwin-

Prins equations of x-ray optics. These equations in-
clude not only the polarization mixing effects, but by
including the contribution of all (open) planar radiation
channels, the scattering from any set of Bragg planes
can be computed.

A. Bragg Re6ections from a Mossbauer Crystal

For a single-Bragg reflection from a Mossbauer crys-
tal, two channels will be open: the tp= (0+) channel,
and a "reflection" channel r LBragg case, shown in Fig.
2(c)j, or a "transmission" channel t t Laue case, such
as shown in Fig. 2(d)$.

For a uniform Mossbauer crystal it is straightforward
to obtain a general solution from Eqs. (33) and (34) for
the polarization and amplitude of the rejected and
transmitted waves by making the substitutions

/T, „,())

(T„p,(t)P

&),) "'= (d/sint&) (,&)f),),
"'= (d/sinttt (,&)Xpne), „('&*

&~"(k( ) k("))e~ .'"', (32)

A., X'=x or y. The planar scattering amplitudes Ii are
dimensionless, while the amplitudes f have the dimen-
sions of a mass absorption coefficient, i.e., length '.

In terms of these matrix quantities, the dynamical
equations for Mossbauer optics are given by the coupled
equations

T t eig(t)d(T t+i P P(tt')T

(T„,„(t&)

g&s,m

())

(30a) (g p, ( ))
e(m' kd

ts' p~ Q p, (s))

To be definite, we first assume that a reQection chan-
nel (r) is open, in addition to the tp channel. Substitution
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of (35) into (33) and (34) gives

L(e
—'«~')"—1)I—shoo]Tk, o SorRk, "——0,

(36a)—sP oT.,o+L(e-'«+'& —1)I—sZ-]Rk"= 0

and the boundary condition (X= a,y),

and the boundary conditions are given by

2 Z 2'k. k
")ek") =so(~o,ko),

I(."

PP'k, k "'=0.
k~

(40b)

(40c)

p 2 Tk, k ")ex&"=so(ko,~o),
X I&,

"
(36b)

, (r)eik'M P
Io'

(36c)

In (36a) I is the 2 X2 unit matrix. The dispersion equa-
tion to determine the allowed values of k' is then

((e
—i(gP—k'ls 1)1 shoo

detl
2Ero

—iFp"

(e
—s(g,+k')d 1)I (Prrf

(37)

where the quantities with tildas are 2&2 matrices.
Equation (37) gives four values of k' (which are
independent of the basis of representation). There
are then 16 amplitudes TI, ,q~'&, Rq. ,q("& to be deter-
mined from the 16 linear relationships given by Kqs.
(36a)—(36c). In particular, for a given value of k', the
three independent equations (36a) give the determinant
solutions

T„'k=D„,"(k')T, k &'&, Rk k "=Dk "'(k') T, k
&"&

in terms of T,~ ~'). The four values of T, , ~
&') are then

determined from the boundary conditions (36b) and

(36c), and the reflected and transmitted waves are then

given by"
(38a)R"=p p ok&")Ek,k. &"&,

'A A~

To P P e (o)T', (o)haik'M

X I(."
(38b)

The reflection and transmission coeScients are given by

[R'f '
E.=g d07pdkp dcood~o

Ip
where

Io= do)odko~ ao((oo, ko)
~

',

g= sing)/sin(&ko LFig. 2(c)] is the Jacobian
~
d'(ko)/d'(ki) ~,

and the integration range is taken sufficiently small

that the relative variation of g and ~p is negligible.
If a transmission channel t1 is open instead of a

reflection channel r, then the equations replacing (36a)
are

t (e
—i(op—k')d I)P r'Poo]T, o sfo)T .'= P

(40a)
jP' Tk +p(e '&o' k')—~—1)I jF ]Tk =0—

"Equation (38a) gives Rp, the rejected field incident on the
first plane. The actual reQected wave can then be calculated from
Kq. (33b), but the scattering eR'ects of a single plane can generally
be neglected. Similarly, (38bl actually gives TM.

(g()+gi)d =2')r+28. (41)

We note that with go and gi given by Eq. (25), Eq. (41)
defines (I in terms of the angle of incidence @o. The dis-
persion equation then gives two values of kk'p = x,y),

where
7o),

'= (god ~+~k~Pk)/d, (42a)

ok = —,'(Fkk" —~kk"), (42b)

P =L(+-'( "+ "))'— " "]'", ( )

and where the F),),'" are the planar scattering ampli-
tudes defined by Eq. (32). In (42c), the square root is
taken so that I(pk)) 0.

The amplitude of the reRected a), ~'& wave is then given

by
i5K),pkk"

Rk(8,(o) = ~e),
&o)*.ao((o,k),

1—iBRkPkk")'

"By "isotropic limit" we mean the magnetically disordered
state for which the splittings are negligible compared to 1", e.g.,
Fe" in stainless steel.' The development given here is taken directly from the Ph.D.
thesis of one of the authors (Ref. 14). Two recent papers by
Afanas'ev and Kagan (Ref. 17) and O' Connor (Ref. 16) also
treat the iso tropic limit. Although there is some overlap of sections
(Ai, Aii) with these papers, diKerent aspects are emphasized
here and the approach is somewhat more general.

In order to illustrate the general method of solving
Eqs. (36) and (40), and to bring out certain features of
the Mossbauer-Bragg scattering, we consider the limit-
ing case, in which there is a well-defined quantization
axis at each Mossbauer nucleus, which is perpendicular
to the scattering plane (i.e., we assume that J, is a
good quantum number and that J, is parallel to kr&&ko).
For the "isotropic limit, ""of course, we can always take
the quantization axis parallel to kr&&ko. It is easy to
verify that in this case there is no orthogonal scattering
if we use the following basis: e &'&(s=to, r) lies in the
scattering plane, perpendicular to k„and e„&'& is taken
perpendicular to the scattering plane such that
(e ",a„&'),k&,)) forms a right-hand coordinate system.
With this choice of basis there is no polarization mixing,
and the four coupled linear equations of (36a) or (40a)
separate into two sets of 2)&2 coupled linear equations,
one set containing only the x amplitudes and the second
only the y amplitudes. In Secs. III A i and III A ji below,
we examine the solutions for Bragg reQection and I aue
transmission for this limiting case of no polarization
mixing. 4'

(i) Bragg reflect)'on, If the .incident radiation is near
a Bragg angle for a reQection channel r~ as shown in
Fig. 2(c), then
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where BRq is given by

BRQ—
e i(—s+az+syi 1 esiMiix(e i (b+—a&, l3x) —1)

For thick crystals such that e'~&"=0, then ORq=i(8+nz+p~) ', and

F " "* ( ,k)
E),(8,(o) = —

i«+l(»~"+F»")+H&+-'*(»~"+r»"))'—r»"r»"p'~ (45)

which is the usual thick-crystal expression. " In the opposite limit of &kin filets (, and very near Bragg), such that
~MP&~&&1, then to terms of order M'Pz', OR&=M[1 —iM(8+irz)] '~M, the number of layers, andi'

R,(g, )= MF„„o,& &,(,k)/[1 —MS —M-,'(F„"+F„")].
For the transmitted wave, the amplitude of the a), (') component is given by

~m (~J,+PJ,) e
—i(&+»K+A) —e i(&+»') i~xi

Tg(b, id) = (0) . ~ &i3I(god—b)

—zORgFyg e ' i+~~+ib 1+8& sr'"['e '"+»" Sr' —1]
sic�(~x+P&)l (, 2Px l

/s„(s) .a e~M(go&—&i

1—sORgF), ),")k5+ng+Pg —e" (8+ng —P~) J
(47)

One of the more interesting features of the dynamical
solution is the suppression of the resonant absorption
which occurs near a Bragg angle, as erst pointed out by
Trammell, Muzikar, and Afans'ev and Kagan. "That
is, near a Bragg angle the integrated intensity of the
rejected wave will generally maximize near resonance
(although for small scattering angles from a thick crys-
tal which contains a weak concentration of resonant
atoms, a minimum can occur, as discussed below), and
also the transmitted intensity, although minimizing
near resonance, is generally much greater than the off-

Bragg intensity. [This occurs because the transmitted
intensity depends primarily on the e'~» factor in (47),
and Pq, which depends on the square root of the differ-

ence between it(F&&oo+Fzz")' and Fzz"Fz&,", generally
has a smaller imaginary part than F),), , which deter-
mines the off-Bragg transmission. ] The suppression of

F) =Fu "=Fv,"=F—.+F„
r,=F,,M=F,„s'—=F„+r,cos(2&s),

r„=F»"=F»"=—„Fc so(2& )a+r„
(48a.)

where (2p,) is the scattering angle (gs is the angle of
incidence with respect to the xy planes), and

resonant absorption has been observed experimentally
for both Bragg reAection4' and Laue transmission. 44

In order to illustrate this point, we consider the par-
ticularly simple case of an "isotropic" 3fj Mossbauer
transition and a simple cubic lattice containing a frac-
tion E of the resonant nuclei. For further simplicity,
we assume that the incident radiation is near Sragg
for a symmetrical reflection (i.e., near a Bragg angle for
the xy planes). For this case we have

2s.&,'rid&[exp( —ks'(x'))] r
(2Js+1) simp (AE ke —isr r)
7,sgd( —Zrp+ikpo, /4s. )

singe

Xpnd exp( —sr ([(k~—ko) x]'))[—F(2@s)rs+ikoo,/4~]

sings

(48b)

F, and r, in (48b) should, of course, be the coherent
average of the Mossbauer and non-Mossbauer atoms.
For a numerical estimate we take an iron crystal con-

"In comparing with the standard results, e.g. , Ref. 3, p. 428,
note that the

~ y~, ~
yo [ factors which appear in the x-ray results

for unsymmetrical reflection are the same as the sin@(,) factors
which are included in the J ),~".

4'The discrepancy between Eq. (47) and Eq. {27) of Ref. 17
arises from the neglect of the planar self-action in the present
treatment.

taining 65/o Fe'r. Then for e Polarized resonant radi-
ation incident at exact Bragg (with E/sin&=1), we
have T 0.04, E 0.67; while off Sragg, T 2)&IO 4

and 8 2g $0 ~. This is for &=104.
This suppression of resonant absorption near Sragg

can be viewed as due to an enhanced coherent scattering
4' P. J. Black and P. W. Moon, Nature 188, 481 (1960).
44 V. K. Voitovetskii, T.. L. Korsunskii, and Yu. F. Pazhin

Zh. Eksperim. i Teor. Fiz. Pis ma v Redaktsiyu 8, 611 (1968)
t English transi. : Soviet Phys. —JETP Letters g, 377 (19681).
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FIG. 3. Curves showing the form of the integrated intensity
&(x} of the reflected wave as a function of the source velocity for
a thick simple-cubic iron crystal containing Fe'7 for (a) &0=10,
E=0.65, (b) 4p=45', E=0.65, (c) 4p=60', E=0.65, and (d)
41 0=10', 5:=0.02.

width. For a highly enriched crystal for which we can
neglect F„r, with respect to F„near resonance, we
have in the thin-crystal limit

/ 2~Mr..h i
— i(1, cos2@p)

kkp'd' sinttttp/

2m.~l CO

hE —kp —i-' I'+, (49)
kp tf sln@p

where I'„h=E exp( —kps(x')) (2Jp+1) 'I'7. From this
form we see that the coherent scattering width of the
system is enhanced by

I"„„„t= (2trMI', .t,/kp'd' sintt p) . (50)

The v, idth is proportional to the number of layers, and
can be much greater than the radiative width F~ for an
isolated nucleus (for the idealized case considered above,
I' tt 1.5X10'I' ). For sufficiently large 3I, I'„t domi-
nates F, the width for absorptive processes, and there
is a corresponding enhancement of the coherent elastic
scattering and a suppression of the absorptive processes.
This enhancement of the coherent width at Bragg angles
and suppression of the absorptive processes was first
pointed out by Trammell' and Muzikar, 7 and cor-
responds to the Dicke's superradiant emission states. 4'

The coherent width for emission of a photon from a
crystal is also given by (50) as shown by these authors
and by Zaretskii and Lornonosov. ' It is interesting to
note that, since the lifetime is inversely proportional
to the width, a photon incident at a Bragg angle escapes
from the crystalline system faster than from an isolated
nucleus.

. Experimentally, of course, one is interested in the
integrated intensities. In Fig. 3 we plot the integrated
intensity of the reflected wave, R(n, ), as a function of
the source velocity for the case considered above of a
symmetric Bragg reflection from a thick, simple cubic
crystal of Fe'7 in iron at room temperature. The source
is assumed unpolarized, with a beam collimation of
2&10 3 rad.

45 R. H. Dicke, Phys. Rev. 93, 99 (1954}.' D. F. Zaretskii and V. V. Lomonosov, Zh. Eksperim. i Teor.
Fiz. 48, 368 (1965) I English transl. :Soviet Phys. —JETP 21, 243
(1965)g.

Fto. 4. Curves showing the reflected intensity E(4) as a function
~ = kpd sin& BP, the deviation from Bragg, for different fre-

quencies x=2(ktl —hE)/P for a thick simple-cubic iron crystal
containing Fe". In (a), E=0.02, and in (b), A=0,65.

The curves labeled (a)—(c) in Fig. 3 give R(tt, ) for a
highly enriched crystal for the angles of incidence P = 10',
45, and 60'.For these cases the intensity maximizes near
resonance. As discussed by Black, Evans, Longworth,
Moon, and O' Connor, the frequency asymmetry and
the displacement of the maximum from resonance is
due to the interference between the Rayleigh and the
resonant nuclear scattering. "' "For the isotropic M1
case being considered, this interference term is propor-
tional to R(r,F„*cos2@), and for tttt(45' the region of
constructive interference is shifted to the high-frequency
side (kp) DE), for p)45', to the low-frequency side,
and for &=45' there is no interference. The most pro-
nounced interference effects occur for the small scatter-
ing angles, where the electronic scattering amplitude is
of comparable magnitude to the nuclear scattering
amplitude. For the large scattering angles the interfer-
ence effects are almost negligible because the electronic
scattering amplitude is greatly decreased by the phonon
and form factors Lfor ttp

——60', F(2&)/F(0)~0. 17, and
f.(2~)=0 5j

The curve3(d) gives R(tt,) for pp= 10',E=0.02, and for
this case the intensity minimizes near resonance. 5' This
behavior is also obtained near grazing incidence (see
Sec. III C and Fig. 5), where R(tt, ) minimizes near re-
sonance if the angle of incidence of the beam is less than
the critical angle p„while a maximum is obtained if
the angle of incidence is greater than p, .

A qualitative insight into the dependence of the
resonance behavior of R(tt, ) upon the beam collimation,
the angle of incidence, and the fraction E of Mossbauer
atoms is obtained by examining the angular dependence
of iRq(3, pp) i'. In Figs. 4(a) and 4(b) we plot iR (f't, tp) I'
as a function of 8 for E= 0.02, 0.65, and @=10'.

The curves labeled x= ~ are the purely electronic
scattering curves. As is well known, the reflected in-
tensity for this case has a region of near total reflection

't P. B. Moon, Proc. Roy. Soc. (London) A263, 309 (1961).
P. J.Black, D. E. Evans, and D. A. O' Connor, Proc. Roy. Soc.

(London) A270, 168 (1962).
'9 P. J. Black, G. Longworth, and D. A. O' Connor, Proc. Phys.

Soc. (London) 83, 925 (1964); 83, 937 (1964)."D.A. O' Connor and P. J. Black, Proc. Phys. Soc. (London)
83, 941 {1964).

""' In I~ef. 49, the conditions for obtaining a maximum or a
minimum near resonance are discussed from the kinematical view-
point.
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for —R(F),—r),)&8& R—(F),+r),), where F), and r), are
given by Eq. (49) with F„=O.

In Fig. 4(a), the crystal has a weak concentration of
Mossbauer atoms, A=0.02. For this case F 1.1)&10 4

X(x i—) ' while F, —6.1X10 P+i2.0X10 ' and
r, —3.3X10 4+i2.0X10 '. Thus even at resonance,
the dominant contributions to the coherent scattering
amplitudes are the real parts of Ii, and r„and the
region of maximum scattering is still contained within
the region 8 ~ —R(F,&r,). As the frequency of the in-
cident radiation nears the resonance frequency, F„ is
primarily imaginary and acts as an absorptive contribu-
tion to F, and r,. As shown in Fig. 4(a), the intensity
within the maximum scattering region is strongly de-
creased, and it is clear that the integrated intensity
will exhibit a minimum in the resonance region.

In Fig. 4(b), E is taken as 0.65, for which F„3.5
X10 P(x i) '—

, and F„gives the dominant contribution
to the scattering amplitudes near resonance. For this
case the region of strong scattering is greatly broadened
near resonance, with a maximum spread on the order of

~
F„~)p=q@. It is this broadening of the scattering region

that gives a maximum to the integrated intensity such
as shown in Figs. 3(a)—3(c).Of course, within the region
h~R(P, &r,), ~R((),(p) j' as a function of frequency
again strongly decreases near resonance, so that if the
incident beam were collimated to this region, a mini-
mum would always occur. Except near grazing inci-
dence, however, such a collimation generally cannot be
obtained experimentally (for the case being considered,
this would correspond to an angular collimation

4X10 4rad).
Qualitatively then, the reflected wave will maximize

near resonance if (8)) ~F„~ p) (r, (, i.e., the most
favorable conditions for a maximum are for highly en-
riched crystals, large scattering angles, and uncolli-
mated radiation Lor collimated radiation lying outside
of the region o ~ R(F,+r,)7.P(

Finally, we note that polarization can be important.
For example, in the simple case considered above,
R,(e,) will always minimize near resonance for a Bragg
angle of &=45'. This occurs because cos(2&) =0, so
that the numerator only contains r, and is frequency-
independent, while the denominator contains F„and
maximizes at resonance. The physical reason for this
is that for &=45 and incident e„ the magnetic dipoles

vibrate in the direction of the reQected wave and hence
do not contribute to the scattered field, and the rejected
wave is caused by electronic scattering. However, the
rejected wave from a layer will interact with the mag-
netic dipoles in upper layers, and this interaction dis-

sipates energy from the reflected wave.

(ii) Lale transmission. If the incident radiation is

near a Bragg angle for a transmission channel v.~ as
shown in Fig. 2(d), then

and the dispersion equation gives P,= x,y)

&),'= (gpd —&+~),~p),),
where for the I aue case,

(52a)

Since the imaginary part of (pz —p), will generally rnaxi-
mize in the resonance region, it is clear that as a func-
tion of frequency, both the ro and r& waves will exhibit
a minimum in the resonance region for a thick film
(and it is only for the thin-film limit discussed above
that a maximum will occur). Of course, the total trans-
mitted intensity is still much greater than for the off-
Bragg case. 44

B. OfT-Bragg Transmission through a
Mossbauer Medium

Off Bragg, to a very good approximation, we only
need consider the (0+) channel open. This channel only
involves the forward scattering amplitudes, and the
optical solutions are thus valid for a noncrystalline
medium, as well as for a crystal.

As pointed out in Ref. 14, there are two, generally
nonorthogonal, frequency-dependent eigenwaves in a
Mossbauer medium, which have different complex in-
dexes of refraction. " This gives rise to a number of
interesting optical effects, such as a Faraday effect,

a), = -.'(FU,"+F),),"), (52b)

P),= {$8+-,'(F~)"—P), ),"7'+F),) "F)),")')'. (52c)

The square root is again taken so that I(P),))0.
The amplitude for the e), ~'& component of the wave

with ki ——(gi, k»'+ ~»') wave is then given by

T),'(8,(p) = L
—e), ('& apiF" sinÃP), e'(~ '&~"/sinP), 7

Xeius(gPd P) i—P —
(53)

and the a~('~ component of the ko wave is given by

T„p(g,(p) = (e),"& apLcosM p),+i) ), sinMp) /sinpq7
XeiMa)}ei3f(gpd p) —

(54)
where

;v„= I
1+iF„„oo 1i(e-.«- );e),)+e-'('-~)+e), ))7 e('-~ ))

=i@+-,'(P), )pp —F),),)')7e'('- ». (55)

From Eqs. (53) and (54) we see that, for a thin film,
very near Bragg, T), "&=i'), ),

"and T), ('& = (1+iso),).
As a function of frequency, the k~ wave in this case
will exhibit a maximum in the region of constructive
interference between the electronic and nuclear scat-
tering, while the ko wave exhibits a weak minimum.

For a thick 61m the dominant contributions to Tq(')
and T), "& come from the exponential term depending
on the difference between oo, and Pq, i.e.,

(g,—g,)d=2npr+2(), (51)
'~ A diferent approach to this problem is given by Blume and

Kistner in Ref. 15.
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(f.. f.w T.,a )
if„. f„„T„,w f T„,w f

(58)

where f, etc., are the planar forward-scattering ampli-
tudes defined by (32) and again we have used s, aw to
denote any two orthogona/ polarizations perpendicular
to kp.

From (58) we obtain (for i) = 1,2)

f.= s(f**+fw)+( 1)"+-'

&&B(.f** f„)'+-f*,f,.l'", . (»)
where the square root is taken to have a positive
imaginary part. The corresponding eigenpolarizations
e, are given by"

a,(»~) =E(.,*)Le.+(f.—f**)/f*ws.3, (60)
where

E(», l= L1+ I(f.—f*.)/f. l'3w'" (61)

and allows selective absorption or selective critical re-
Qection of the eigenwaves.

(i) Eigentoaues in a uniform AIossbauer medium. Set-
ting Ri„w &'=—0 in (36a) and taking

e"w' «&"= (1+if„d/sing )s, (57)

then the eigenpolarizations and indexes of refraction
are determined by the eigenvalue equation

and g, are invariant with respect to the choice of orthog-
onal basis, as they must be. We also note that the
eigenpolarizations are functions of k, re, so that each
component of an incident packet has different eigen-
waves.

(ii) Transmission through a 3fossbauer medium. The
polarization and intensity of the coherent, elastic wave
transmitted through a Mossbauer medium is easily
obtained using the exponentially decaying eigenwaves
(60). The polarization and amplitude of the (k, o~)

component of the incident photon we write as

as(k, ce) = E(ce,k) I
o.(oi, k) e,(k)+P(o~,k) ew(k) j, (63)

where s,(k) and e„(k) are an orthogonal polarization
basis perpendicular to the momentum vector k of the
incident photon, and E', rr, P are complex functions of

(k,co) with the normalization

d dk IEI'(I~I'+IPI') (64)

where Ip is the intensity of the incident packet. If the
incident photon is unpolarized, then P ~ e'&, where g is
an arbitrary phase angle, and there is an additional
J"(df/2w) integration in Eq. (64).

as(k, oi) can be expressed in terms of the exponentially
decaying eigenwaves a„(k,o&) by

nw= 1+%of, (62)

From (57) we see that k„'d = god+ f„d/singe+0(f„d)',
so that within the medium the e, eigenwave decreases
(to first order) as e r~~', and the corresponding index of
refraction is given by

where

Sz are(ll+~@&(2l y

sw await)+ f'wels) I

a.= (fi—f-)/L(fi —fs)Eii,*ll,
&*=—(fs—fww)/L(fi —fs)E(s ..)j (66)

We note that since the scattering matrix in (58) is not
generally Hermitian, '4 the eigenwaves a, are generally
nonorthogonal. Only in the limiting cases of well-isolated
resonances, "isotropic" resonances, off resonance, or,
if J, is a good quantum number, for kp'2=0 ~1,
will the eigenwaves be strictly orthogonal. (Orthog-
onality can also be obtained in some cases for propa-
gation along a high symmetry axis of the crystal, as
discussed by Housley, Grant, and Gonser"). Although
it is not immediately obvious, it can be verified that f„

a„and b arwe given by Eq. (66) by interchanging all x
and y subscripts. The (k,~) component of the wave
transmitted through a Mossbauer medium of thickness
f (where t is thickness along the direction of propagation)
is then given by

T(k,co) =E( r+raPa„) e*»'s(, )

+E(nb, +Pbw)e'r"e(s), (67)

or, in terms of the orthogonal basis e,(k), a„(k),

$$ g'lI sg (fww fbi t' fws—

T(k,te)=E —,'ao(~)+o( l
——,'oI —

Iypl e,+E -',pe(+)+e( l -', pI
——+nI e„, (68)

E fi fs I kfi —fs —— k fi fs kfi —fs ——

where

(~)
—gif&1~pif2t

A phase factor e'w" ""&' has been taken into the factor IC in Eqs. (67) and (68).

"There are, of course, a number of alternative forms for e„which are obtained by using the determinant equation of (58), i.e.,
(f, f„)(f» f„) f „f„=0—, and b—y—modifying the factor E&„,„.In particular, we can inter'change all x and y subscripts in (60)
and (61).In going from one basis to another, over-all phase factors are absorbed into E(„,~).

'4 See, for example, Blume and Kistner, Ref. 15."R.M. Housley, R. %. Grant, and U. Gonser, Phys. Rev. 178, 514 (1969).
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The intensity of the transmitted packet is given by

where

I= — d(odk IT(k, (u) I'=I +I
2'

(70)

df SS gg SP
~dklItl' 'Ine+-I'+le I' —,'n +p-

27r fx f2 -fr f2-
,(f.* few— ,( f.w

+2e*(+)e(—) 2 I((I 'I +Pn*I — +c.c. , (71a)
2 1 2

dg gg SS QSI„= — d~dklzl2 -'Ipse+I'+le I' -'p +
2~ l 2 1 2

,(f- f**i—,( f" i-
+i«+)e*( )k -I p I'I —I+~p*l

I
+c c. (71b)

1

If the incident packet is unpolarized, then p/o. ~e'&,
and the terms uP*, o.*P in Eqs. (71a) and (71b) give no
contribution.

When the composition and unit-cell internal field
structures are known, Eq. (68) gives the amplitude and
polarization of the transmitted wave in terms of any
convenient orthogonal basis, and (71) gives the intensity
of the components. Conversely, if the internal field
structure is unknown, these expressions can be used to
obtain information about the internal Geld parameters
by carrying out polarization experiments (i.e., polarized
source line, and/or measurement of intensities of trans-
mitted components a, a„by using polarizing filter. See
for example Housley, Grant, and Gonser").

When the frequency distribution and spread of the
incident photon packet is specified, the integrations in

(71) can be carried out analytically (in some cases) to
give the explicit dependence on the thicknesses of the
source and absorber. Except for the simplest cases,
however, these expressions are generally quite com-
plicated. "

As given by Eq. (67), the transmitted wave T(k, (d)

is a superposition of the exponentially damped eigen-
waves ei, e2. Since the indexes of refraction of the two
waves are different, i.e.,

n(, )
—m(, )

——27,{L4(f.,—A„))'+f,„f„.)', (72)

there are Faraday effects involved in the transmission
through a Mossbauer medium. The real part of e(&)
—n(2) gives the usual Faraday rotation effect, while the
imaginary gives a "selective absorption" effect. Since
the electronic scattering gives no contribution to (72)
(in the limit that we have treated E„„),no) —n(~) de-

pends only upon the nuclear scattering amplitude and
will be primarily imaginary at resonance, while the

"S.Margulis and J. R. Ehrman, Nucl. Instr, Methods 12,
131 (1961).

real part will dominate off-resonance. Thus at resonance
the Faraday effect in Mossbauer optics is primarily one
of selective absorption. That is, if the resonances are
well separated and if the incident frequency (packet)
is within a few widths of a resonance, so that I(f()
))I(f2), then the ei eigenwave will be damped out much
more rapidly. For such a case, the thickness t of the
polarizing medium can be chosen sufficiently thick so
that almost all of the ai wave is absorbed, but still sufB-
ciently thin such that the s2 wave is only slightly at-
tenuated, and the transmitted wave is nearly
polarized. In particular, selective absorption of the
eigenwaves gives a means for obtaining a (partially)
polarized, monochromatic Mossbauer beam for scatter-
ing or absorption experiments, and a means for measur-
ing the intensity of a particular polarization of a Moss-
bauer beam. In order to obtain a well-polarized beam it
is necessary that I(f&)))I(f&). It is obvious that to
satisfy this condition requires strong Zeeman splitting
within the polarizing medium, and, furthermore, the
imaginary part of the nuclear scattering. amplitude must
be much greater than the imaginary part of the elec-
tronic scattering amplitude. Because of the rapid de-
crease of the Mossbauer phonon factor with increasing
ko, the second condition is only well satisfied for the
low-energy Mossbauer transitions. For a high-energy
transition such as the 90-k.eV Ru" transition, only
weak partial polarization can be obtained by selective
absorption even at low temperatures.

When T(k, a&) is expressed in terms of an orthogonal
basis e„e„asgiven by Eq. (68), the contribution

SS gg
('(+) +e(—) I

to the a component of the transmitted wave includes the
effects of the absorption of a, within the medium and the
decrease in the a amplitude due to the orthogonal
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scattering z —+ a„within the medium. The final tenn,
&( &f»/{fi f—p), gives the increase (or decrease, depend-
ing on the phase) in the z, amplitude due to the orthog-
onal scattering a„~ e .

C. Grazing Incid, ence

If the incident photon is near grazing incidence with
respect to the xy planes, then all the scattering matrices
F('")(s, s'= 0, r) in Eqs. (36a) and (36b) can be taken
equal to the forward-scattering matrix E('P) to order P
(where @ is the angle of grazing incidence). In this ap-
proximation, then, the matrices can all be simultan-
eously diagonalized, and the equations separate into
two sets of Darwin-Prins equations as in the special
cases considered in Sec. IIIAi. It is clear that the
diagonalizing bases are the nonorthogonal eigenwaves
zp(kp (d), z&(k„(p) defined by Eq. (60), since

2mApnM„„(k(, ),k(,))[z„(k(,),(p)],
=f.([.(k ", )].+o(4)), (, '=o, )

where f„ is given by Eq. (59).
The Darwin-Prins solutions given in Sec. III A i can

then be used, with the appropriate modifications for the
nonorthogonality of the bases. In particular, for an
incident zp ——z(k ,p()pphoton, the reflected wave is given

by Eq. (45), which after some nianipulation becomes

R(k„~)=R„z„(k„(p), (73a)

1—(1+2Kf„/@')"'
Re—

1+(1+V.f /qP)»P
(73b)

For the special cases for which the eigenbases are orthog-
onal, the reflected wave for an incident photon of
arbitrary polarization is given by

R(k„(p) = P R(„)(zp.z„*)z„.
&7=1,2

R(k„,~) =E[(n(),.+pa„)Rizi(k„,(p)

+ (ub.+Pb„)Epzp(k„(p)], (74)

where a., b, , a„, b„are defined in Eq. (66). In terms of
the orthogonal bases, (74) becomes

For the general case where the c, are nonorthogonal,
we adopt the following convention: z„(kp, (p) is analyzed
in terms of an arbitrary orthogonal basis z, (kp), p„(kp)
as given by Eq. (60), and z„(k„,(p) in terms of z, (k„),
z„(k„),where z&,(k„) (&(= x,y) is obtained from z), (kp) by
a rotation of 2P about the k„Xk, axis. Then if the
(kp, (p) component of the incident photon is ap(kp, (d)
=E(kp (p) [az (k)+pe„(k)], the reflected (k„,(p) com-
ponent is (to order p)

IIV

R(k (p)=& p&&(+)+E(—& p&l +pl
1 2 1 2

8 (k„)

lit/ & ff & A

p p&(+)+E( )zppl -—I+~j I
&p(k ) (75)

1 2 1 2

where

R(~) =R1+R2. (76)

We note that Eqs. (74)—(76) are directly analogous to
the transmission formulas, Eqs. (67)—(69).

In Fig. 5 we plot
j R(k„,(p) j' as a function of p for

a highly enriched (E= 0.55) film of Fe" in stainless
steel, for several different frequencies. Off resonance
there is a region of near total reflection for g(p,
=[—2lt Re(f )]'('=3.8X10 ' rad. In the resonance
region, there is no true critical angle, owing to the
large absorption, but a rough characterization of the
curves is given by the frequency-dependent "critical
angle" p„((p) =[—2X Re(f„,((p))]'". In Fig. 5, the posi-
tions of the p„((p) are indicated by crosses. The region
g(g„((p) is a region of strong scattering for a wave of
frequency &p. As a function of frequency, p„((p) maxi-
mizes for p)=DE+-,'I' (x=+1 in Fig. 5), i.e., at the
frequency of maximum constructive interference be-
tween the Rayleigh and nuclear scattering, and the P
region of strong reflection is much broader than for off
resonance. Similarly, )f

j Re(f„((p)) j
(

j Re(f,) j
for all &p,

then P„((d) has a minimum for pp=AE ——',I', the fre-

quency of maximum destructive interference between
the Rayleigh and nuclear scattering, and the region of
strong scattering is much smaller than for oft resonance.
For the case considered in Fig. 5, g„((p) is not defined
for (p=dE ——,I' [i.e., g„(&p) is imaginary], but the in-
tensity curves for @„((p) undefined also have very small
regions of strong scattering with respect to off resonance.

From Fig. 5 it is clear that if the incident beam is
collimated so that (t&p 8(t)((t&(gp+8&(—g„ then as a
function of frequency the reflected intensity will ex-
hibit a sharp minimum in the low-frequency side of the

FIG. 5. Curves shoveling the reQected
intensity near grazing incidence as a
function of @ for different frequencies
x= 2(k0 —bE)/I' for a highly enriched
(E=0.55) film of Fe'7 in stainless
steel. The crosses indicate the posi-
tion of @„(x).

5x IO
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FzG. 6. Curves showing the reflected intensity as a function of
the source velocity grazing incidence (@0=2&&10 ' rad and @0
=4)(10 ' rad) from a Glm of 90 jo Fe" in iron, which is mag-
netically ordered by a Geld 8J k0, I in the plane of the 61m.

resonance. In terms of the frequency-dependent critical
angle g„(&o), the minimum occurs when p„(o~) becomes
less than pp —5p, i.e., when the (fixed) angle of incidence
becomes greater than the frequency-dependent critical
angle. Similarly if gp —5&)e„ the reflected intensity
will have a maximum on the high-frequency side of the
resonance, where g„(&v) maximizes.

Returning to the general case of nonisotropic reson-
ances, where the reflected wave amplitude is given by
Eqs. (74)—(76), we note selective critical reflection of
the eigenwaves is possible. If the resonances are well
separated and if the incident frequency is within a few
widths of a resonance so that I(fir&)))I(f&s&), then the
~Ri»~' reflection amplitude LEq. (73b)j of the eir~

eigenwave has a frequency and angular dependence
similar to the near-resonant reflected intensity curves
shown in Fig. 5, while the ~Rip&~' amplitude varies
slowly with frequency, and as a function of p behaves

similarly to the nonresonant (x= po) curve of Fig. 5.
Thus, if the incident collimation is Pp —g (@(gp
+Bp(p„and if the incident frequency is Doppler-
shifted so that coo= AE ——,'I', then the e(i~ eigenwave will
be only weakly reflected while the a(2) wave is almost
totally reflected. Similarly if pp —5p) p„ then for
pip=Ah'+ ,'I', the e&» eigen—wave will be strongly re-
Rected and a(2) will be only weakly reflected.

As a particular example, we consider the 14.4-keV

y rav from a source of I'e'7 in stainless steel at grazing
incidence on a film of 90% Fe'r in iron which is mag-
netically oriented by a. field HJ kp, H in the plane of
the film. This problem has been investigated by Bern-
stein and Campbell. ' Off resonance, the critical angle
is tt, =3.4)&10 ' rad. 'r In Figs. 6(a) and 6(b), we give
the reflected intensity as a function of frequency for
Pp=4)&10 ' rad and Pp ——2&&10 ' rad (and a uniform
spread of bop=0. 50&10 '). For &p=4)&10 ' rad

57 We have taken F(2@)=21.6 to 6t the off-resonance data of
Ref. 10.

(2&&10 '), 13% (93%) reflection occurs off resonance.
At frequency of the maximum (minimum) of scattering
near the

~ s,—',) ~ ~-'„—', ) resonance, the e~ component
of. the"Mossbauer packet (e,J to the plane of the film)
has a reflection coeflicient =0.55 (0.21), while for the
~„component of the Mossbauer packet, and for the
nonrecoilless part of the 14.4-keV radiation, the reflec-
tion coefficient is =0.13 (0.93). The 123- and 137-keV
background radiation is almost completely removed,
the reflection coefficient being on the order of 10 4.

As a means for obtaining partially polarized, unsplit
Mossbauer beams selective critical reflection offers two
advantages over selective absorption: the Mossbauer
intensity can be enhanced relative to the non-Mossbauer
intensity, and it is unnecessary to have carefully pre-
pared polarizing filters of a precise thickness. Selective
critical reflection has the disadvantage, however, of re-
quiring well-collimated incident radiation (and owing
to the collimation problems, this technique appears to
be applicable only to low-energy Mossbauer transitions),
and generally the degree of polarization of the Moss-
bauer beam. is not as great.

APPENDIX A

In this Appendix we give a short discussion of the
derivation of the single-atom resonant scattering oper-
ator E„„&'~ along modern lines. We include the effects
of lattice vibrations and give a brief discussion of the
modifications which occur when relaxation effects are
important.

Wigner and Weiskopf's" derivation of the resonance
dispersion formula is well known. More general modern
discussions of radiation damping formulations may be
found in the text books by Heitler" and Goldberger
and Watson. '

We suppose that the initial photon's energy coo is
very near a nuclear resonance energy. In this case the
second graph of Fig. 7(a) is negligible, and it is only the
sum of the contributions of the first graph of Fig. 7(a)
with that of Figs. 7(b) and 7(c) and the higher iterates
which are important (initially we assume that we are
dealing with a bare nucleus). The sum of the contribu-
tions of these graphs to the scattered photon potential
is

(A „'(x))r'= (@rxt ~

i 5~(x——x')e'~p' J„(x')G(t' —t")

&&X„(x")2„'(x")e'~p"dx'dx" ~gp&p), (A1)

where G is the propagator including electromagnetic self-
action in the ladder approximation, and is given by the

Weisskopf and E. Wigner, Z. Physik 63, 54 (1930);
6S, 1S (1930).

"W. Heitler, QNaatara Theory of Radkatton(Oxford Univ, ersity
Press, London, 1954), pp. 163—174.

"M.L. Goldberger and K. M. Watson, Collision Theory (John
Wiley tk Sons, Inc. , New York, 1964), pp. 424-509.
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Dyson equation,

G= Gp i—GoJt') &~&GoJGo+ ( i—) 'Go Jt'&&~&GoJGoJt')
&+&

XGoJGo+.
= Gp —iGp Jb(+)GpJG. (A2)

In Eq. (A2), Gp is the uncorrected propagator given by

Gp(t —t') =1(t t')e—'~«' '& (A3)

(b) (c)

where Hp is the Hamiltonian for the nucleus plus crystal
with the electromagnetic interaction represented by
instantaneous Coulomb interactions.

The matrix notation of (A1) and (A2) is explained by
writing (A2) out explicitly,

G(t1 t4) Gp(t1 t4) —2 Gp(t1 t2)J)e(x2)&t&&4-&($2 x3)

XGp(t2 —to)J„(xo)G(to—t4)dxsdxo, (A2')

where the integrations are over all space-time. However,
since Gp only progagates into the future, effectively
$g) $2) t3) t4 Writing

G(op) = e'"'G(t) dt

G(o)) =Gp iGoZG—

for the Fourier transform (o) assumed to have infinitesi-
mal positive imaginary part), the transform of (A2')
gives

(A4a)

FzG. 7. Feynman diagrams representing contributions to the
nuclear scattering operator T(J„(x)J„(y)).

For many MOssbauer transitions the decay takes
place predominantly via internal conversion rather
than p-ray emission. The radiation reaction on the nu-

cleus due to'this process is represented by adding the
contribution"of the second graph of Fig. 7(c). In this

graph the closed loop represents the promotion of an
electron in a normally filled atomic level to above the
Fermi surface and its eventual return to its initial state.
The effect of this is to add to (AS), which we will now

call A~, a term 6 (n is the usual symbol for the internal
conversion coefficient),

6=67+6,
A~= J8(+)GpJ,

6 = J8(+)E8(+)GpJ,

(A7)

(AS)

where 8 is the electronic scattering operator.
Taking the Fourier transform and matrix element of

(A7) we have
or

G= (1+iGpk) 'Gp, (A4b) (@-&&pl Av(~) I
&-Xo) = —4~

(22r)4
dt ex(n&—E~—4.p) t

where t), in Eqs. (A4a) and (A4b) is given by

~=J~(+)GpJ. (A5)

If
I &p~) IX„) is an eigenfunction of Hp Lwhere the x

and && notation is that used in Eq. (2)) it can easily be
shown by the methods of Paper I that 6, and hence G,
is diagonal in the X„'s. LIf r(t) is the c.m. operator,
J&)+GoJ involves e'2'&'&t) (k, t —t')e ' '&' The im-

portant contribution from &)~(k, t t') comes fro—m (t —t')
on the order of the time for a photon to traverse the
nucleus. Thus, to a very good approximation, we can
set t = t', and this operator becomes independent of

r(t).J G is also diagonal in the q „'s except for very un-

important radiative correction effects. 6 then com-
mutes with Ho, and using Go(o)) =i/(o) Hp), we ob—tain
the well-known expression,

G(o)) =2/I o)—Ho —~(o))j. (A6)

The real part of the level shift operator A(o)) is of no
concern to us. After subtracting the effect of the in-

stantaneous Coulomb interactions and the electromag-
netic self-energies there is left only a very small radia-
tion correction to the nuclear level which is quite
negligible. We are then onIy concerned with the imagi-
nary portion of rX(o&) = —i21'(o&).

eik4t

XP J„-&k)J,'"&—k)( ——)&e"'"'e—""'&).~~

t342 kk+i e—)
(A9)

eikopl x—yl

—-2'il', (k„)= Im dxdy p J "'(x) J 4"(y)
[x—yI

(A10)

In (A10), to„=o)—E,—ep. When the time integrations
are carried. out in (A1) the resulting Fourier transforms
are evaluated at o)=o)p+E + op, for which k„=top.

Similarly, for the imaginary part of (AS) we have

'iI' (to„)—=—Im dridr2dxdy

e'iko&I r2—xl ei&~l y—r Il

XE J "'(r2) &""&(x,y) J "(ri), (A11)
I y —ri I

As previously noted, the bracketed expression, which
represents the nuclear-motion propagator during the
exchange of the virtual quanta, may be set equal to I.
For the imaginary part of (A9) we may extend the time
integral to —~, and we then obtain the well-known

expression for the radiative width of the level
I p„),
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where

f i"(x)i."'(y)
E (o& x y

&,I 4k„E„—+L&,+i1&

J (x)i.""(y)
(A12)

k„—E„—+Eg,+i rl)

is the electronic scattering operator, to the first order
in e'. In (A12) j„(x) is the electronic current operator
and k is to be summed over the normally filled states

(energies E&,), p over the normally unoccupied states
(E.)

Strictly, Eq. (A11) contains in addition to the nuclear
damping due to internal conversion, a correction to
(A10). The correction term is small and the dominant
contribution to (A11) is that arising from the pole in
the electronic scattering operator.

Returning to (A1) and carrying out the time inte-
grations (and using the slow-collision time assumption)
leads directly to Eq. (2)."

When relaxation effects are important, it is convenient
to write Eq. (2) in the form

ei(kpj z—Ri pj—epsz)—

A„'(3)=-
lx —RPl

d& e&'""-ir &((xypl s—'"I'*«&G+(&)s„(—k)G o(1g„(kp) s'" 4- 'lypxp)) A„(R,o) (A13)

where I'= I'~+ I' is the total width of the near resonant
excited sublevels. Here we are concerned only with the
coherent elastically scattered wave, and the brackets
() indicate that the ensemble average is to be taken.
The quantity in square brackets gives (E„„(kIkp)) To.
calculate the resonance response of the scattering oper-
ator it is necessary to calculate the current-current
correlation function.

Equation (A13) is directly analogous to the correla-
tion function formulations for Mossbauer absorption or
emission spectra in the presence of relaxation pheno-
mena, such as developed by Afanas'ev and Kagan, ""
Bradford and Marshall and Blume and Tjon ' "and
the same methods of solving for the correlation function
can be applied here.

It is beyond the scope of this paper to attempt a
general discussion of the efIect of relaxation phenomena
on Mossbauer resonance scattering, but we note that
in analogy to the absorption and emission problems,
the resonance response of E„, is only a simple Breit-
Wigner response in the fast-relaxation limit (static
"effective field" limit). When the relaxation time is
on the order of the Larmor precession time of the ex-
cited nuclear state, the resonances can be shifted or
split, the effective widths can be broadened or narrowed,

and lines corresponding to normally forbidden transi-
tions can be obtained (the latter feature, however, can
also be obtained in the fast-relaxation limit, as discussed
in Appendix C).

APPENDIX 8
For reference, we summarize the basic multipole for-

mulas used in Secs. II A and II C. The notation is that
of Akhiezer and Berestetskii. "

The multipole expansions of the current operators
J(x)e~* *~/lz —xl, and J(x)e+'"'', are given by (for

&() =—Z 2 P()~. *()+. (),
z—xl

J(x).ALM&" (x)* BLM '&(x)) (31)
'A 1

J(x)e '"'*= p P'4(x)y *(x)P' (k),

+1
g J(x) ALM&"&(x)* YLM&"&(k)$. (82)

X=—1

The scalar and vector potentials are given by

() ~. ()=.(k*)I'. (~) (113)

ALM (x) ~LM (x)pgL+1(kx)+ (L+ 1)gL—1(kx)$

X(2L+1)—'+l'LM' —'&(x)

X l:gL-1(») —g~t(kx)1(L'+L) '"
X(2L+1) ',

AI.M"'(x) =gI.(kx)&LM"'(x),

AI M (x) ~LM (x)LLgL—1(kx)+(I+1)gL+1(kx)j
X (2L+1) '+&LM"'(x)
XEgL-1(») —g~t(») j

X(L'+L)'"(2L+1) '

"We have omitted consideration of the second-order Doppler
shift pointed out by B. D. Josephson LPhys. Rev. Letters 4,
341 (1960)j and by R. V. Pound and G. A. Revka, Jr. [ib4d 4, .
274 (1960)j.The intermediate phonon states should actually be
taken as x ', where x„' corresponds to x„, but withthemassof the
excited nucleus increased by Aorp/c'. The denominator in Eq. (2)
then contains the additional term ep —ep', which gives the second-
order Doppler-shift effect for resonant scattering.

' A. M. Afanas'ev and Yu. Eagan, Zh. Eksperim. i Teor. Fiz.
45, 1660 (1963) LEnglish transi. : Soviet Phys. —JKTP 18, 1139
(1964)g.

"Yu. Eagan and A. M. Afanas'ev, Zh. Eksperim. i Teor. Fiz.
47, 1108 (1964) j English transl. : Soviet. Phys. —JKTP 20, 743
(1965)j.' E. Bradford and W, Marshall, Proc. Phys. Soc. (London)
87, 731 (1966).' M. Blume and J. A. Tjon, Phys. Rev. 165, 446 (1968).

' M. Blume, Phys. Rev. 174, 351 (1968).
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where gr, (kx) is the spherical Bessel function we obtain

The expressions for Cr, »& and Br,~&"& are given by (83)
with the replacement gz, ~ GL, , where GL is the spherical
Hankel function of the first kind,

G ()=4 ()'( /2 )'"II + "'(). (8~)

or
I,X=0,1 L,) =0,1

X(L,X)= [Xor~(L,X)g'&'.

APPENDIX C

(89)

The components of the vector spherical harmonics
Yrpr&"& along the unit vector e„, ep, e@ of spherical polar
coordinates are given by

(Yr.~( "),= Yr, »r,

(Yr,3I( ")o——(Yr,»f( '&) p=O,

(Yr, ~"&) =(Yr. 3"r&).=O,

(86a)

(86b)

(86c)

8m
Y,~'"&(k) =g(,&(k) x), ~&'&(k,z)

2L+1
+(—1) "+"P1( i&(k) $»&r '(k, z), (87)

where the notation for the rotation matrices X) is that of

Rose."
For ) =0, 1, the matrix elements

~na

(Y "') = (Y "') =[L(L+1)3 "'
X (&&Yr,pr/88), (86d)

(Y "') = —(Y "') =[L(L+I)] '"(' ~) '

X (&&Yz M/&&g) . (86e)

The transverse vector spherical harmonics YL,pr~'&(k),

Yl, &p ('&(k) are related to the circularly polarized bases

p1(+»(k) transverse to k by

The multipole-scattering amplitudes given by Eq. (4)
are only valid in the fast-relaxation limit and only if J,
is conserved for the nucleus. Here we discuss the modifi-
cations (for the fast-relaxation limit) when J, is not
conserved, because of an asymmetric EFG tensor (or
even an axially symmetric EFG tensor if the symmetry
axis is noncoaxial with II).

The asymmetry terms will mix the states of good J„
and the eigenstates for the level I&r„,J„)are given by

In„,J„,p„)=P K(p„,n&„) In,J„,n&„) (.C1)

The index p„ takes on the same values as m„, and the

K(p„,m„) are the elements of the appropriate unitary
transformation matrix. The (L,&() multipole component
of current matrix elements for emission then becomes

(OIP Yr, ~ ' (k) dx J(x).Ar, »r "'(x)*In)

= [&(or,(L,&))'"e'" "p Yr, &(r'"'(k)GI. ~(i I o), (C2)

where

Gz&(r(p. yp) = (—1)&(r p K(p„, M+mp) K*(pp, n&p)

XC(J LJo,. n&, Mtnp). (C3—)

dx J(x) Ar, »r&"&(x)

dx J(x) Ar, »r&"&(x)*

—a' n

The scattering amplitude is then given by Eq. (2), with

the replacements

Yr,.»r'"'(kf) ~P Yr, »r &"'(kr)Gr, &(& (p.po), (C4a)

are easily evaluated in terms of the radiative width

r~(L, &(), i.e., the width associated with the emission of

(L,l()-multipole radiation. [The ratio of the radiative

widths gives the mixing ratio P, i.e. , P(E2/M1)
= r7(E2)/r~(M1). $ Denoting the spin of the states

explicitly, Ia)= Ia,J,m, ) and In)= I
J„n,m„), we have

(aI dx J(x) Ar, or("&(x)*In)

=bpr, „,C(JpLJ;mpMnp )Ix(L,X)Ie'" ", (88)

where x(I.,l() is the reduced matrix element for the

transition. Substituting (82) into the width expression

r~(kp) = —&(o
' Q dQ J„"'(kpQ)J„"(—kpQ),

Yr, &&r
" (ko)*~g Yt.&(r

" (ko)*Gs.M*(&I~IJo), (C4b)

x(mpM) ~ x(ppp. )
=2[E(J„,p„)—E(Jp po) —k )/pr. (C4c)

The effect of the induced electronic currents is still

given by Eq. (15).
For a pure (L,&() multipole transition, the polariza-

tion of an emitted photon is now a mixture of the vector

spherical harmonics Yr, ~("&(k~), as given by (C4a), and

owing to the state mixing, there are more allowed tran-

sitions than for the J, conserved case.
As a simple example we consider a J0=~ ~ Jn= ~

M1 transition where the effective Hamiltonian of the

nucleus is given by
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0
A g/2

0
A 3/2~-3/2

/2&3/2

X]2

0 A 3/2 ,

Foi. the jo= 2 giound state, J, is still conserved and the
eigenstates are ~no, —,', +—,'), while for the excited level,
the states are given by

&=2)

A3/2 A3
0

A —If26—I/2

0 (R t) —Q A re (K~r R root,)— (D2)

is equal to the total coherent field at j(,-" ~vith the singu-
lar self-Geld deleted. The superscript j can be deleted
with the understanding that A„(R) at a lattice site
R=R; excludes the self-field of the jth scatterer. The
self-field effects (e.g. , the radiative width and energy
level shifts) are included in the scattering operator.
A„(R) is thus a smoothly varying field within the crystal
and can be represented as a superposition of plane
waves.

As in the I-aue development we try a substitution of
the form

where

(C6)

for the photon field within the crystal. Here the ~ are
the reciprocal-lattice vectors, K,=KO+~, and Ko=ko
is to be determined (ko is the wave vector of the incident
photon). Substituting (D2) into (D1) and using the
integral expression for e'~"/x, we have

Ai=(1+ei,') "'

e 3t2= f$(3QaZ)'+3Q'rt'j'" —(3Q+Z)}/Qrtv3 (C7a)

&+1/2 &%3/2 7 (C7b)

(C7c)

A r&z(Kr. R—~p~)
Ijt

—zcupt

=A„'(R,t)+g P
j rl 27r2

&iq ~ R~z (K '—q) ~ R7

d g
q2 $02

where Z= gPH. We note that eq —+ 0 as q —& 0.
Thus, the polarization for a photon emitted by

the
~ 2, p, = 2) —+

~

—,',—,') transition, which would be
~ Yii&0~(k) for J, conserved, now contains an admixture
of Yi i", i.e., the polarization is proportional to

LC(-'„1, -', ; —,', —1, -', )Y, ,&'&(k)

+e,&,C($) 1, —', ;
—'„1,—',)Yi i "'(k)g.

For the ~-,', p=~) ~ ~~,
—~) transition, which is not

allowed for J, conserved, the amplitude and polariza-
tion of the emitted photon is proportional to
Leot2C(2, 1, —,'; —-'„0, —,')YiO ' (k)).

APENDIX D

In this Appendix we give a brief discussion of an
alternative formulation of Mossbauer optics, which is
essentially an extension of the I.aue theory of x-ray
optics.

In I, we found that if a photon A„'(R,t) is incident
on a Mossbauer medium the total coherent wave is
given by fEqs. (50)—(51) or (53) of If

~zkp [ R—R7'0 [
—iv) pt

A„(R,t) =A.„'(R,t)++-
JR—R,o/

XM„„(k,k')A„&'(R,0), (D1)

where R; is the equilibrium position of the jth atom,
k= —i%a,.o, k'= iVR, o, an—d 3II„„.(k,k') is the coherent
elastic scattering operator (for simplicity we 6rst as-
sume that M„„is independent of R,). The field A„'(R )
is the coherent field incident on the R;th site and is
given by (D1) with the j=i term deleted, i.e., A„&'(RP)

&i(K& R—up&)

Q A 'e"x'" "Do=A„"(R,t)+4ire p g-
r r' Q 2 $02

XM„„(K„K,.)A„". (D4)

Applying the D'Alembertain &, &= V'&' —8&' to both
sides of (D5) and equating the r components we obtain

(K„'—ko')A„=P 47rnM„„(K„K,.)A„". (D5)

Equation (D5) is the generalization of Laue equation
for x-ray optics for the wave field within the crystal.
(See, for example, Ref. 3, Eq. 8.23.) For crystals with
several atoms per unit cell, and with a complex internal
6eld structure, N'„.(k,k') is understood to be the scatter-
ing operator of the unit cell (chemical, or internal 6eld
unit cell, whichever is larger) as given by Eq. (26), and
n is the corresponding unit-cell density,

For Mossbauer frequencies we only need to consider
the transverse parts of the photon fields, which we de-
note by A', A". Analyzing the 6elds in terms of orthog-
onal basis vectors as in Sec. III, we can write (D5) as

(K '—ko2)A'=g O'"A" (D6)

XM„„(k,K, )A„". (D3)

To first approximation, we treat K„as purely real in

(D3). I This of course is not correct, but the resulting
optical equation (D5) correctly treats absorption to
first order )The . sum over R;, P, e" ' ~i'"~', can then
be replaced by g, (2')'nb&'i(K, —q), where m is the
atomic density, and (D3) becomes
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where the matrix h is defined in terms of the matrices

f and P of Eqs. (32) and (33) by

kr"=2kpfr". (D7)

for transmission channels ~i, and/or

rggiaM 0 (D10b)

Equation (D6) corresponds to Eqs. (36a) and (40a) and
gives the same solutions (to first order).

OR Bragg only the ~0 channel is open. ~For a parallel-
sided medium, we take K„=kp+(f,/sinpp)s, and we
obtain immediately from Eqs. (D6)—(D7)

~0 &0 ~0 ~0

Equation (D8) is identical to (58), and the subsequent
treatment of transmission through a Mossbauer medium
carries through unchanged.

For a single-Bragg reQection two channels will be
open: the ~0 channel and a z~ channel. For this case,
(D6) is explicitly

(k ' —K '+k'o")A'o+k'o "A"=0
k'i"A"+(k ' —K '+k"")A"=0 (D9)

P PA)„."isa i=cps„„
g=x, y a

(D10a)

where K„=K„+~&, and for a parallel-sided crystal
K o= kp+nz The det. erminant equation associated with
(D9) gives four values of n, and for each value of Q.

we have four amplitudes Az, ' (X=@,y; r = 7 p, r&) to be
determined. The additional equations necessary to solve
for the Az, uniquely are the boundary conditions
corresponding to (36b) and (36c) and (40b) and (40c):

for a reQection channel.
Equations (D9) and (D10a) and (D10b) are essen-

tially equivalent to (36) and (40), but are slightly more
general in that it has not been necessary to assume
that one set of crystalline planes is parallel to the
surfaces. If the latter assumption is made, and if, for
example, ~~ corresponds to a reAection channel, then out-
side the crystal ki= (—gi, k»P+~»'), where gi is given
by (25a), while inside the crystal Kp=kp+nm=k's+k, „p

and Ei= (k'+ ,o') +sk»+p~, „' We t.hen have kp' —Ep'
2gp(gp —k ) aiid kp Ei ki —Ei2gi(gi+'To +k )

in (D9). (Note that gi+r, '= —k'.) Dividing the two
equations of (D9) by 2gp and 2gi, respectively, and
multiplying through by d, we obtain

L(g kr)J+Ii roro jA, ro+prorlA, rl 0—
(D11)

pnroA&, ro+$(g +& r+kr)if+prir&Q&, m= 0

It is easily verified that (D11) is identical to (36a) to
this order.

For the special cases considered in Sec. III for which
there is no polarization mixing, there then exists a set
of orthogonal basis for which all the matrices h"' in
(D9) are orthogonal. Equation (D8) then separates
into two sets of Laue equations, and all the I.aue de-
velopment can be taken over directly (see Refs. 3, 17,
and 18).


