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A kinetic description of line broadening is used to express the conventional approximation
schemes as limits of a more general point of view. A profile function is given in terms of a
generalized collision rate. Central to the calculation of this rate is a perturbed phase function
that accounts for possible strong coupling between perturbers and the particle coupled to the
light. An approximate expression for this phase function is given which continuously describes
the transition between the two limits.

I. INTRODUCTION

To calculate a spectral line profile resulting
from collisions, one usually employs a simplified
model at the outset. The most common picture
is characterized by two extreme limits for the
speed with which a given perturbing collision may
occur. In one limit, the collisions are regarded
as instantaneous. Here one speaks of the impact
approximation. The quasistatic approximation
denotes the alternative limit in which the perturb-
ers are taken as fixed in space according to some
probability distribution.

In dense plasmas, for example, the impact ap-
proximation is applied to the electrons, whereas
the effects of the ions are considered accurately
described by the quasistatic approximation. This
procedure is usually permissible for the central
portion of the profile; however, as one moves
away from the line center, its usefulness dimin-
ishes. Physically, one expects the core of the
profile to be impact-dominated with the wings
quasistatic, as shown in Fig. 1. To study the
region of the profile bounded by the core and a
wing, however, one must consider a more general
picture.

The kinetic description of the absorber (emitter)
distribution function f is a convenient starting
place. Knowledge of f yields the induced atomic
currents and thus the absorption (emission) line
shape. Here the relative importance of the impact
and quasistatic limits is revealed by the non-
Markovian nature of the kinetic equation satisfied
by f. In this paper, it is shown that the rate of
change of f to lowest order in the density of perturb-
ers is

translational motion of the absorber is ignored,
the Laplace transform of (1.1) linearized in the
external field is

f(Q+i@)= [~ 0+i 5(Q+iiI)]-'f (0), (1.2)

II. COUPLED EQUATIONS FOR f

The distribution function is directly related to
the more general quantity

defining the line-profile function. Here, AQ is the
difference of the perturbed and unperturbed fre-
quency, f(0) is the initial distribution function, and
0 is the frequency-dependent width-shift function.

Equation (1.2) is important, since it is complete-
ly equivalent to (1.1) and thus, contains both ex-
treme limits. The explicit expression for 0 dem-
onstrates the role of strong couPling between the
absorber and perturber, i.e. , a fully non-Wfarko-
vian solution is incompletely described by ordinary
perturbation theory.

In Sec. II, the coupled equations of the one- and
two-particle distribution functions are derived.
In Sec. III, these equations are shown to yield a
kinetic equation for f in terms of the perturbed-
phase solution for the absorber. The extreme
limits are discussed within the framework of this
kinetic equation in Sec. IV. Finally, an improved
approximation scheme is introduced in Sec. V
along with a brief comment on the relationship of
the present theory to recent work in the theory of
strong plasma turbulence.

f(7)=$ drC(r, r)y(r ~).
IMPACT

QUAS I STAT IC

It is observed that the two extreme limits emerge
from (1.1), corresponding to approximate treat-
ment of the collision integral. Further, if the

FIG. 1. Regions of profile where the two limits are
expected to apply.
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g (1, 2) = (I/i)(g (1)g(2)) —= (g (1, 2)) . (2. 1)

The notation is chosen to coincide with that of
Bezzerides. ' g~(1) and g(2) create or destroy an
absorbing atom at the space-time points (x„ t, )
and (x„f, ), respectively. The internal labels for
the atom are implicit in matrix notation. The
bracket denotes averaging over some initial en-
semble. As a function of the sum and difference
coordinates, X= —,'(x, +x, ) and x=x,-x„g (X, x)
satisfies

(fs +m-'s s )g (X, x)-[H„g (X, x)]

-[V(X+-,'x)g (X, x)-g (X, x)V(X--,'x)]=O, (2. 2)

which is Eq. (5. 13) of Ref. 1.
Equation (2. 2) results directly from

U(1) = U (1) + U (2), (2. 4)

with U the interaction of the atom with an ar-ext

bitrary external field.
The distribution function f (X, p, t) is the ensem-

ble average of

(2. 5)

and from (2. 2), f satisfies

1(8 +p/tg's ) f(y, T) [H, + U(X) f (y—, T)]= O.

(2. 6)

In (2. 6), (X, p) are denoted by P. Terms due to
acceleration of the c.m. of the absorbing atom
are neglected in (2. 6) since induced electric cur-
rents are assumed dominant. In the absence of
internal structure, the second term of (2. 6) van-
ishes, and the lowest-order acceleration term
leads to the operator equivalent of the Vlasov
equation for a plasma.

The apparent simplicity of (2. 6) is deceptive
since, for a plasma with dipole interaction be-
tween atom and perturbers,

V (X)=-m E(Ã, T)

= —m' d 6 X X ) )T
(2. 7)

(is + 1/2m s ') g (1, 2)- [H + U(l )]g (1, 2) = 0,
tl

(2. 3)

and the corresponding equation for its t, time
variation. H, is the Hamiltonian for the free sta-
tionary atom, and

where e is the electric field produced by a single
species s. Thus, in (2. 6), f is coupled to the full
operator microfield. Only f is needed, not f.
However, taking the ensemble average of (2. 6),
one finds that f is not self-determined. To solve
the corresponding ensemble- averaged equation,
one must know for all times,

=&f, (yl, T) f(4, T)). (2. 6)

The correlation function f '", in turn, is coupled
to fs, , where&s) s

(P (1)( (1')f (P)g (2)g (2')) = 6 6 (1'—2)

x(P (1)g (2')f) (P (1)g (2)fg (1')|t (2')),

(2. 1O)
where the primed position coordinates are close
to their corresponding unprimed coordinates.
The second term on the right-hand side of (2. 10)
may be approximated by the sum of four terms.
Two of these terms are negligible in the classical
limit. The remaining two terms are

f (AI, 4', T)ft(42, T)+f (01,T)f, (P2, P, T),
(2. 11)

f, ,"',RI, A 24, T)=&f (AI, T)f (42, T)f(4, T)).

(2. 9)

This procedure may be continued until the equiv-
alent of the N-body Schrodinger equation is
reached. To truncate this hierarchy of coupled
equations, one usually assumes that a given f (n)

may be expressed in terms of f(& —1)xf.
A rigorous justification for this truncation

scheme requires an expansion of the solution for
this hierarchy in terms of a power series in some
small parameter. For the case of a gas consist-
ing exclusively of neutral particles, this param-
eter is n = Xz,', where X is the density of perturb-
er and x, is the force range. As is familiar from
kinetic theory, n may be thought of as being a
measure of the probability that various numbers
of particles will collide simultaneously. To low-
est order in n, one retains binary collisions and
excludes three-particle collisional effects. Thus,
to lowest order in density, three-particle correla-
tions are ignored here.

For simplicity, the translational motion of all
particles will be described classically. To ob-
tain the classical limit, it is convenient to return
to a fully spatial coordinate dependence for f ' .(2&

Thus, consider
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where we have returned to the phase-space de-
scription.

With (2. 10) and (2. 11) the equation of motion
for f becomes

(j. )

~(sT+p, /m . s- + p/m s-)f (y, , y, T)s X, X s

-(e + U', f (y, , y, T)]+ e'(X, X,)

[mf (y, y, T)]

(»
+Q, fdy~Z, (X,X ). [m, f, (y2, y, T)]

-Z fd42L (X, X2)ff (Q, Q, T)&=0, (2. 17)

and

[i (s +p /m 8- + p/m. s-)T 1 s X,

-(I. +I. +I. (X, X,))]lf (y, y, T)&

f,-~, f"&2L,(»X2)lf, (e, , y, T)&=o, (2. i8)

where L» Lext, and Ls are the tetradics corre-
sponding to II„Uex, and -m Zs(X, X,), respec-
tively.

xf (QI, T)=0.
s (2. i2)

III. KINETIC EQUATION FOR f
Equation (2. 12) is applicable to a homogeneous
equilibrium plasma. Further, it has been as-
sumed that the perturbing particles move free of
interaction. The validity of this approximation
as well as the classical path limit have been con-
sidered in the literature. ' It should be noted that
because of the special long-range characteristic
of the interaction between an atom and a given
charged particle of the plasma, the explicit inte-
gral expression for a must be cut off at approxi-
mately the Debye shielding distance. ' The action
of the commutators in (2. 12) may be represented
by a familiar notational device. ' A dyad vector
space is used to make the identification

The simplest way to solve (2. 17) and (2. 18) is
to consider their difference; thus, the quantity

(3.1)

The quantity
l Oft& satisfies the equation

(za +o )le (T)&=I. f lf(T)), (3. 2)

where Os in explicit coordinate representation is

O =(p /m s- +p/m s-)s 1 s X, X

(Pf~,B-m,
f

n& -[I. +I. +I. (X, X )]. (3.3)

— Z &~pl~,R-~, ln, P,& &n, P, fB&,
+1& 1

(2. iS) Equation (3.2) is solved, given the solution of the
corresponding homogeneous equation

where A.„A„and 8 are arbitrary matrix opera-
tors, and the new vector space is constructed in
such a way that

(fs +O )U (T, T )=0,
s s (3.4)

& ~f~. f,p,&=-&,f~,
f

&~

(2. 14a)

(2. 14b)

with the boundary condition U (T0, T0) = I. Then
it is a simple matter to show that

f~f (T)&=U (T, T,)f~f (T0)&

and B& is defined by (o.,P, f
B) -=(P, Bl n, &. (2. 15)

Since only commutators appear in (2. 12), this
formal equivalence may be written

; f TdT'U (T, T')L f ff(T')&. (3. 5)

The propagation operator is easily determined
from the homogeneous equation to be

[@fl-L@lf » (2. 16)
U (T, T, P, Q) =exp[ i f 'dr I, —~ T To

s ' 0' 1' 0 s

where L@ is the tetradic operator corresponding
to Q. Vfith the use of this notation one writes,
for the coupled set of equations for f and f"',

x (X(~),X (~), T-T)] I'(T- T ) (3. 6)

[f(s +p/m sX)-(L +I. )]ff)
The bracketed quantity is antitime ordered, and
2 (X, X1,T)=L0+L t(X, T)+Ls(X,XI). The
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coordinates are shifted due to free flight, i. e. ,
X(r) =X-(p/m)7' and XI(r)=XI—(p/ms)r. The
action of P ls to replace functions of X, X1 by
those translated through free flight over the time
difference T- T0.

The bracketed quantity in (3. 6), Us (T-T0),
has a simple interpretation as the phase of the
absorbing atom perturbed by the external field
and by the presence of a single perturber parti-
cle. In the absence of any interaction this phase
is exp[-iL, (T-T,)], which clearly agrees with
UsT(T To). -With (2. 17) and (3. 5), the kinetic
equation for

~
f& is

[ (s T+p/ sX)-(L0+L,~)l~f(4, T)&

+~f0 d7 o (7) y)~f(p(~), T-~)&=0, (3.7)

certain portion of a line profile surrounding the
line center can always be represented by a
Lorentzian. The extent of this region according
to (4. 1) is wacs(max)hto «1, where are measures
the width of the Lorentzian, and T~g (max) is
correlation time for the species with the largest
field correlation. Thus, the impact approxima-
tion is always valid in the core of a profile.

B. Statistical Theory

To describe the wings of a profile, one needs
accurate knowledge of the small T dependence of

~
f&. The peaking of o exp(i7'L, ) is then irrelevant,

since the full extent of the integral is within 7~C
(min). The simplest procedure is to ignore the
dynamics of the perturbing field. This approxima-
tion is the basis of the quasistatic theory. Its
validity is limited to that portion of the line set by

where o (r P)=P o (& Q)
T T

s s 7'+ (min)A&a» 1.s
A.C (4. 2)

fdic f (Q)L (X, X )

xU (T, T r)L (X, X-,). (3. 6)s s

In (3.7), it has been assumed that the absorbing
atom is initially uncorrelated with To:0.

IV. IMPACT AND QUASISTATIC LIMITS

Thus, the wings of a line are always quasistatic
(statistical).

To see the connection between (3.7) and the usu-
al form of the quasistatic theory it is useful to
consider the second term of that equation as a sin-
gle quantity —that is, to set

Z, J dr o (~, y)~f(X(~), p, T-~))

Limited descriptions of the collision rate 0 yield
the conventional approximate schemes for the cal-
culation of line profiles.

The collision rate may be written

(4. 3)

A. Impact Limit

—~(T)/g(T) « 1 (4. 1)

to ignore non-Markovian corrections. The quan-
tity g(T) has the trivial oscillatory time variation
of f(T) removed. It is important to note that a

If o exp (iTLD) is peaked about r = 0 with a width

v~~, one might write ~f(T-~)&= ~f(T)& in (3 7).
(The free-phase factor removes the trivial time
dependence of If&. ) Further, if T)&egg, the
upper limit of the integral may be extended to
infinity with small error. The result is a Marko-
vian kinetic equation. Except for the possibility
of overlapping lines, the corresponding line shape
is Lorentzian. The T~C is a measure of the cor-
relation time of the electric field of the plasma.

To consider the validity of this approximate
procedure, take a definite matrix element of (3.7)
for an isolated line. Expanding exp(i&L, )f(T-r)
about 7 = 0 to terms linear in 7, one must have

(~, y) =

fdic,

f (y )L (X, X, )

x/i —U (T, T-~)- U (T, T-7)
S S

x[L +L,(X(~), T-~]), (4. 4)

where U is Us except for P. Simple integration
by parts gives

(4. 5)

with I ($, 7)=i fdglf (p )L (X, X1)U (T, T &). -
(4. 6)

The equation for
~ Qs& clearly converges for small

T, indicating that this formulation of the collision
term in (3.7) is relevant to the line wings. The
kinetic equation for

j f& with the lowest approxima-
tion for

~
Q& in the infinite mass limit is
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[is —(I.p+L )]~f) -g fdic f L

x (X, X )U (T, p) if(y, o)))=P.

The solution of (4. 8) is

~f(P, T))=Z fdllf (Al)U (T, p)

x
~
f(P, 0)), where m

(4. 7)

(4. 8)

which, when linearized in the external field and
Laplace-transformed, is equivalent to the asymp-
totic Holtsmark result.

Finally, the weak-coupling limit of (3.8), in
which the unperturbed phase function is used for
U, yields the classical limit of the relaxation
theory of line shapes. ' Contrariwise, the above
discussion should make clear in just what sense
the proper description of the quasistatic theory
is a strong-coupling limit.

V. GENERAL LINE PROFILE

(5. I)

or (f(Q+iY/))=[0- L+iov(Q+iq)] '
(
f(0}), (5. 2)

where v(Q+ig) is the transform of o.
In the plasma, rapid transit of an electron re-

sults in a weak influence on the absorbing atom,
allowing for a weak-coupling approximation,
whereas a slowly moving ion has sufficient time
to engage in strong interaction. In terms of U

(r), this approximate treatment is equivalent to

U (r)=e " 'P
S

(for electrons), (5.3a)

—i~(L +L (X,XI)]
(for ions). (5.3b)

It should be clear from the previous discussion
that there exists a transition region in which this

To obtain the line-profile function of the form
expressed in (l. 2), one must return to (3.7), the
kinetic equation for

~
f). For spontaneous emis-

sion, Uext = 0. (For absorption, the equation is
linearized in the external field. ) To simplify,
take the absorbing atom as fixed at the origin
(all line-shape calculations assume this at the out-
set). Then the Laplace transform of (3. 7) gives

distinction according to species is inadequate for
establishing which is the best limit, i.e. , not all
ions are quasistatic nor are all electrons impact.

Detailed calculation of U~ is difficult because
of time ordering. For the limiting situations

(5.4a)

» 7'
C

(5.4b}

JF-x
i

/ /1 8

I, (X, X)
U (7)=exp —ir I. +

s 0 I —r 7
C

(5.5)

having taken the relative velocity parallel to the
relative position vector. This approximation sug-
gests that the distinction between the quasistatic
and the weak-coupling limits should be made ac-
cording to (5.4a) and (5.4b), respectively. In
terms of Op, one would write

o (r)= f deaf L (e 'P)L
C

-i7'(Lp+ Ls)+f deaf L (e )L
C

(5.8)

This simple cutoff procedure allows for a contin-
uous transition between the two limits. In (5.6},
the phase-space integration must be performed
before determining oi, (fl+} since the phase-space
cutoff s are 7-dependent. Detailed evaluation of
these integrals is under study with the hope of ob-
taining an accurate description of that portion of
the profile where the conventional scheme may
need improvement.

The principal result of this paper is to demon-
strate the nature of the quasistatic approximation
from the point of view of an atom experiencing
collisions with the particles of its surroundings.
The simple picture of statistically shifted levels
is replaced by a description in which the perturb-
ing particles weakly scatter, but with an absorber
(emitter) strongly perturbed in its phase. Thus
one must introduce the perturbed phase function
U (T) to replace the free-phase function exp(-iTI. ,}.
In this regard it is interesting to note that Dupree, 4

in a theory of strong plasma turbulence, has re-
examined the significance of particle-wave inter-
actions in saturating certain plasma instabilities
by introducing the concept of a perturbed particle
orbit in place of the usual free motion for the
scattering particle. ' The use of a perturbed phase
function U (T}has some parallel with the role of
this perturbed-particle-orbit concept.
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Recent theoretical work has suggested that at high frequencies, there should be significant
departure from classical hydrodynamic behavior in simple fluids. In particular, the fre-
quency dependence of transport coefficients is no longer negligible and may introduce ob-
servable effects into the propagation of high-frequency sound. We have measured the sound

velocity of high-frequency phonons (1-3 GHz) in liquid argon and liquid neon along their vapor-
pressure equilibrium curves using the Brillouin scattering technique. The Brillouin spectra

0
were excited with a single-mode argon-ion laser operating at 5145 or 4765 A and were an-
alyzed and detected with a Fabry-Perot interferometer and standard photoelectric techniques.
Hypersonic (-3 GHz) velocities observed in argon decrease linearly from 850 m/sec at 85 'K
to 742 m/sec at 100 'K and uniformly exhibit a small departure from low-frequency (1 MHz)

data obtained under the same thermodynamic conditions. This effect is in qualitative agree-
ment with theoretical-model predictions of a negative velocity dispersion at high frequencies.
Our measurements of the sound velocity in liquid neon are the first in this material by any

technique, and hence cannot be compared with ultrasonic values. The hypersonic velocity
in neon decreases not quite linearly from 620 m/sec at 24.9'K to 508 m/sec at 32'K. When

compared with results in other noble-gas liquids through corresponding-states arguments,
these data suggest the existence of measurable quantum effects in the hypersonic velocity of
liquid neon. In addition, an interesting change in slope of the velocity-versus-temperature
curve (of 17/0) is observed at 28'K.

I. INTRODUCTION

Although the technique of Brillouin scattering
has been widely used to study very-high-frequency
sound waves in liquids, scant information of this
type is available for simple monatomic liquids. '
Previous light scattering experiments on noble
liquids have been concerned with sound-velocity
behavior near temperatures of phase transition, '
rather than with possible effects due to frequency
dependence of the liquid's transport coefficients.

Such information is difficult to obtain and yet is
very important for further development of theories
of the dynamics of the liquid state. Some recent
theoretical work has indicated the possibility of
nonclassical behavior for very-high-frequency
sound waves (i. e., departure from the predictions
of the Navier-Stokes equations). Gillis and Puff'
have shown that for v &&u* (where &u

* is some
critical frequency in the liquid) sound waves propa-
gate at some velocity intermediate between the
adiabatic and the isothermal velocities, and that


