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We study here the effects that random inhomogeneities have both on the nuclear spin-spin interaction via
virtual spin-wave excitations in Inagnetically ordered systems /the Suhl-Nakamura (S-N) interactiong and
on dipolar interactions. Two models are proposed to explain the experimental observation that the nuclear
transverse relaxation rates (1/Tz) often are smaller than predicted by the S-N or dipolar theories for the
perfect crystal, and that the spin-echo envelope decays are exponential in time rather than Gaussian. For
both models, the method of moments is employed, and it is shown that the transformation from Gaussian to
cutoff Lorentzian behavior may be characterized by the behavior of the quantity (M4);~/(hfz);~ . Assuming
the magnitude of the inhomogeneous broadening to be the same, a proportionately greater reduction occurs
in (3Ez);, than in (Mz); '& when the range of the S-N interaction is large (i.e., IIA/IIa«1) The inhom. o-
geneous model as applied to the dipolar interaction compares favorably with Portis s spectral diffusion theory.
The limitations of the applicability of the model theories to comparison with experiment are considered.
Finally, a number of serious errors in the S-N theory, as applied to MnF2, are corrected.

I. INTRODUCTION

'HE sources of the dynamic broadening of nuclear-
magnetic-resonance (NMR) line profiles in

solids are either spin-spin or spin-lattice interactions.
It is an unfortunate circumstance that, often as not, the
observed resonances are statically broadened as a result
of inhomogeneities which cause the frequency for reso-
nance to vary from point to point in the crystal. Such
inhomogeneous broadening, if large, not only masks the
homogeneous broadening from the dynamic mechanisms
but, in the case of the spin-spin interaction may actually
reduce its effectiveness. It is this problem which is the
concern of the present work and is of particular interest
in regard to ferromagnets and antiferromagnets, where
inhomogeneous broadening is the rule rather than the
exception.

As an important source of the broadening of the
NMR in ferromagnets and antiferromagnets Suhl' and
Nakamura (S-N)' independently proposed an indirect
exchange coupling between nuclear spins in these
systems. The mechanism proceeds as follows: a nuclear
spin Ii at the site i creates a virtual spin wave via the
transverse part of the hyperfine interaction (AI,+5, );
this virtual spin wave is then reabsorbed by a nuclear
spin at the site j (AI, 8, ), giving an effective coupling
between the two nuclei of the form
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where U;;= (A'/2JS) f(r,,) the quantity J is the interion
electronic exchange coupling between the s nearest-
neighbor spins 5 and f(r,,) is the S-N range function.
For those magnetic solids in which the nuclei in question
are isotopically abundant the coupling 3C& N yields a
resonance linewidth (AE)s N CA'I/2JS withi C 20
depending on the ratio of exchange to anisotropy
energies. The magnetic dipolar interaction 3Cd;„between
nuclei leads to linewidth (IIE)d;, tz„'/Ias' with ti„the
nuclear moment and uo the nearest-neighbor distance.
It frequently happens in magnetic crystals (e.g. , Co"
in metallic Co and Mn" in MnFI) that A'I/2Js
))tz„'/Ias' from which one concludes PCS N should be
the primary source of line broadening.

We shall concern ourselves with the e8ects that
microscopic inhomogeneities have on the S-N and
dipolar interactions. Both from the viewpoint of motiva-
tion and to make contact with the extensive experi-
mental and theoretical work that has been performed
on MnFz (and related crystals), we focus our attention
on this particular antiferromagnet. However, the models
that are proposed are of sufficient generality as to be
immediately applicable to other systems.

The original calculation by Nakamura' of the F"
resonance line shape in MnF~ appeared to be in excellent
agreement with earlier steady-state continuous-wave
(cw) measurements, in which it was observed' that the
line profile was Gaussian with a width of 14 Oe. The
theoretical prediction of an approximately Gaussian
line with a 13.6 Oe width was thought to be strong con-
firmation of the S-N theory. However, subsequent
transient experiments on the identical crystal gave
results that seemingly contradicted both theory and
the cw experiment; namely, spin echoes were observed,

' V. Jaccarino and R. G. Shulman, Phys. Rev. 107, 1196 (1957).
4 N. Kaplan, P. Pincus, and V. Jaccarino, J. Appl. Phys. 37,

1239 (1966).
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showing that resonance is inhomogeneously broadened,
and the decay of the echo envelope was exponential in
time indicating that the homogeeeols line profile was
Lorentzian. Most distressing, however, was the fact
that the inferred homogeneous linewidth was an order of
magnitude smaller than was predicted originally. We
have reexamined Nakamura's theory, and it now
appears that the F" S-X interaction is much smaller
than was previously given. Nevertheless, similar dis-
crepancies between earlier cw experiments and subse-
quent spin-echo studies have been noted. ' In fact
there exists no direct experimental confirmation of the
S-N theory from transient measurements of the homo-
geneous line profile.

Now it is well known that if inhomogeneities are
present —and in particular random microscopic' in-
homogeneities —the steady state and transient experi-
ments no longer measure the same properties as they
would in an ideal homogeneous system. Only in the
latter case would we expect the cw linewidth to be
identical with the inverse of the transverse relaxation
time T2. The cw experiments suffer from being sensitive
to inhomogeneities, both microscopic and macroscopic,
often to the point where the linewidth has little to do
with spin-spin interactions of any kind. The transient
experiments, on the other hand, do measure the dynamic
effects alone, that is, either spin-spin or spin-lattice
interactions, and therefore are to be preferred in com-
paring experiment with theory.

We suggest that these general properties, of homo-
geneous linewidths being much smaller than the in-
homogeneous ones and the echo decay envelope being
exponential rather than Gaussian, are consistent with
a model of microscopic inhomogeneous broadening of
the resonance-frequency (or local-magnetic-field) dis-
tribution. Such inhomogeneities may separate (detune)
the resonant frequencies of a pair of nuclear spins to
such an extent as to strongly inhibit mutual spin Aips;
i.e., in the presence of severe detuning the interaction
described by Eq. (1.1) or the corresponding dipolar
Hamiltonian will not conserve nuclear Zeeman energy.
The interaction between spins will, of course, induce
transitions, but its effect will be appreciable only if the
interaction strength is at least of the order of the
difference in Zeeman energies of the two nuclei. The
reduction in the number of allowed transitions due to
detuning would lead, in particular, to a longer trans-
verse relaxation time.

In order to discuss these effects more quantitatively
it is convenient to employ the usual moment descrip-
tion of the line profile, g(&o). A complete description is
contained in the specification of all moments, ~ where

~ Examples of these are the Co' %MR in Co metal and CoF2.
'We de6ne microscopic in this context to mean that there

exists no correlation between the resonance frequency of a par-
ticular spin and its position in the lattice.

'See, for example, A. Abragam, The Principles of Nuclear
Resonance (Oxford University Press, London, 1961).

the eth moment is defined by

(Q) —Mo) g (co)dQl
& (1.2)

with coo the central resonance frequency, and g(~)
normalized to unity: f „"g(&o)des=1. Although in
practice it is usually only feasible to compute the lower-
order moments (+&4) these are often sufIicient to
characterize the gross line shape, especially if the line is
symmetric about coo, so that the odd moments vanish.
In this case a fair indication of the line profile is given
by the ratio 354/&22, which is identically three for a
Gaussian line and tends to infinity for a Lorentzian one.
The detuning via microscopic inhomogeneity that we
have proposed clearly reduces all moments; only those
pairs of spins with resonance frequencies close enough to
communicate are reQected in the spin-echo envelope
decay, and the monotonic decrease in probability of
finding such pairs, as ~a&

—
ceo~ increases, enhancesthe

central region relative to the wings. However, the higher
moments are more sensitive than are the lower ones to
any weight in the wings. In the absence of inhomogenei-
ties the resonance line is broadened by spin-spin inter-
actions, with the wings of the line representing the
effects of the strong (short-range) components of the
interaction. The corresponding absorption processes are
relatively less susceptible to detuning than are those
involving weakly interacting spins and the higher
moments are thereby reduced less than the lower ones.
In particular, as the detuning increases, the calculated
ratio 3II4/M2' increases, resulting 'in an apparent line
narrowing and a gradual transformation of the Gaussian
line shape to a Lorentzian one. Of course, the measured
cw NMR is inhomogeneously broadened at the same
time that 1'2 is increased.

In Sec. II we review brieQy the S-N theory as it
applies to this problem. Only the antiferromagnet is
considered because meaningful comparisons between
experiment and theory have been made only for this
case. We have seen above that the form of the inter-
action at small nuclear separations will be required.
We give the results of numerical calculations of the
interaction between neighboring nuclei for a realistic
range of ratios of anisotropy to exchange fields Hg/Hs,
and we compare the numbers with the frequently
quoted long-range asymptotic expression. For H~/Hs
&0.03 t as is the case in MnF2 (0.016), but not in
FeF& (0.32)j, the asymptotic form is found to be
sufFiciently accurate for further calculations. The cor-
rections to Nakamura's expressions for the Mn" and
F" linewidths and correct expressions for 3II4 are also
given.

In Sec. III we present two model calculations
exhibiting the effects of detuning discussed qualita-
tively in this Introduction. In the first model we assume
the spatial fluctuations in the field to be so large that
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the affected nuclear spins have their resonance fre-
quencies well removed from the main NMR line. Such
a condition is tantamount to a simple dilution of the
resonant nuclear spins. The second model considers the
more realistic situation of an inhomogeneously broad-
ened line of width Ace large compared to the S-N inter-
action strength V;, between any pair (ij) of spins. To
this we apply the rough criterion that any two spins,
i and j, are considered capable of interacting if, and
only if, the difference in their resonance frequencies is
less than V,; (the relevance of this criterion is explored
in Appendix C). The latter model is also applied to the
dipolar interaction in the presence of inhomogeneities
for the simple cubic lattice for arbitrary nuclear spin
magnitude I. It is shown to agree semiquantitatively
with Portis's spin-2 spectral diffusion theory. Finally,
comparison between experiment and theory is made for
representative cases where the spin-spin interaction is
larger than, and where it is smaller than, the inhomo-
geneous broadening.

II. SUHL-NAKAMURA INTERACTION
IN ANTIFERROMAGNETS

A. Form of the Interaction

We follow here Nakamura's calculations, ~ which take
as a model a simple two sublattice antiferromagnet, with
all nearest neighbors (nn) of an "up" spin on the
"down" sublattice, and vice versa. Exchange is de-
scribed by the single nn exchange integral J and single-
ion uniaxial anisotropy by a constant E, with the un-
perturbed electron-spin Hamiltonian

&o=2I 2 S~"SJ+s—sItLE (S ')'+2 (Ss*)')

where j is to be summed over the up sublattice, k over
the down sublattice, and b over nn vectors. By the usual
simple (unrenormalized) spin-wave approximation this
Hamiltonian is diagonalized in the subspace of the
perfectly aligned Neel state and the manifold of single-
spin deviation states, with spin-wave energies

~,=2JSsg(1+d ) —~ ']' (2. )

Here s is the number of nearest neighbors, and'

d'=Hg/H g = (1—1/2S)E/2Jz;

where e is to be summed over both sublattices. At low
temperatures the s component is almost ineffective in
polarizing the electron spin, and its effects are ignored.
The transverse part of 3C' couples the ground state of
0 to states with a single-spin excitation, giving a
second-order ground-state energy shift which can be
represented' by an effective nuclear-spin Hamiltonian

&ett = sD P (In ) s P ~B 'Ii Ii'

—s Z &a~ Is+Is Z~ ~—(I,+Is +I; I~+) (2.5)

The erst term represents a self-energy shift of the eth
nuclear spin, due to emission and reabsorption of a
virtual magnon. It is quadrupolar in form and will not
contribute to the dephasing of the transverse spin com-
ponents in the transient experiments. The last term

( C;s) represents spin-flip processes in which the
energy transfer is large, since the local fields are in
opposite directions at j and k. This nonsecular term
leads to satellite resonance lines rather than to broaden-
ing of the central line, and we ignore it. We are primarily
interested in the term representing mutual nuclear spin
Qips on a single sublattice, characterized by the range
function

2A'JzS' cosq (n —n')
(1+d') Z

Q (dq2

f(n —n') . (2.6)
2Js

An approximate expression for the sum over the
Brillouin zone was obtained in the original papers''
by taking advantage of the fact that for large

~

r
~

—=
~

n —n'
(

and small anisotropy (and therefore small

gap in the spin-wave excitation spectrum cv,) the sum
is dominated by the small q contribution. Keeping only
the q' term in the small q expansion of co, we then ob-
tain the usual asymptotic form

action only with its own electronic spin S„.The coupling
of these spin waves to the nuclear spin system via the
hyperhne interaction is taken as a perturbation

X'=A Q $I„*S„*+', (I +-S„+I—„S.+—)j, (2.4)

] nn

Q eiq. s (2.3) or
3(r) =LA'(1/ d')/81m J's) (e

—""/r)

j'()=(1/4 n)(e ""/)L + '3 (2 7)
We first consider the case in which the nuclear spins
and electronic spins occupy the same sites. Furthermore,
we assume a given nuclear spin I has a hyperhne inter-

s A. M. Portis, Phys. Rev. 104, 584 (1956).
9 The factor (2 —2/2s) in the deinition of d' is missing in Ref. 2,

but this, in effect, just renormalizes the gap, b, , there. It does
correctly include the vanishing of anisotropy terms in the energy
when S=&.

where n is a geometrical factor (= ~~ for the bcc lattice),
and the decay constant z=dL(2+d')/nj'"=d(2/n)'".
The assumption of the dominance of small values of q
in the sum (2.6) is valid only for r sufficiently large for
the oscillations of the numerator to suppress large q
contributions (r&lattice constant). We reemphasize,
however, that it also requires small anisotropy (d«1)
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totic expression becomes infinite at the origin, the
actual and asymptotic curves must cross.

The behavior of rf(r) for realistic values of d is shown
in Fig. 1; the value V2d=0. 179 is appropriate for
MnF2. The predicted crossing of asymptotic and actual
curves as d increases is clearly seen. The fact that the
real and asymptotic forms closely approach each other
for small values of d is also shown.

The theory also predicts an indirect exchange coupling
between the nuclei of nominally nonmagnetic ions
which have transferred hyperfine interactions with two
or more neighboring magnetic spins.

In particular it was thought that this was essential
for understanding the F" NMR linewidth in MnF2.
Unfortunately, the theory as given is in serious error
and, as it turns out, the F" S-N interaction is of
negligible importance as compared with the dipolar
interaction. The reasoning behind this is of sufhcient
interest to warrant giving some of the details below.

In these crystals each F atom has three magnetic
nearest neighbors, all in a {110)plane, as shown in
Fig. 2. These may be two "up" spins and one "down"
or vice versa, but only two F" nuclei with the same
environment can interact (to second order in the hyper-
fine coupling), for only then can energy be conserved in
a mutual nuclear spin Rip. With the coordinates of such
a second F" nucleus and its neighbors denoted by the
same symbols as in Fig. 2, but with primes added, a
calculation of the same type described above for nuclei
of magnetic atoms gives for an effective Hamiltonian
that couples the F"nuclei

1 1
f(r) =

(2m)' 1+6' ~=o

VQ
d'q — cosq r. (2.8)

1+2'

Sy the orthogonality relations on e'&' integrated over
the Brillouin zone (BZ), we see that the first non-
vanishing term in the sum over e is the one for which
y~2" contains e+'&' (which value of n, of course, in-
creases with r). Furthermore, all terms in the sum are
positive so that f(r))0 at all Iattice points in any
lattice. This is not true if the definition of f(r) is
extended to all r; it will then be found to oscillate on a
scale of the lattice constant. One must therefore be wary
of approximating sums over lattice sites by integrals
when the summand involves f(r).

For a bcc crystal, where y, = cos-,'0 cos-,'k„cos-,'k„the
result of the integration in@Eq. (2.8) can be written
simply. The range function f(r) is anisotropic Lin con-
trast to Eq. (2.7)7; in particular,

=t (4I (n J (l+e)(1+O'J

for r = (l,0,0), (2.9a)

(1)3 2«) 3 1 )2n+1

.=~ 4) t+~) 1+d2i (2.12)X.«-= —
2 Z D~~'(1~+1~ +1~ I~'+)

2&j'for r = (t,l,l), (2.9b)
with

so that the spin-wave energy gap will be small and the
low q contributions will be appreciable in spite of the
limited-phase space volume there. For larger anisot-
ropies it is useful to compute the expansion of f(r)
as a power series in (1+d') '

where we have used the standard notation for binomial
coefficients. For sufficiently large d' only the term n= l
contributes appreciably to these sums. Then the ratio
of f(r) at successive points is approximately

f(t+10, 0) 1(21+1,)'(
1 )'

f(» )

f(1+1,(+1, (+1) 1 1

f(t, l, l) 64 1+0'

(2.10)

whereas the asymptotic form gives

f(3+1, 0, 0)

f(l,0,0)

f(/+1, t+1, /+1)

f(l, l, l)

—exp L
—2d(2+2')'"7,

1+1

exp/ —2d (6+3d')' '7.
(+1

(2 11)

In this (somewhat unrealistic) limit of d))1, it is clear
that the actual range function falls off much more slowly
than the asymptotic form indicates. Since the asymp-

2JA'5 cosq (j3—j3')
{L3+2 cosq ( y&

—ys) 7
GOq

)(,
' (1+0')—2 (cosq yi+cosq pg)"yq)

—= (~'/2») f( j—j') (2 13)

where A is the transferred hyperfine coupling constant"

xi,)=A p I; (S,i+S;2+S;3) (2.14)

and f(j—j) is the corresponding normalized range
function, whose exact dependence on r= j—j' will not
concern us for the present.

Equation (2.13) is equivalent to Eq. (23a) in Ref.
(2), but when the latter was transcribed fin Eq. (24a) 7
for further use, an error was made in the relative sign
of the two terms in { ), leading to gross numerical
errors. The physical significance of this relative sign is
most easily seen in the long wavelength limit, where all
the cosine factors in Eq. (2.13),as well as y, go to unity.

"To simplify the calculation we assume all the transferred
hyperhne interaction to be equal and isotropic. A negligible error
is introduced by this approximation as far as the F" NMR in
MnF2 is concerned.
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rf(r)
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spin wave by the second nucleus. The cross terms in the
second-order matrix element, appearing as the second
term in { ) in Eq. (2.13), must enter with an over-all
negative sign, substantially reducing the coupling in the
q=0 limit. In fact, the net eRect is of the order of the
coupling to a single spin, instead of to 3. Because
this calculation is second order in 3Ci,t, the { ) in

Eq. (2.13) goes to unity instead of 9 as q~0. More
importantly, this factor of 9 tends to be sqmared in the
calculation of the second moment, as will be discussed
in more detail in Sec. II B.

B. Moment Calculation

O.OI—

0.005—

I.O 2.0 3.0 4.0

r/a

6.0

FIG. 1. The spatial variation of the S-N range function f(r) in
a bcc antiferromagnet in the $100] direction. The logarithm of the
dimensionless quantity rf(r)/(1+0') is plotted versus r/o. Both
the long wavelength asymptotic form for f(r) (see Eq. 2.7) and
the exact result are given for various values of V2 d, with the value
V2 d =0.179 being appropriate to MnF2.

In coupling to the q=0 spin wave the F" nucleus feels
a transverse hyperfine field in Eq. (2.14) from the
"down" Mn spin, S;3, which is 180' out of phase with
the field from the two "up" spins, S,.l and S,~, and the
eRective coupling strength is therefore reduced. Mathe-
matically, the corresponding pieces of the matrix ele-
ment of BChg between the ground and one spin-wave
intermediate states have opposite signs. All this is, of
course, equally true for the reabsorption of the virtual

TrI,'
Tr{I &', (&',I,)j')

354——— (2.15b)

But the operator form of the S-N interaction, I„+I-
+I„I„+,is just that of the transverse components of
the secular part of the dipole-dipole interaction, which
has been treated in detail. ~ "Those results can then be
brought over directly, ' "and we have

(2.16a)

Kith the form of the eRective interaction between
nuclear spins established we can employ the techniques
originally introduced by Van Vleck" to calculate the
moments of the line profile resulting from that interac-
tion. We make the usual approximations of total nuclear
spin disorder (infinite nuclear-spin temperature) and
zero electron-spin temperature; it has been shown" that
corrections are small at temperatures T&&T~ in all
materials for which frequency pulling eRects are unim-
portant. Then, the formalism relates the moments to
traces over nested commutators of the total x component
of spin I with the interaction Hamiltonian

Tr{LI.",I )')
(2.15a)

+3+8,,'' 1— (2.16b)
2I (I+1)I

I(I+1)
&4= 3(Z»")'

3 j'

FIG. 2. The ion positions in the (110}plane in the MnF2 lattice
with the shaded and open circles representing the Mn'+ and
F ions, respectively. The three nn Mn'+ spins to the jth F ion
consist of two (j1,j2) on the up (down) sublattice and one (j2)
on the down (up) sublattice (after Ref. 2).

3
+Q»," 5 —— —

~

. (2.16c)
2I (I+1))

"J.H. Van Vleck, Phys. Rev. 74, 1158 (1948).' P. Pincus, Phys. Rev. 131, 1530 (1963).
'3 L. B.Vatova, Fiz, Tverd. Tela 7, 2133 (1965) (English transl. :

Soviet Phys. —Solid State 7, 171/ (1966)j.
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=Z (&~- 1)f—R,V'). (21&)

In the expression given by Nakamura for M2, appro-
priate to the Mn" resonance in MnF~, this last "self-
energy" term (j=j') was not explicitly subtracted. The
corrected expression is

M 2(Mn) = 3I(I+1)(A2/2J's)'$f —f~(0)j, (2.18)

where

f P P(1+.d2)2 ~ 2$—2

Ã e
(2.19)

and f(r) is the range function defined above (Eq. 2.6).
For the Mn nuclear spins in MnF2, Xakamura has
calculated f=2.65 and f(0)=1.28; thus the correction
due to the f(0) term reduces his value of M2 by a
factor of 2.6, to give

Mg(Mn) = 1.02&&—'I(I+1)(3'/2J's)'

The second moment appropriate to the F"resonance in
MnF2 requires additional corrections to be made, %ith
gi. and g~ defined in Fig. 2 we And

M2(F) =-,'I(I+1) —
i {f' ——',p4 —(1+5d'+4d') f(0)

us)
+2(1+d')f(ei —92)j'} (2 20)

f' = ZL(1+—d')' —&.'j '{t.3+2 cost (Ip
—9 )j

X(1+0')—2y, (cosy pi+cosy y2)}'. (2.21)

Itis to be noted that Eq. (2.21) and Eq. (24a) of Ref. 2
differ in the sign of the second term in the { }.(See
discussion following Eq. (2.14)). This has as a conse-
quence, the fact that the long-wavelength asymptotic
behavior of f and that of f' are now identical (i.e.,
f= f'= 1/md') rather than differing by a factor of 81
as had been thought, previously (see Eq. 31 of Ref. 2).
The sums contained in Eqs. (2.19) and (2.21) are
evaluated in Appendix A.

The fourth moment resulting from the S-N inter-
action has been investigated in Ref. 13 (with self-energy
terms correctly excluded). It is indicated there that for
the magnetic nuclei in a system for which anisotropy is
small enough to make possible the long-wavelength
approximation to the &o(q) factors in sums over q (e.g. ,
Mn in MnF2) i' 4/cV22=6. In Appendix B we show this
estimate to be in error and that in fact 3(354/SIP(5
for all values of H~/H@. Nevertheless, we would still
expect no appreciable departure from a Gaussian-
shaped line profile. Thus, the theory as it has been

It must be remembered that 8;; is defined only for
jQ j'. Thus, for example,

2 &, -2 f(M') 2 cos» (j- j') cosa' (i —i')

applied so far, without regard to microscopic inhomo-
geneities and to dipolar effects, is inadequate to explain
the observations of the transient experiments. Before
exploring these effects we note that one might also be
tempted to make a more direct contact with experiment
by using the actual spin-wave spectrum as determined
by neutron diffraction. However, cancellation from
various parts of the BZ, as evidenced in the usual
orthogonality relations in sums over q, plays a suffi-
ciently important role to require knowledge of the dis-
persion relation over the whole zone, rather than only
in the few symmetry directions that have been explored.

III. MODELS OF INHOMOGENEOUS
BROADENING

The calculations of Sec. II apply to the perfectly
homogeneous crystal. Real crystals, particularly ferro-
magnets or antiferromagnets, are subject to a number of
imperfections which may lead to sizable inhomogenei-
ties in the static local Geld seen by the nuclei. For
instance, if a nonmagnetic impurity (e.g. , Zn'+) re-
places a Mn'+ ion in MnF2 the Spy deficiency generates
a local dipolar field. A random distribution of such
spin impurities would lead to a static inhomogeneous
broadening" of both the F" and Mn" NMR which
would increase with increasing concentration of the
speci6c impurity. The F" NMR is also sensitive to
strains and dislocations because of the overlap and/or
transfer origin to its hyperfine interaction while the
Mn" NMR, having a hyperfine interaction of core
polarization origin, is not. The former fact appears to
be the major source of the cw linewidth of the F'
resonance even in nominally stoichiometric MnF2,
CoF2 and FeF2.

For a given concentration of impurities, the broaden-
ing of the cw line profile and the reduction of the trans-
verse relaxation rate that results depend upon three
factors: (i) the distribution of impurities, (ii) the
magnitude of the local fields created by the impurities
relative to those already present in the perfect crystal,
and (iii) the range of the nuclear spin-spin interaction(s).
As regards the 6rst, we will assume the inhomogeneous
broadening to result from a completely random dis-
tribution of imperfections and to be microscopic in
nature. The example of MnF~ will serve to demonstrate
the importance of the second factor. A relatively good
crystal of MnF~ still has a sufhcient number of im-
perfections (vacancies, impurities, strains. etc.) such
as to cause a static inhomogeneous broadening of, say
10—20 G, in what would be the line profile of either the
F"or Mn" NMR in the absence of either S-N or dipole-
dipole interactions. However, the calculations of the
preceding section lead to widths of the order of 2 and
300 G for the F' and Mn" resonances, respectively,

4 For a dilute concentration this would not result in a micro-
scopic inhornogeneous broadening.
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resulting from Hd;~ and II& N. Clearly, then, we may
expect the inhomogeneous broadening to have a pro-
nounced effect on the F" resonance properties and but
little effect on the Mn" resonance; in the former in-
stance, energy conservation in a neutral spin Qip would
be difficult to achieve, while in the latter case it would
not.

The third factor enters in a more subtle, yet im-
portant, manner. It is usually the case in discussing the
dipolar interaction and the effects that inhomogeneities
might have on the resonance properties to compare the
perfect crystal M2 (or rather the linewidth, which is
proportional to M2'12) with the inhomogeneous broad-
ening, rather than to examine the strength of the inter-
action at some specific separation relative to the latter
quantity. There is good reason for this. The dipolar
interaction falls off so rapidly with distance that the
primary contribution to

Mg" P f(8,,)r;,i'
comes from nearest neighbors. Hence, the strength of
the interaction at nearest neighbors and M~'" are
comparable in size. The situation as pertains to the
S-N interaction is quite different, particularly in the
case where the anisotropy field FI~ is much smaller than
the exchange field FI~. In this latter instance we have
shown that the asymptotic form for the range function
F(r) ~r 'e "" is still good at small distances, that is,
r(1/z. If, for discussion purposes, we replace sums by
integrals then

~ S-N~ 2K'

2Jz

so that a substantial contribution to M28 N arises from
nuclei separated by as much as 1/(2~). However,
nuclei this far distant from each other have an inter-
action which is 2':u snsalle~ than is the interaction of
nn; hence, it is easier for them to be "detuned" by a
given inhomogeneity than would be the case for nn.
Thus, if we considered the hypothetical case of a crystal
in which M =M2 " and assume 1/~))a, we would
expect a given inhomogeneity to be more effective in
reducing the S-N interaction than it would be in
reducing the dipolar interaction, so that (M2s N);
& (M2 'r); . We now consider two models which treat
the effects of inhomogeneities on the S-N and dipolar
second and fourth moments.

A. Dilute Crystal

A given nucleus can lose transverse spin memory via
the S-N interaction only with other nuclei whose
resonance frequencies (or local fields) are suKciently
close to its own to allow for an energy conserving mutual
spin Qip. In the presence of the strong static inhomo-
geneities discussed above such nuclei are in low

with the final sum taken over all lattice sites. Then the
dilute crystal second moment becomes simply

Mg'= cd 2, (3.2)

where M2 is the second moment for the homogeneous
(or 100% concentration) crystal, Eq. (2.16a).

The calculation of the fourth moment proceeds in a
similar fashion. We find for the dilute crystal

2G2

M4c = (5c')Mg' —Q Vg'V, r. Vr„.
ig j&A'gi

3
+ g—

2I(I+1)
—5c cP V,r4, (3.3)

where V;;=8,, for the metal nuclei in the transition
metal fluorides and V,,=D,; for the F" nuclei Lsee
Eqs. (2.6) and (2.13)j. For high concentrations
(c~ 1) the last term is small and was therefore
neglected in the c=1 calculation of 3f4 in Ref. 12.
However, at suKciently low concentration this term
will dominate, as the probability (~c') of finding two
nuclei to interact with a given one decreases sufficiently
below the probability ( c) for finding one such nucleus.

As a particular application of the above, we consider
the case of the Mn" resonance in MnF2, ' a calculation
of the ratio M4'/(Ms')' gives

M4'/(Mm')' 8+0.12/c, (Mn", S-N), (3.4)

where E is a quantity 3 &E(5 (see Appendix B).Since
it is necessary that this ratio be of order 10 or more for
the resonance to approach a Lorentzian shape, we see
that c would have to be 3% or less. The value of
1/T2= A8 that would be expected using a cutoff
Lorentzian is obtained from~

c= 67r&3(M22/M4)'r'M2'". (3 5)

It follows then that if 3% or fewer of the nuclei are
'5 C. Kittel and E. Abrahams, Phys. Rev. 90, 238 (1953).

abundance and may be considered approximately as a
dilute concentration of mutually interacting spins. The
simplest model just replaces the actual system by a
dilute concentration, c, of nuclear spins in identical
local fields. The interaction of dilute concentrations of
dipoles has been examined in detail, ' " and we follow
those treatments here, simply substituting the S-N
form of the interaction for the dipole-dipole one. The
expressions (2.16a) and (2.16b) for the second and
fourth moments M2 and M4 may be taken over directly
to this model, with the simple replacement of sums over
all lattice sites by sums over the occupied sites only.
If we assume the inhomogeneities to be random (or,
effectively'a random distribution of interacting spins)
we may make the replacement

(3.1)
j(occ) j
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M4'/(M ')' 2+0.2/c, (F",dip), (3.6)

which would require c(2% for M4/(M2')' to exceed 10.
The F"NMR in FeF2 is found to be inhomogeneously
broadened with 6~10 Oe and M~' '=2.1 Oe from F"
dipolar interactions alone. Since the echo-decay en-

velope is more exponential than Gaussian, let us assume
c to be no larger than 2% and estimate 5. Using
Eq. (3.5), we find 8=0.6 Oe, which is to be compared
with the observed value 1/T2 1 Oe. This model is

perhaps too crude to attach much significance to any
numerical results. Nevertheless, we feel this simplest of
all models gives some physical insight into the detuning
process. We pursue this line of investigation further by
way of a more sophisticated model.

interacting either by reason of genuine isotopic dilu-
tions (in the perfect crystal) or by reason of inhomo-
geneous broadening (in the imperfect but dense crystal)
the line profile would tend more towards a I.orentzian
shape than a Gaussian one. In point of fact, for the
Mn" NMR in MnF~, since it is required that the in-

homogeneous linewidth 6))3f~'" for the model to be
applicable, an inhomogeneous broadening of consider-
ably more than 10' G would be necessary. This is not the
case in actual crystals.

For the F"NMR in both MnF~ and FeF2 the dipolar
interaction exceeds the S-N interaction. We may there-
fore directly apply the dilute dipolar model "to these
resonances. Equation (3.2) applies equally well to both
the S-N and dipolar interactions and in place of Eq.
(3.4) we have'

which p;;&1 complete detuning exists. Although this is
a rather crude approximation to the smoothly varying
behavior between the two limiting cases, we expect that
it will give correct order-of-magnitude results. The
nature of this approximation for two spins —.is considered
in Appendix C.

As in the dilute crystal model the general expressions
fol M2 and M4 LEqs. (2.16a) and (2.16b)$ need be
modified only by restricting the sums over interacting
pairs (i,j)—in this case to those for which

~
~,, ~

& V,,
Thus,

Q V;2~ Q V,,2g((o,)(o,i*, (3.7)

=M2A 'g((u)QV, ,'/Q V,i2, (3.8)

where we have used the fact that U,;)0 for the S-N
interaction. Similarly, the expression for the fourth
moment" is modified by the replacements

(Q V.')'~ )A 'g(a&) V,,')'+A 'g((u)Q V,,'
—A 'g'((o)Q V,,', (3.9a)

where co;,.* is the maximum value of co,, that satisfies the
criterion p,,&1.The quantityg(~;)cv;, is the probability
that a given nuclear spin (j) is within the frequency
range &or;,* of co;. From the definition of p;, we see that
in our model fur;, *=

~
v;, ~. The second moment, (M~);~,

is then expressed as

(M, '),„=i3I(I+1)a-ig(~) p V,i2~ v,, ~

B. Inhomogeneous Line

1. S-E Interaction

Q V,,'~b 'g((v)Q V,,', (3.9b)

Suppose that we have an inhomogeneously broadened
NMR line described by the normalized shape function
g(co), which is to be determined by a random distribu-
tion of local fields. Suppose further that the width of
this line A=g '(&do), where coo is the central frequency,
is larger than the S-N width (M2)'", so that the steady-
state line is essentially independent of the S-N inter-
action. Any pair of nuclear spins (i,j), then, has asso-
ciated with it a difference in resonance frequencies,
~,;=co;—~, with a distribution determined by g(a&).

Qualitatively, then, we may expect a'certain amount of
detuning to exist which will lead to a reduction in the
ability of the S-X interaction to dephase the nuclear
spins, and as 6 increases, that part of T2 arising from the
S-N interaction also increases. The parameter deter-
mining the effectiveness of this detuning to inhibit Qip-
flops for a given pair is p, ,= ~

V,,/h~;,
~

. If p,,))1we may
consider the spins to be tuned; on the other hand, for
p;;(&1 the energy conservation requirement rules out
mutual spin Qips. In order to simplify the computations
we shall consider that for pairs of nuclei for which
p;;& 1 the S-N perturbation is secular and for those for

igj4kQi
V;pV, gV,7, —& Ii 'g'((u) Q V;i'V, i'V, g',

;gjQkQi

(3.9c)
so that using (2.16b) we find

I(I+1) '
(M4); =

2
Sgh 'g((v) P V,,'j' ——5—'g'((u)

E

(M4);

(M 2);„'

V' 53
=ryag-'(~) 8— (3.11)

2I(I+1) (P V,,')'

where F is a number whose precise value depends upon
d, but for all values of d is bounded by —1&I'&5

X Q V,i'U;i2U;2 5' 'g'((v)Q V—'
'&jgkQi

3
+5 'g(~0) 8— p V;,' . (3.10)

2I(I+1)
Using (3.8) and (3.10), we 6nd the ratio of the fourth

to the square of the second moment to be
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(see Appendix B). Since we expect the model calcula, —

tion to be meaningful only in the limit of large inhomo-
geneous broadening Li.e. , A 'g(co)M2'/2(11, we may
neglect I' with respect to the remaining term in (3.11).
In this limit we find, using (3.5), that

2.0—

I.9—

——31003

.Oioj

(1 ) s-N A2 2
l (Qrf, .3)3/2

=s~v3C(~)—~T2l;„2Js (Q f; )'"
3 ——1/2

&(PI(I+1))'/2 8—
2I (I+1)

(3.12)

I.O (-

0.9 g

0.8 —l

with f,, f(r;—r,) be—ing the distance dependence of the
interaction defined by Eq. (2.6). All of the dependence
of 1/T2 on the range of the interaction is now contained
in the l ) term. Equation (3.12) predicts a variation of
(1/T ). s N with ~ because of the factor g(~);
(1/T2);„sN will diminish as ~ moves away from &u3 in
either direction. Vsing the definition of M~ for the
perfect crystal we may express (3.12) in dimensionless
form as

(1/T ), s-N (P f,3)3/2,
Z - (Z)=—— = (& 13)

(2~)I'(I)r(~)~2 (Z f")'"(2f")

Z. Dipolar Ir/teractior/

We may use the same approach to derive expressions
for N2, cV4, and 1/T2 when d'ipolar interactions pre-
dominate and large microscopic inhomogeneities are
present. For simplicity we treat the case of a simple
cubic lattice of nuclear spins although the extension to
other lattices is obvious. The basic dipolar interaction
between two spins I; and I, is

d;, = -32y2h(1 —3 cos2t/")r, ;—' (3.14)

with I'(I) = L8I(I+1)—1.5j—'/'. We point out that
Eq. (3.13) is independent of the normalization of f;;
and that in particular in this expression we may replace
f;;by V;,. For large values of I, wehaveI'(I) ~ 8 '/'I '.
In Fig. 3 we show a plot of Rs N(d) versus 1/x. That
Rs N(d) should decrease as the range increases may be
explained as follows: If we normalize the value of
(1/T2); s N to a specific value of M2 we are in fact
requiring that the product A'/2Jsg; f;P remain con-
stant. Now as 1/x increases, P; f,P increases, and hence
A'/2Js must decrease. But if the coupling constant
decreases it becomes more and more difficult for two
nuclei that are a given distance apart to satisfy the con-
dition that their interaction energy is greater than or
equal to the inhomogeneity. Thus, since an increasingly
larger contribution to M2 comes from more distant
nuclei the larger is 1//4, and they in turn are increasingly
less likely to satisfy the basic inequality 1/3a&,, 1&V,;,
we expect that, for a fixed M2, the ratio (1/T2);„ /
g(cv)M 2 will decrease with increasing 1/x.

o.7 —~

o.6—

0.5—

0.3—
7
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where 8 is the angle between the direction of the polariz-
ing field and the radius vector r;;. The transcription to
the inhomogeneous model is then

(tIII2);„=M2I2 'g (co) (3.15)

(M4);„=&4'/2 'g (&4) (3.16)

where 3I4' contains only that part of M4 which is
proportional to P, d;,'. As in the inhomogeneous S-N
calculation the reason for the truncation is that if
(cV4);„/(F2); 2 is to be large compared to unity then
the terms in M4 that are linear in g(co) must be large
compared to the quadratic ones. It is to be noted that
(3.15) and (3.16) are expressed as the sums of positive
definite quantities since our inhornogeneous model re-
quires only that the magnitude of the interaction of any
given pair be larger than their corresponding frequency
separation.

The quantities 3f2 and M4' are defined as

I(I+1)
M2 —— P d;32 (3.17)

FIG. 3. The quantI ty R "
cl s a function of 1 '~a for. the bcc

antiferrornag. "~et. P~s-N is t'efil'ed by Eq. 3.13. The dashed line is
the result obtained by direct summation over lattice sites extend-
ing to the lattice point (10,0,0).The solid line is the result obtained
by replacing sums by integrals which is, again, the long wave-
length approximation. For comparison, the quantities R 'p for
the simple cubic lattice, as given in Table T, are also indicated on
the figure. Note the break in the vertical scale between the dipolar
and S-X functions.
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and

I(I+1) ' 7 3
P d;;4. (3.18)

3 5 10I(I+1) i

The angular dependence of the interaction (3.14)
necessarily results in the various lattice sums themselves
being functions of the angle between the direction of the
polarizing 6eld and the crystal axes. Extremal values for
(Ms); and (M4');„areobtained from calculations with
the polarizing field oriented in the L100j, L110), and

l 111) directions. Values for lattice sums appearing in

(Ms);~, (M4'); and their ratio in (M4');~/(Mz);~' in
these three directions are given in Table I. Also given
are the corresponding values of the quantity

i/2 (1/T ). dip

(1.4) (-', )g(I)g( )zr

~

~

P(d 'ld "l)'&'
(3.19)

Z(d. Id;;l)Z d;,

i.e. ,
Q(I)

g(~)Ms (I)=
Q(s)

TABLE I. Values of the sums appearing in the inhomogeneous
model dipolar moments for the $100$, L110j,and $111)directions
in a simple cubic lattice )see Eqs. (3.14), (3.15), and (3.16)g.
The quantity d;; is measured in dimensionless units of —,(p'6/a'),
with y the nuclear gyromagnetic ratio and e the lattice spacing.
The quantity E 'p is defined by Eq. (3.19). Despite the pro-
nounced anisotropy in g ~d;, ~' and Q ~d;;) the quantity R '&

is almost isotropic. This situation is completely analogous to that
found for P d;P, P d;,' and the ratio M4/3I2s for the dipolar inter-
action in the perfect crystal; see pp. 112 and 113 of Ref. 7.

+dip

where Q(I) =
l
1.4I(I+1)—0.3) '".The factor (1.4/8)'"

has been introduced so as to normalize the spin-depend-
ent factor Q(I) to the corresponding factor I'(I) in
Eq. (3.13) for Rs N in the limit of large I. Rs'& is seen
to be relatively insensitive to field orientation and is
therefore amenable to more direct comparison with the
Rs N of Eq. (3.14), as is shown in Fig. 3.

One interesting comparison may be made with
Portis's spectral diffusion theory, applicable only to
I=~. From completely different considerations he
deduced that (1/Ts); ~"/g(ce)Ms 1, which is in essen-
tial agreement with the results of our model as shown
in Table I.Since the Portis model is difficult to generalize
to arbitrary spin values, we surmise that an approxi-
mate I dependence for his model might be obtained by
analogy with our results,

3. Restrictions ozz A ppiicability of Inhomogeizeols
Model Co—mparisozz with Experimezzt

Before making any attempt to compare experiment
with theory we must consider the limitations on the
applicability of the model. The fundamental postulate
of microscopic inhomogeneity presumes there to be no
correlation between the difference in the resonance fre-
quencies of a given pair of spins and their relative posi-
tion. It is not dificult to visualize a situation where this
assumption. is violated although the entities (imperfec-
tions, etc.) which cause the inhomogeneous broadening
are distributed at random. For example, suppose there
were present, in an otherwise perfectly ordered magnetic
lattice, a random but dilute distribution of vacancies.
At any distance r from a given vacancy a "hole" dipolar
Geld would be present which would, in a given direc-
tion, vary as the strength of the missing moment and
diminish as r '. Since the nuclei that are closer to the
vacancy will experience a larger displacement in their
resonance frequencies while those that are more dis-
tant will be proportionately less affected it is clear that
relative to the vacancy center there is a strong correla-
tion between the separation in space and separation in
resonance frequency for any given pair of nuclei.

From the above it might appear that it would be
dificult to realize a situation in which the inhomo-
geneous broadening was microscopic if it was produced
by a random array of imperfections. However suppose
that, rather than the dilute concentration of causal
imperfections, we had a relatively large concentration
(i.e., )10/o). Then nearly every nucleus would be
affected by many imperfections, and the resonant fre-
quency of any given nucleus would be the combined
result of multiple changes in the local Geld. This would
be particularly true for those nuclei whose resonance
frequencyremained thesame as it was in the pure crystal.
In this instance the difference in resonance frequencies
for any pair of nuclei would tend to be uncorrelated
with respect to their relative positions, since there
would be numerous distinct spatial con6gurations of
imperfections which would cause a given local field at
a specific point.

Fortunately, the shape of the inhomogeneously
broadened line allows one to distinguish between these
two extreme cases. It is readily shown" that in the
"dilute" imperfection limit the resonance profile, in the
observable region, will assume a Lorentzian shape while
in the high-concentration limit a Gaussian shape will
be obtained. Hence, only in the latter case would one
expect the inhomogeneous models that we have calcu-
lated to be strictly applicable. Any deviations from
microscopic inhomogeneity will always result in the
observed (1/Ts),b, being bracketed by the relation
(1/Ts);„((1/Ts),b.( (1/Ts) h,~.

$100j
L110$
D113

20.3
3.39
0.681

68.0
2.49
0.084

1.99
1.87
2.06

' M. H. Cohen and R. Reif, in Sol@E State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1957),
Vol. 5.
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Keeping these limitations in mind we consider the
relevance of the inhomogeneous model to three par-
ticular resonances: 6rst, that of Mn" in MnF2 where
the S-N interaction is large compared with the dipolar
interaction; second, that of F"in the same crystal where
the Mn"-Mn" S-N interaction modifies the F" dipolar
interaction and lastly the F" resonance in FeF2, where
the dipolar interaction alone is of any importance.

Whichever of the spin-spin interactions is most
important, the criterion for the applicability of the in-
homogeneous model is that

Ms'"(Ag (ro) g-'&(1. (3.20a)

1 )6) (M ' "+M "&)'ls) —
~

T2~ horn

(3.21)

(Although Mss's)Mrs N a complete treatment of the
F' linewidth in MnF2 necessitates keeping both S-N
and dipolar-interaction terms in calculating the total
M2 because of possible destructive interference effects.
These are discussed in Appendix D.) Before considering
the inhomogeneously broadened case it is to be noted,

"H. Yasuoka, Tin Ngwe, V. Jaccarino, and H. J. Guggenheim,
Phys. Rev. 177, 667 (1969}.To be more precise the experiment
shows that the Mn" resonance is split into Gve quadrupolar lines
whose relative intensities and linewidths agree with the S-N theory,
appropriately corrected and extended. Moreover a careful tran-
sient experiment was performed and neither spin echoes nor a
free induction decay were found thereby allowing an upper limit
to be placed on T2, which is again in agreement with the theory.

M. Butler, N. Kaplan, V. Jaccarino, and H. J. Guggenheim
(unpublished).

Furthermore, if the decay of the echo envelope is to be
exponential the truncated Lorentzian line shape should

apply and therefore

(M,);./(M, );„')&1. (3.20b)

At the center of the resonance g '(ois) =6, the full line-
width of the inhomogeneously broadened resonance.

3fe" ie 3feF2. Clearly with 3f& for the Mn"
resonance equal to ( 350 Oe)' it would require an
inhomogeneous linewidth considerably in excess of
10'Oe for an appreciable reduction in (Mss N);„to occur
and for the inequality (3.20b) to be satisfied. The
magnetic hyper6ne interaction of the Mn'+ ion arises
primarily from intra-atomic core polarization and, to
a large degree, is insensitive to strains and imperfec-
tions in the crystal. We estimate the inhomogeneous
broadening of the Mn" NMR in MnF2, if any, to be
much less than 10' Oe. Experiment' confirms this
surmise in that the resonance appears to be homo-
geneously broadened and the observed and calculated
linewidths agree.

F' ie MeP2. This resonance has been studied4'
in a number of samples including some which were
further inhomogeneized by doping. In each case it has
been noted, from transient experiments, that for the
inhomogeneously broadened resonance

and explained, that the perfect crystal line shape in this
particular case should be more Lorentzian than Gaus-
sian. The details again are discussed in Appendix D.
They amount to the fact that the combination of a
relatively weak Mn'5-F' dipolar interaction and a
strong Mn"-Mn" S-N interaction result in a large
increase in the F" 3f4 and hence narrow the line

appreciably. A numerical calculation" gives for the
modi6ed fourth moment

M,*(F)=M,(F)+-',M, ' N (Mn)M, " (F-Mn), (3.22)

where M4(F) is obtained from dipolar interactions
alone. We find M4*= 2 2X10 " erg', using Mss N(Mn)
=2.3X10 "erg'and M "(Mn-F)=3X10 "erg' The
calculated Lusing the cutoff Lorentzian expression

Eq. (3.5)g and observed values of Tsrs for the "perfect"
crysta1 are

(Tsrs),.i.= 100 iisec and (Ts")ob.=30 @sec, (3.23)

respectively. The magnitude and direction of the dis-

crepancy is similar to that which has been found for
exchange narrowed nuclear magnetic resonances in

paramagnets. " The situation with respect to the in-

homogeneously broadened crystals is somewhat more
complicated and the details will be given elsewhere. "
The qualitative features are as follows: Some nominally

pure crystals show an inhomogeneously broadened
Gaussian-shaped line of width 6~14 Oe and hence
satisfy the requirements set forth above for the appli-
cability of the inhomogeneous model. (The inhomo-

geneities probably result from a high concentration of
strain fields. ) For small inhomogeneous broadening the
"like" F"spins are detuned and Mrs'&(F-F) is reduced.
However, Mrs'&(F-Mn) is indePendent of inhomo-

geneities, to a erst approximation, because of the
I,"-I," longitudinal character to the dipolar inter-
action between unlike spins. Therefore, M4*(F) re-
mains essentially unchanged while (Ms); decreases
and thus (1/Ts);„tends to decrease. However, when the
crystals are deliberately inhomogeneized by the addi-

tion of magnetic (or nonmagnetic) impurities, there
results a proportionately smaller reduction in 1/Ts than
would be expected from the size of A. But here the
inhomogeneous line profile is more Lorentzian indicat-

ing that the inhomogeneity is not of a microscopic
nature.

ie FeIi2. For the F' NMR in FeF2 the S-N
F"-F"contribution is entirely negligible in comparison
with the dipolar one. This is a consequence of the huge

gap in the spin-wave spectrum at 0=0 due to the large
single-ion anisotropy. For this latter reason and because
the Fe'~ nuclei have small moments and are in low

abundance, there is no appreciable contribution to
M4*(F) as there was in the MnFs case. Hence were

"We are indebted to M. Butler and J. Gulley for this result.
J. Gulley, B. Silbernagel, and V. Jaccarino, Proceedings of

the 14th Annual Magnetism Conference, New York, 1968
(unpublished); J. Appl. Phys. 40, 1318 (1969).
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there no inhomogeneity present, an approximately
Gaussian-shaped line would result with a value of
3/I 'i'(F-F) =3.2&& 10 " erg' This corresponds to a
derivative extrema separation 8H =4.3 Oe. In the crystal
that has been studied' the observed line profile is
Gaussian but it is inhomogeneously broadened to the
extent that bH= 11 Oe. Using the inhomogeneous model
LEq. (3.19)j we find (T2);„~'~—90 @sec whereas
(T2)ob'—30 tisec. The discrepancy in this case may
reflect the limitations of the model when Eq. (3.20a)
is not strictly satisfied or that the inhomogeneity is not
truly microscopic.

4. Other Approaches to the Problem of
Iehomogemeols Broadened Li rIes

The general problem of inhomogeneously broadened
resonance lines has been approached from an entirely
different point of view by Klauder and Anderson"
(K-A). Since the underlying assumptions of the K-A
model and the experiments to which it is applicable
differ to some extent from the ones considered above,
we feel some comparisons between the two theories is
appropriate. Klauder-Anderson considered the problem
of spectral diffusion in spin-echo decays in an inhomo-
geneously broadened line. Their model presumes that
there are two classes of spins: a small group "3," the
ones under observation, whose resonance frequencies
are contained with an interval bv~yII~ of the mean
frequency of the echo-producing r-f oscillator and a
group "8," which are all the remaining spins in the
sample. The "A" spins are so few in number that inter-
actions among themselves may be neglected, and hence
only "A"—"8" and "8"—"8" interactions need be
considered. Furthermore the "A" and "8" spins are
thought to be so unlike that only the I»~I„~part of
the dipolar interaction is secular and the remaining

part is treated as a small perturbation. Hence, most of
the homogeneous broadening is "diagonal in nature"
in the K-A model. The K-A theory finds ready applica-
tion in electron paramagnetic resonance experiments"
in which the total number of spins ("A"+"8")in the
sample is much less than the number of lattice sites.
ln this limit" the line is inhomogeneously broadened
and the profile g(~) is Lorentzian. Spectral spin dif-

fusion of the resonance "A" spins is measured by two
and three pulse spin-echo experiments. "

Our microscopic inhomogeneous broadening model
really applies to a "dense" crystal where like and unlike
spins are distinguished by the criteria p;;& 1 and p;, (1,
respectively. As mentioned earlier, for the model to be
applicable we would require that the inhomogeneous

"J.R. Klauder and P. W. Anderson, Phys, Rev. 125, 912
(1962).

"W. B. Mims, K. Nassau, and J. D. McGee, Phys. Rev. 123,
2059 (1961).

line profile be Gaussian. We pretend to no knowledge
about spectral diffusion, since we make comparison
only with those two-pulse spin-echo experiments in
which the decay of the entire transverse magnetiza-
tion is studied; a condition obtained by making
v&i) La(«)3 '.

There are certain inherent limitations in the use of
both models which are apparent. The K-A approach,
as formulated, would not apply to the S-N case,
because there is no I I,' part to this interaction. The
criterion imposed by our model presupposes that one
can treat each spin as having a welL-defined resonance
frequency at any instant of time. There is, in fact,
only an elementary excitation at that frequency with an
uncertainty in frequency of the order of 1/T&, as K-A
have pointed out. This frequency width for the two
interacting spins could, in principle, be folded into our
two-spin "yes-no" criterion as an approximate way of
including the many-body aspects of the real problem.
Clearly this correction becomes less important the
larger is the relative size of the inhomogeneous tohomo-
geneous broadening.

Our mutual spin-flip criterion would appear to neglect
the contribution that is made by the I,*I,' part to 1/T2
in treating the dipolar interaction. Actually we used the
entire dipolar Hamiltonian in evaluating all of the
moments. We believe this to be a valid procedure in
that limit where there is only one spin species and where
all of the spins are contained within the resonance pro-
file. Then in a two-pulse spin-echo experiment with
yIIi) t g(&oo) 1 ', the homogeneous broadening resulting
from the random frequency modulation of the I I,'
terms by further I,+I~ interactions contributes in the
same proportion as it does in the perfect (homogeneous)
crystal.
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APPENDIX A: EVALUATION OF SUMS IN
EQS. (2.19) AND (2.21)

As was indicated in Ref. 2, momentum integrals such
as those found in Eqs. (2.19) and (2.21) can be eval-
uated numerically after reduction to one-dimensional
form with arguments that contain complete elliptic
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and we can conveniently choose as integration variables
ri= r,;—, r2 =—r, i, and rig—=

I r;;—r, ~ I. Then we find

1—& f"f'if i
E

I.O

0.75

rl+r2

If1
0 [r1—r2I

g
—xr12e—ar2~—2~r1

t&12—

(B4)

2 Q V'VPVP
r=—5 ——

(Z V'~')'
(B6)

Again it is clear that F(5. We have, furthermore, the
inequality

V;i2V;PV;P( V,/V;P+ V,PV;P+ V;PV;P, (B7)

so that

—1&F(5,
where we have dropped terms like P V,,' relative to
(P V;P)' with the same justification we have given
above for the neglect of the final term in (B1).

APPENDIX C: SPINS ~ COUPLED BY EXCHANGE
INTERACTION

We consider here two spins 2 coupled by a transverse
exchange interaction, for the purpose of investigating
the inhuence on the eN.ciency of the mutual spin-Qip
process of a difference in the magnetic fields at the two
sites. The appropriate Hamiltonian is

X= hgIi* h2T2*+ 2J(Ig+I—2 +Ii —I2+), (C-1)

where h; is the product of the g factor, the nuclear
magneton, and the magnetic field at i. X is trivially
diagonalized; the parallel-spin eigenstates of the
Zeeman Hamiltonian are unaRected by the exchange
interaction and the antiparallel-spin states are mixed
to give (unnormalized) eigenstates

I4)=
I tl)+LJ/(hi —h~ —2~))lit'), (C2)

where the energies are

a) =a-'LJ'+ (hi —h2)'j'". (C3)

The mutual spin-Qip frequency is then measured. by the

In the same approximation P f;/=2/mx, so

R=S——;=11/3, (~~0). (BS)

In a similar fashion we can find bounds for the
moment ratio in the presence of inhomogeneity. In the
limit of strong inhomogeneities, as discussed in Sec. III,
the last term in M4 is reduced by one lower power of
g(a&) than are the other two and eventually, therefore,
it dominates (M4);„.It is the remaining terms we wish
to bound

0.25

0.0
0.0

I

0.5 I.O 1.5 2.0

APPENDIX D ' DIPOLAR INDUCED
CORRECTION'S

In this appendix we show explicitly how the dipolar
induced corrections to the F"linewidth in MnF2 (which
we discussed in Sec. III and Ref. 4) arise. If we denote

Bh/J

pIG. 4. Spin-Rip rate of two exchange-coupled spins 2 as defined
by Eq. (C4), given here by the solid line. The dashed line repre-
sents the approximation employed in Sec. III for this efhciency in
the many-spin system. The abscissa is the ratio of the difference in
Zeeman energies at the two sites to the exchange-interaction
strength J.

square of the ratio of the amplitudes of
I
1'l) and

I
lt')

in (C2),

f(h —h ):—J2/j (hi —h2)+.LJ2+ (hi —h2)2ji~2)2 (C4)

which is plotted in Fig. 4.
The approximation we have made in Sec. III, as

applied to this two-spin system, is to replace f(hi —h, )
by the step function

fo(h, h, ) =1, —when Ih, —h,
I
(J

(CS)=0, when Ihi —h2I) J.
This seems to indicate that the detuning effects of
inhomogeneity may be even more severe than implied by
our model. However, the relevance of the two-spin
behavior to that of the actual many-spin problem is
limited. Each spin is exchange coupled to many others
and thereby acquires a smooth spectral distribution of
spin-fiip frequencies around, but not uniquely located
at the local Zeeman frequency. The overlap of these
spectral functions at two sites is then a measure of the
part played by energy conservation requirements in the
mutual spin-Qip probability of these two spins. Thus,
the exchange of each with all other spins, which is left
out of the two-spin picture, should be considered for a
more complete understanding of the validity of our
model. However, we feel that the much simpler two-
spin calculation is sufFicient to indicate the suitability of
our model as an approximate description of the systems
we consider.
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the F"nuclear spins by I and the Mn" spins by J, the
relevant Hamiltonian has the form

BC=+ A;;I,"I,+Q 8,;I,'I,'+QC, ,I J,'i'
—P U,,I,+I; PV—,,J,+J, , (D1)i'

where the symbols are as follows: A;j is the isotropic
part of the F"-F"dipolar interaction; 8;, is the aniso-
tropic part of the F"-F"dipolar interaction; Czj is the
anisotropic part of the F' -Mn" dipolar interaction;
U -=F' -F' S-N interaction; and V;j=Mn"-Mn" S-N
interaction. The usual truncation of the nonsecular
terms has already been made in Eq. (D1), and the
Mn"-Mn" dipolar interaction has been neglected
because it is of no significance in calculations of the F"
moments. It is important to notice that by far the
largest interaction in (D1) is V,;; this is, of course, due
to the large Mn" hyperfine interaction. The second
moment of the F"NMR line is then"

3II2 ——-,'I (I+1)Q (8;,+2U;;)'+-,'J (/+1)g C;p, (D2)

for the longitudinal anisotropic part of the dipolar
interaction to combine with the transverse S-N inter-
action and become isotropic and hence rot contribute to
M2. H jBqI and

) U;;( were comparable, this destruc-
tive interference would be significant. This was thought
to be the case in MnF~, where a 20/~ reduction in M~
was estimated4 for the homogeneous crystal, when it
was assumed

~
U;;

~
) ( J3,; (. Since we now know that the

F"-F"S-N interaction is much smaller than the corre-
sponding dipolar interaction the importance of the
above considerations is considerably less than had been
first anticipated.

However, what is an important contribution to the
line narrowing in MnF2 arises from the interplay of the
F"-Mn" dipolar interaction and the Mn"-Mn"
indirect coupling. This gives a contribution to the fourth
moment of the fluorine line in addition to that of the
S-N interaction considered in Sec. 2. Again from
Van Vleck "we find

X 2 VIP(C;a —C,~)' (D4)

where the j ranges over all F"nuclei for the 8;, terms
but only over a given sublattice for the U;; terms; k
ranges over all the Mn" spins.

Here

The second term is important because of the large
value of Vqg. When V~~ is relatively long-ranged (com-
pared to the dipolar interaction), (D4) may be very
crudely estimated as

(D3) 3E4*(F)=M4s (F)+3E4 N(Mn)3II2 '~(F-Mn) . (D5)

where y,j is the direction cosine of r;, relative to the
s axis; note that 8;; is negative definite while U;, is
positive definit- thus, there is somewhat of a tendency

A more precise calculation" using the parameters
appropriate to MnF2 yields the result given in

Eq. (3.22).


