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Measurements of the normal-fluid fraction pn/p in superfluid helium have been made by ob-
serving the period of torsional oscillation of a stack of disks, at pressures up to 25 atm, at
temperatures from 1.45 K to the X line. At all pressures, the temperature dependence of pn/p

is qualitatively similar to the previously observed behavior at the vapor pressure. At all tem-
peratures, pn/p is a monotonically increasing function of pressure. Comparison is made with

values calculated by means of the two-fluid model from second-sound velocities and thermo-
dynamic data; good agreement is observed, but it is necessary to take into account the fact that
a commonly used approximation Cp = Cz is seriously incorrect at high pressures.

I. INTRODUCTION

Measurements of the normal and superfluid
densities of liquid helium by Andronikashvili'
played a crucial role in establishing the essential
correctness of the two-fluid model. In particular,
the generally good agreement between the values
obtained directly from Andronikashvili s stack-of-
disks experiment, and those inferred indirectly
from second-sound velocities u, and thermodyna-
mic data, using the equations of the two-fluid
model, provided strong quantitative support for
the basic features of the model. The two-fluid
model still provides a useful description of many
aspects of the behavior of liquid helium. In view
of the importance of the disk measurements and
of the fact that the measurements by Andronikash-
vili and others, ' 4 like most measurements on

superfluid helium, have all been carried out in
helium under its own saturated vapor pressure,
we have made similar measurements at pressures
up to 25 atm. Our experiments were intended to
provide values of p~ and p~ over a wide range of
conditions, and to make possible a comparison
with values calculated from second-sound veloci-
ties, thereby subjecting the two-fluid model to a
test over a wide range of conditions. The approxi-
mation Cp = C~, which is usually made when de-
riving an expression for u„ is seriously incorrect
at higher pressures. A more detailed analysis
which takes into account the inequality of the spe-
cific heats leads to a more general expression for
u, , valid over the entire pressure range of this
experiment.

II. EXPERIMENTAL DESIGN
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the oscillations of the system are at room temper-
ature.

The support rod is enclosed in a 4. 5-mm-in-
side diam tube B, which connects the room-
temperature space to the sample chamber. When
operating with the sample under pressure at a
temperature below that of the X line, there must
be a column of superfluid in this tube, with a
temperature difference between the liquid in the
sample chamber and the liquid at some higher
point along the tube which is at the A. temperature.
Under some conditions, the resulting heat flow
can cause an excessively large rate of evapora-
tion of the bath and, more seriously, can pro-
duce effects which interfere with the taking of

An over-all view of the a,pparatus is shown in
Fig. 1. The disk stack, a rigid support rod A,
and the torsion fiber C are enclosed in a pres-
surized chamber, from the top of which connec-
tions are made to a pressure gauge [Heise Bourdon
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FIG. 1. Schematic diagram of the apparatus.
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meaningful data, as discussed later. If these
experiments were to be extended to lower tem-
peratures, it would be highly desirable to use a
closed system, ' with disks, suspension fiber,
and detection apparatus at the low temperature,
and only a pressurizing capillary leading to room
temperature. Even with such improvements,
however, the disk method becomes a poorer and
poorer means of measuring p~ as one goes to
lower temperatures; it is most valuable at the
higher temperatures where p~ is relatively large.

The design of the disk stack and the suspen-
sion represents a compromise between various
conflicting criteria. The disks should be closely
spaced so that the normal fluid between the disks
will be almost completely set into rotation. On

the other hand, the spacing between the disks
should be large, relative to the disk thickness,
so that the moment of inertia of the disks them-
selves will not be overwhelmingly large in corn-
parison with the moment of inertia of the fluid.

Because of the low density of liquid helium,
this consideration is of dominant importance in
the design of the experiment. This can be seen
by taking the following simplified view of the ex-
periment. Let us suppose that all of the normal
fluid within the geometrical region marked out

by the disk stack is dragged along with the disks
—thereby increasing the rigid-body moment of
inertia of the pendulum —and that none of the
superfluid, and none of the normal fluid outside
this region, is affected. If we further suppose
that the total density is approximately tempera-
ture-independent at a given pressure, it follows
that:

where p~ ( )T/p~ is the ratio of the normal-fluid
density at temperature T to the density at the
X temperature for that pressure, v (T) is the
corresponding period, 7 o is the vacuum period,
and 7 y is the period at and above the X line. Al-
though a more refined analysis is necessary, as
discussed below, any analysis of the data re-
quires —in one guise or another —the subtrac-
tion of the vacuum period. It is obvious that the
disk method of determining normal-fluid densi-
ties is best at relatively high temperatures, and
becomes poorer and poorer at lower temperatures,
where &(T) =- r, . It would be desirable to make
the change in period due to the presence of the
liquid as large as possible, but it is difficult to
improve significantly on the value which applies
to our apparatus, [r (T) —7, ] /r, ~ 0. 1, without
violating other criteria.

In order to enhance the effect of the normal
fluid on the period, the disks should be thin and
light; but they should also be rigid and as nearly
plane as possible, in order to avoid any warp-

ing, which may cause some of the superfluid to
be dragged" 4 along with the disks and the normal
fluid, The period of oscillation determines the
viscous penetration depth A. (A' = vn/n'p&, where
7 is the period, g is the normal-fluid viscosity,
and p~ is the normal-fluid density. ) This length
should be large in comparison with the disk
spacing, so as to approximate complete dragging
of the normal fluid; but this length should be fairly
small to minimize corrections for the liquid drag-
ged around the periphery of the disk stack. The
stationary walls of the surrounding container
should be sufficiently far from the disk stack, in
comparison with the penetration depth, to eliminate
the need for wall corrections.

The disk stack used consisted of 120 mica disks
(3. I'15 cm diam, 0.0025 cm thick) mounted on an
aluminum spindle, separated by mica washers
(1.2'I cm diam, 0. 018 cm thick). This assembly
was attached to the bottom of a 112 cm length of
stainless-steel tubing (0. 046 cm outside diam)
serving as a support rod A, leading to the top of
the cryostat at room temperature. At the top of
the support tube was mounted a small metallic
disk D, used in starting the pendulum and ob-
serving its motion. This complete assembly
was suspended from a 51-cm-long, 0. 051-mm-
diam platinum suspension C. The disk system
itself is enclosed in a. copper can (6 cm high,
6 cm diam), and the support rod is enclosed in
a 4. 5-mm-inside diam tube B.

The resulting torsion pendulum had a period in
vacuum of approximately 32. 9 sec, with a damping
time constant of about 2500sec. When immersed
in liquid helium at a pressure of 25 atm, at tem-
peratures at and above the A. line, the period in-
creased to approximately 36.4 sec. The geometry
and the viscous penetration depths were such that
under the worst conditions (nea. r the X line), the
normal fluid was set into motion with at least
99.9/o efficiency, according to the hydrodynamic
calculations of Dash and Taylor. ' Hollis-Hallett'
has observed an increase in period at large ampli-
tudes of oscillation, apparently due to the fact
that the superfluid can be set into motion if a cri-
tical velocity is exceeded. To avoid such effects,
we kept the amplitude of oscillation smaller than
5, and no dependence of period on amplitude was
observed.

The angular position of the torsion pendulum is
recorded continuously with the aid of the metallic
disk D at the upper end of the support rod. This
disk is located midway between two coils, which
serve as primary P and secondary S of a variable-
coupling 3-kHz transformer. The amplitude of the
voltage induced in the secondary depends on the
angular position of the disk, This voltage is com-
bined with a 3-kHz voltage of adjustable phase and
amplitude from the same oscillator which excites
the primary, so that the sum is nearly zero when
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the pendulum is in its rest position. This signal
is then fed to a lock-in amplifier, whose reference
voltage is also derived from the same oscillator.
The lock-in output is then put on a strip-chart re-
corder, thus providing a continuous record of
the angular position of the pendulum. The recor-
der deflection is an inherently nonlinear function
of the position of the pendulum. This nonlinearity,
however, has little effect on the determination of
a period. In addition, the voltage-angle relation-
ship is known, permitting corrections to be made
if necessary. The rest position of the pendulum
is chosen to make this relationship as nearly
linear as possible over the operating range, and
excursions from the rest position are kept small.
The amplitude of the exciting voltage on the pri-
mary is kept far below the level at which eddy-cur-
rent torques on the disk have an observable effect
on the period or damping of the disk. The period
determinations depend on the constancy of the
chart speed, which is checked against a local
quartz- crystal frequency standard. Chart speed
variations contribute negligibly to the over-all
error.

The vertical disk D (0. 95 cm diam) represents
a potentionally serious source of error. During
the measurements under pressure, this disk is
surrounded by compressed room-temperature gas,
which is partially set into motion. This gas contri-
butes to the effective moment of inertia of the sys-
tem~ if this is a large effect, its neglect could
lead to spuriously high values of p~. It is diffi-
cult to calculate the size of this effect, and a sep-
arate set of measurements was made to learn
how large a source of error this might be. For
this purpose, the stack of disks was replaced by
a brass cylinder of approximately the same mom-
ent of inertia. (1.72 cm high, 0. 858 cm diam), the
low-temperature part of the apparatus was re-
placed by a long 3-in. -diam closed tube, and the
apparatus was filled with room-temperature
helium gas. As the gas pressure was increased
from 0 to 25 atm, the period of oscillation in-
creased gradually, the total change being approxi-
mately 0.009 sec. An effect of this magnitude
would change the values of p„/p by at most 0. 002,
a value considerably smaller than other inaccur-
acies in the results.

The system is set into oscillation in a repro-
ducible fashion, with no mechanical disturbance
of the apparatus, by means of two small chips
of steel attached to the periphery of the disk D.
To start the oscillation, the 3-kHz voltage is tem-
porarily removed, the two coils are connected in
series, and a slowly increasing current (derived
from a single cycle of a sawtooth voltage of 20-
sec period) is passed through the coils. The pen-
dulum is then released to swing freely, and the
3-kHz voltage is then turned on.

Each run consisted of a series of checks of

the vacuum period, followed by a series of mea-
surements at a particular pressure. About 10
full periods were averaged to yield a single point
on a period-versus-temperature plot. In some
runs, the temperature was made to drift very
slowly upwards, over a period of 5 to 7 h, from
the lowest attainable temperature to a tempera-
ture well above the X line. Under these conditions,
the temperature varied during the time necessary
to obtain 10 full oscillations, over a range which
was as large as 15 mK at the lowest temperatures
and which was reduced to about 2 mK near the X line.
In other runs, a series of measurements at selec-
ted discrete temperatures was made with the aid
of an electronic bath regulator, which held the
temperature constant to within less than 1 mK.
In each run, the high-pressure pass was followed
by a similar pass at the va.por pressure (with the
sample chamber opened to the bath).

Temperatures are determined from carbon and
germanium resistance thermometers; some in-
side the can and others in the outer bath. During
the second half of each run, a series of period
data was taken at the vapor pressure (with the

sample chamber short-circuited to the bath),
and the resistors were checked against each other
and against the bath vapor pressure. By having
resistors both in the sample chamber and in the
bath, it was possible to be on guard against a
signif icant temperature diff erence between the
two regions. Such a temperature difference was
observed under some conditions, as discussed
below.

The temperature range over which useful
data at pressures above the vapor pressure
could be obtained was limited by the pumping
speed of the bath pump, and also by the following

effect: At a pressure of 5 atm, for instance, as
the temperature was lowered below a temperature
of approximately 1.7 K, there was a sudden in-
crease in the heat leak to the bath, due to heat

conducted along the column of superfluid helium
and the sudden appearance of a significant tem-
perature difference between the sample chamber
and the bath. (At 5 atm and 1.5 K, this tempera-
ture difference was as much as 0. 01 K. ) At the

same time, the damping of the torsional oscilla-
tions became significantly larger, and the behav-
ior of the system became sufficiently erratic that
useful period data could not be obtained. These
effects are not understood in detail, and they im-
pose a limitation on the temperature range for the
data at the lower pressures. Except at the vapor
pressure (where the effect does not occur), the

lower the pressure, the higher the temperature at
which these effects set in. At 25 atm, no such ef-
fects were seen down to 1.45 K, the lowest tem-
perature at which observations were made.
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III. ANALYSIS OF DATA

Values of p„/p were obtained from the period-
versus-temperature data in the following way. If
the disks are perfectly smooth and plane, so that
no superfluid is set into motion, we may write'

r2= 70 +mp (1+clA+c A').
1 (2)

Here, v and 70 denote the period and the vacuum
period; m is a constant of the apparatus, depend-
ing on the torsion constant of the suspension and
the moment of inertia of the pendulum; c, and c,
are geometrical constants of the apparatus~; and A
is the viscous penetration depth. Because of im-
perfections in the disk system, a small fraction of
the superfluid may be set into motion. To allow
for this possibility, we modify Eq. (2) by adding a
term proportional to the superfluid density

~'=~ '+m[p (1+c A+c A')+o.p ],n 1 2 S
(3a)

v' = (7'0'+mnp)+ mp (1—o. + cIA+ c2A'). (Sb)
n

Here, p is the total density, and o. (to be deter-
mined empirically) takes into account , the super-
fluid which is set into motion, so as to contribute
to the moment of inertia of the disk stack. Such a
partial dragging of the superfluid has been treated
in a similar fashion by Dash 'and Taylor, 4 and by
Mehl and Zimmermann. '

The terms c,A and c,A' account for the liquid
around the periphery of the disk system (approxi-
mately the liquid within a distance A of the disks)
which is partially set into motion. ' For our geom-
etry, the calculated values are: c, =2. 015 cm ',
c, =0. 807 cm-'. The penetration depth A is not
itself directly known, as A' = vq/~p„. The most
complete set of data available pertaining to the
normal-fluid viscosity is that of Goodwin and
McCormick, ' who have determined the product
gp~ over a wide range of temperatures and pres-
sures. With this information, it is possible to use
the period data to extract the value of p~ from Eq.
(Sb) if, in addition to c, and c„ the parameters 7'„
z, and nz are known.

The vacuum period 7', was determined in sepa-
rate low-temperature runs, in which a small a-
rnount of helium exchange gas was present in the
sample chamber. The exchange gas was suffi-
cient to ensure thermal equilibrium, but had no
significant effect on the period. The period was
measured over the temperature range 1.5—2. 1 K,
at gas pressures from 5 to 50 p. Hg. The varia-
tion in period over this range of conditions was

l.ess than 0. 002 sec.
The constant m is determined by the following

considerations. In each run, the A. temperature is
identified by a sharp corner on a plot of period
versus temperature. The X line thus determined
(see Table I) agrees within 2 mK with the mea, sure-
ments of Elwell and Meyer. ' From the value of
the period at the A. line and the known values'~ ' of
p and q, the constant rn is thus determined from
Eq. (3a,). In other words, we take advantage of
the sharp corner on the period-temperature plot to
normalize our data to give pz = p = py at the X line;
there is no further adjustment of the data, . [If the
correction terms involving n, c„and c, were neg-
ligibly small, this procedure would yield Eq. (1).]

The coefficient n was measured in runs in which
the vacuum period was first measured as described
above, and the sample chamber was then filled with
liquid helium at the vapor pressure. A series of
period-versus-temperature measurements was
then made, primarily at low temperatures to em-
phasize the term in ap~. Making use of Dash and
Taylor's vapor-pressure results3~4 for pz and q,
we extrapolate Eq. (3b) to T =0 K to find the value
of 7,'+map. From the vapor pressure value' of p
and from the previously determined values of 70
and nz, z was determined to be 0. 03+ 0. 01. Our
results are not very sensitive to the exact value of
n, because the vapor-pressure part of each run
provides a check on the value of the important
combination 7,'+ map. The vapor-pressure data
actually serve to check the value of this combina-
tion, with p representing the total density of the
liquid at the vapor pressure, whereas it is this
combination with p representing the total density
under pressure which enters into the calculation
of our results for p~ under pressure. To the ex-
tent that changes in the total density' are small
relative to changes in pz, the vapor-pressure part
of each run checks the desired quantity directly.
Analysis of the data with e varying over the range
0. 01-0.05 shows that uncertainty in a contributes
negligibly to the error of the experiment.

Because the data are normalized to give p„=p at
T = Ty, the experiment leads directly to values of
p /p&, where p& is the total density at the X line
for a particular pressure. [Note, however, that
the total density p in Eq. (3b) is p(P, T), not p(P, T~).
The actual value' p(P, T) is used in this correction
term, though this correction itself is small enough
that, for this purpose, the difference between p and
p~ is of no importance. ] In order to facilitate com-
parison with second-sound results, the experi-
mental results of this paper are presented as val-
ues of p~(P, T)/p(P, T). The density data of El-
well and Meyer' were used to convert values of
p~/py to values of p„/p. [At a given pressure,
the density at 'he X line is typically 1—1.5% high-
er than at lower temperatures (T = 1.6 K).]
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TABLE I. Smoothed pz/p data at five pressures: CV. calculated values, using Eq. (4). C~. calculated values,
using Eq. (9).

Expt
p„/p(%)

CV Expt
p„/p(%)

1.75
1.80
1.85
1.90
1,95
2.00
2.02
2.04

2.06
2.07
2.08

2.09
2.10
2.11
2.116

1.68
1.70
1.75

1,80
1.85

1.90
1.95

1.98
2.00
2.01
2.02

2.03

2.04
2.05

2.055

1.63

1.65

1.70
1.75

1.80

I'= 5.28 atm

31.1
36.0
42.3
48.5
56.2
65.0
69.1
73.6
78.5
81.1
84.0
87.1
90.7
95.1

100.0

31.4
36.4
42.2
48.7
56.4

29.7
31.7
36.5
42.5
49.5
57.5
66.0
73.2
78.2
81.0
83.9
87.1
90.8
95.6

100.0

31.4
36.6
42.7
49.5
58.1
67,4

P= 15.04 atm

30.8
33.0
38.8
45.3
52.0

38.4
45.1
52.0

I'= 10.37 atm

31.2
36.2
42, 0

48.5
56.2

31.0
36.1
42 ~ 0

48.8
57.4
66.7

37.5
43.9
50.5

1.85
1.90
1.95
1.96
1.97
1.98
1.99
1.994

1.58
1.60
1.65

1.70
1.75
1.80
1.85
1.87
1.88
1.89
1.90
1.91
1.92
1 ~ 924

1.45
1,50
1.55
1.60
1.65
1.70
1.75
1.78
1,80
1.81
1.82
1.83

1.84
1.845

60.0
69.5
80.0
84.0
87.3
91.1
96.2

100.0

60.1
70.8
83.9

I'= 20.02 atm

31.6
33.5
39.2
45.7
52.5
61.0
72.0
77.3
80.2
83.3
86.8
90.8
96.0

100.0

35.0

47.8
55.9
64.5
76.2

&= 25.10 atm

25.5
30.0
35.5
41.0
46.8
55.0
64.6
72.0
78.0
81.4
85.1
89.4
94.9

100.0

59.0
69.6

83.1

I =15.04 atm (Con't. )

58.4
69.1
82.1

34.1

46.1
53.8
61.8
72.7

41.7

56.0
66.0

79.2

IV. RESULTS AND DISCUSSION

Smoothed results for p„/p at five pressures are
shown by the solid curves in Figs. 2 and 3 and in
Table I. Error bars are not shown. Individual
data points yield p~/p points which scatter within
about+0. 01 of the curves shown. This scatter, the

origin of which is not completely understood, is
sufficiently large that uncertainties in the temper-
ature and pressure contribute a negligible amount
to the uncertainties of the results. Errors can
also arise from errors in the vacuum period &0,
the period at the X line 7~, the geometrical coef-
ficients n, cy and c2, and the data gpss pertain-
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FIG. 2. Curves: smoothed values of I0„/p versus
temperature from this experiment, at 5.28, 10.37,
15.04, 20.02, and 25.10 atm absolute pressure. Pres-
sure increases from curve at lower right to curve at

upper left. Triangles: values calculated from Eq. (4)

for the same pressures.

This apparent discrepancy is not an indication of
a failure of the two-fluid model; in fact, it pro-
vides a confirmation of one feature of the two-
fluid model which was pointed out many years
ago, "but has been almost universally ignored
since that time. One assumption used in the der-
ivation of Eq. (4) is that C~ = C„, i. e. , that the
thermal expansion coefficient is zero. Under
these conditions, the two wave modes in liquid
helium are pure density oscillations u, and pure
thermal oscillations u„and the velocity of the
second-sound branch is given by Eq. (4). If, how-
ever, Cp 0 C~, the two types of oscillation become
coupled, " and the expressions for the velocities
are modified, as discussed below.

Two-fluid hydrodynamics' leads to the following
equation for the two-wave velocities in bulk liquid
helium:

u2'=(p /p ) TS'/C . (4)

Figure 2 shows the comparison between our re-
sults and some values of p„/p calculated from Eq.
(4). This comparison is also given in Table I.
Allowing for the stated uncertainties in the input
data, and for the existing discrepancies in values
calculated from alternative sources (for example,
u, data from Ref. 10 or ll), we estimate the un-
certainties in the calculated values of p„/p to be
about+0. 015, that is, about the same as those in
our own directly measured values. Values of pu/p
at higher temperatures than those indicated by the
triangles in Fig. 2, were not calculated, because
the quantities used in the calculation begin to vary
rapidly with temperature, and possible tempera-
ture errors in combining data from several
sources become progressively more important.
After due allowance is made for errors both in
our values and in the calculated values, there re-
mains a clear discrepancy, at least at the higher
pressures.

ing to the viscosity. Analysis of the data with z,
cy c2, and gp~ varying over conservatively large
ranges produces little change in the calculated val-
ues of pu/p. Uncertainties in ro and ay are the dom-
inant sources of possible systematic error, with
v', being the more important at low values of p„/p,
and v'~ being the major offender at high values
of pu/p. We estimate the possible systematic er-
rors in pu/p from these sources to be about+0. 005
over the whole range of conditions studied.
thus conservatively estimate our values of pu/p to
be accurate to within about+ 0. 015.

We have also calculated indirect values of pu/p
from second-sound velocities "~"u, and thermo-
dynamic data, "&' using the equations of the two-
fluid model. The commonly used relationship be-
tween these quantities is

10 Bp

u20'-(p /p ) TS'/C„.

For all the temperatures and pressures at which
we have used the two-fluid model to calculate val-
ues of p /p, 6 is not larger than 0. 2, and u„'/
Q y p 0 005 The re fore, we make the appr oxi ma-
t ion Q20 ~~ 6] p and expand the square root in Eq .
(5). The two roots for u then become, for first
sound

u, '=u„' [1+6u„'/u„'] (8)

I.O

e„/p
0.8-

0.6-

0 0 i I

I.4
I r I & I i I ! I i I

l.6 1,8 2.0 T (K)

FIG. 3. Same as Fig. 2, but circles represent
values calculated from Eq. (9) .

Z/2
48u 'u

2u'=u '+u '+(u ' —u, ') ~1+ " " (5)
(u~() —u20 ) j

where 6 =1 —C~/Cp (proportional to the square of
the thermal expansion coefficient), and u„and u„
denote the usual expressions for the velocities of
first and second sound, valid if Cp = Cz..
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and for second sound

u, '=u20' [I- e]

=(p /p ) rs'/C . (9)

& (p„/p) (1 —p /p) (u20/ul0)'.

For all the points at which we have calculated val-
ues of p~/p, this error in p~/p is at most 0. 35 x
10 ', or in terms of the percentage effect on p„/p,
at most 0. 007%. From Eq. (10), it is clear that
the remarkable accuracy of Eq. (9) results from
the fact that in those regions near the X line where
the 9 term in Eq. (10) becomes large, the factors
1 —pz/p and (u,o/u„)' are, at the same time, be-
coming small.

Under the conditions of our experiments, there
is often a significant difference between the values
of p~/p calculated from Eq. (4) and those calcu-
lated from Eq. (9). The change produced in the
calculated values of pz/p upon changing from Eq.
(4) to Eq. (9), can be approximately expressed by

&(p /p):——(p„/p) (1 —p„/p) (Cp/C„- 1). (11)

Thus, for example, at p=25 atm, T=1.75 K,
where p+/p =0.65 and Cp/Cz ——1.17, 4(p~/p) =
—0. 04, which represents the major part of the
discrepancy shown in Fig. 2.

The fact that Eq. (4) is only approximate was
pointed out by Dingle, '~ who made the comment
that in practice the corrections are negligible.
Dingle cited as an example the liquid at the vapor

Although to this approximation, the magnitudes
of the corrections to the squared velocities are the
same for first and second sound, the fractional
correction is much less important in the case of
first sound. Eq. (9) is the expression which we
use henceforth to calculate indirect values of p„/p.
It is remarkable that simply replacing Cz by Cp in
the usual expression for u, yields a result which is
highly accurate under all conditions, including, of
course, the case Cp=-C~.

By carrying further terms in the approximation,
it is found that the error in p„/p, if Eq. (9) is
used, is at most

pressure and 1.5 K, where p„/p = 0. 1, Cp/Cz =

1.0005, and thus d (~/p): —0.45 x 10-'. Even at
temperatures much closer to the A. point, use of
Eq. (4) does not lead to serious errors in the cal-
culation of p~/p at low pressures. At the vapor
pressure, at 2. 12 K, for instance, h(p„/p):—
—0. 001.

Probably because the estimated corrections in
the example used by Dingle are so very small, the
possible failure of Eq. (4) has been almost" uni-
versally ignored. It is clear, however, that at
elevated pressures, where the rise in Cp/C~ sets
in" at temperatures much farther below the X line,
there is a marked difference between Eqs. (4) and
(9). Anyone who wishes to calculate values of p„
and p~ under pressure indirectly (i.e. , from u,
and thermodynamic data) should be aware of this
fact. Furthermore, it is clear that any future ex-
periments intended as investigations of the cou-
pling between the two-sound modes could best be
carried out at those pressures where there is a
significant difference between Cp and C~.

Figure 3 shows our results compared with val-
ues calculated from Eq. (9). (See also Table I. )
The data needed to convert from C& to Cp were
obtained from Grilly's" comparison of the iso-
thermal and adiabatic compressibilities, and al-
ternatively, from the data of Elwell and Meyer'
on the thermal expansion coefficient. Within the
various experimental errors, there is no discrep-
ancy between our directly measured values of p~/p
and those calculated from Eq. (9). It is not sur-
prising but certainly reassuring that the two-fluid
model, which has been used so successfully at the
vapor pressure, can be used with equal confidence
at elevated pressures. It was interesting to find
that the apparent discrepancy exhibited in Fig. 2
is due to the use of a common but invalid approx-
imation, and not to the basic equations of the
model. Our results provide a confirmation of the
more general expression for the second-sound
velocity.
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The first quantum correction to the classical value of the second virial coefficient for the
square-well potential is calculated The r.esult is B(T) = end [g + (1-q ) e puJ+ 2 wXd {e p"
+q [1+e P" -2e Pu~ Io(2pu)J), with X=(h /2wmkT) and p=(k&') . Here, u denotes the depth
of the well, d is the diameter of the hard core, and gd is the range of the potential.

I. INTRODUCTION

The purpose of this paper is to give the first
quantum correction to the classical value of the
second virial coefficient B(T) for a gas of parti-
cles interacting via the square-well potential:

= Q)
=- 0,

for g&d
for d& r&qd
for x& qd

where u is a constant. This simple-model poten-
tial is supposed to represent the effect of a real
intermolecular potential fairly well. To calculate
the classical second virial coefficient for this
potential is trivial. ' For light gases, however,

the quantum corrections are not completely
negligible. '

The quantum-mechanical second virial coeffici-
ent for the square-well potential has two note-
worthy features. First, it cannot be obtained by
the usual Wigner-Kirkwood high-temperature ex-
pansion' because that expansion is essentially an
expansion in powers of the gradient operator, and
is therefore not applicable to the singular square-
well potential. 4 Second, the presence of the hard
core in the potential implies that at high tempera-
tures all symmetrization effects are negligible or,
more precisely, are exponentially small. ' In a
series expansion of B(T) in powers of the ratio of
the thermal deBroglie wavelength X = (h'/2nmkT)'~'
to the hard-core diameter d, it therefore suffices
to consider the spin-independent part Bdirect.


