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A simple theory of evaporation from liquid He II is constructed, and it is used to analyze
the experimental results of Johnston and King on the velocity distribution of atoms evaporating
from He II at low temperatures. The theory suggests that rotons are responsible for shifting
the velocity distribution to energies = 1,5'K, in good agreement with experiment. However,
multiexcitation processes are needed to explain the complete velocity distribution at high
energies. We propose two new experiments that would test our model and provide new infor-
mation concerning excitations in liquid helium.

I. INTRODUCTION

Some time ago Johnston and King' ' reported
measurements of the velocity distribution of atoms
evaporating from liquid helium at 0. 59—0.7 K.
In all cases, the distributions were characteristic
of a source approximately 1' hotter than the liquid;
that is, they could be fit quite wellby a Maxwellian
distribution at an effective temperature Teff
= 1.5 —1.6'K. To date, these interesting results
with liquid helium have not received an adequate
theoretical explanation. '

In this paper, we show that the above results
have a plausible explanation in terms of a simple
theory of evaporation from He II at low tempera-
tures. We regard evaporation at low temperatures
as a quasiparticle tunneling process: Excitations
of suitable energies are annihilated near the liquid
surface, accompanied by the emission of a free
atom into the vacuum. Since in principle multi-
as well as single-excitation processes can provide
mechanisms for evaporation, we treat the tunneling
problem very generally in Sec. II. Using standard
methods of tunneling theory, 4 we obtain a general
expression for the total evaporation rate as a func-
tion of temperature in terms of certain correla-
tion functions describing properties of the liquid.
Without making detailed assumptions about the
evaporation mechanism, we find that the dominant
part of the evaporation rate varies as exp(p jkBT),
where JLt, = —7. 15'K is the chemical potential, T
is the absolute temperature, and kp is Boltz-
mann's constant.

More detailed results are obtained by consider-
ing a specific mechanism for evaporation. We
suggest that one can account for a significant frac-
tion of the total evaporation by the direct conver-
sion of single excitations into evaporated atoms.

Since it is very difficult to estimate the relevant
tunneling matrix elements from first principles,
we utilize a phase-space analysis. As shown in
Sec. III, phonons with energies~

~

p,
~

lead to an
energy distribution characteristic of a source at
temperature T =0.4'K. However, as a result of
their very high density of states, the rotons lead
to a highly peaked energy distribution for evapo-
rated atoms. Thepeak occurs at an energy Epeak
= (6+ p, ), with the minimum roton energy b
= 8.65'K. This is in good agreement with the
experimental results for T = 0.6 K. From phase
space considerations, we suggest that the roton
excitations will be more important than the pho-
nons, at least in the sense that they should cause
an energy distribution shifted to energies». 5 K.
Insofar as the peak in the energy distribution is
due to single roton processes, we find that the
dominant temperature dependence of the evapora-
tion rate at the peak is given by exp[ —6/AT] .
These conclusions, and the validity of our specific
assumptions, are discussed briefly.

In addition to the above results, we show in
Sec. IV that two important experiments are sug-
gested by our theory, If, as seems to be the case,
the peak in the energy distributions of evaporated
atoms at low temperatures is a measure of 6, then
a similar experiment with thin He.II films would
measure the value of (b, + p) in such systems. This
would constitute a valuable addition to existing in-
formation on the properties of He II films.

Moreover, assuming the general form of our
tunneling Hamiltonian to be correct, we show that
one would expect correlations in the arrival times
at a detector of evaporating He' atoms. That is,
if the number of atoms at the peak of the distribu-
tion is counted in a time interval & tr, where tr
is the roton lifetime, then one should find a count-
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ing rate described by Bose-Einstein statistics.
In effect, this would constitute an atomic analog of
a photon counting experiment. As such, it would

yield directly a good estimate of excitation life-
times at low temperatures.

(n —1) (n)

II. EVAPORATION AS A TUNNELING PROCESS Eq. (2. 5) can be written

We will treat evaporation semiphenomenologi-
cally, by assuming that the process is governed
by a Hamiltonian of the form

H=H +H +V, (2. 1)

where HI is the Hamiltonian of the liquid, Hg is
the free-particle Hamiltonian of the evaporated
atoms, and V is a standard4 tunneling interaction.
We write V in second-quantized notation

V=+ (s a +s a );
p p p p p

(2. 2)

(p, n )=(2w/k)(n +1)l(e "i- '
p p f

&I 5(z +e -e ") (24)
p z p i

If the liquid is in thermal equilibrium at temper-
ature T, the rate is given by

W (p, n )=Z f.W. (p, n ),em '
p . . i i-

Z, J
(2. 5)

where Pi = exp[(En —et( ))]/nkT is the canonical
occupation probability of state 4t(n). Defining

ap(ap t) denotes the annihilation (creation) opera-
tor for an evaporated atom of momentum p, and

is an operator which acts only on states of the
liquid. For now, we make no particular assump-
tion about the form of the operators (sp), apart
from the fact that they should describe the re-
moval of an atom from the liquid. In addition,
we do not need any explicit form for Hl.

With V treated in first-order perturbation
theory, the transition rate into the state p is giv-
en by

w. (p, n ) =( 2/e)l( n+l, c (n-1)
2 p p

(") I' „("-'),( )

p p z

(n)
4t denotes th~ initial state of the liquid contain-
ing n atoms, 4 " ) denotes the final state of the
liquid containing (n- 1) atoms, and the state p was
initially occupied by np atoms.
We may rewrite Eq. (2. 3)

W (p, n ) =(2m/k)(n +1)D (p, E ) .em '
p p p

' (2. 5)

D (j5, E) is related in an obvious way to thermo-
dynamic Green's functions'

fD (p, z)exp(-iEt/8)dz =Q P.
I

f
x &c' ls-IC' & I

exp'-i(e.(n —1) (n) . (n)

f p i

I
- (o) -(t) I c,.

(n) y (n)

=&s- (0)s-(t)&;
p p

(2. 7)

the brackets denote a thermal average.
Proceeding in a very similar way, we find that

the absorption rate for an atom of momentum q
is given by

W (q, n )=(2~/k)n D (q, Z ),abs '
q q

'
q

where fD (q, E)e dz =&s (t)s (0))
(-izt/e)

q q

(2. 8)

It follows directly from their definitions that

)
(tj E)/kT &

g (2. 9)

(p, o) = exp{(p, E)/kT)w -(p, 1). (2. 10)

We remark that in the temperature region where
the number of excitations in the liquid is much
less than the number of Particles, Wabs (P, 1) is
essentially temperature- independent. In prac-
tice, this occurs for T & 0. 7' K. Therefore, no
matter what processes take place when an inci-
dent atom is absorbed by the liquid, we would
expect the absorption probability to be tempera-
ture-independent in this region.

From Eq. (2. 10), the total rate is then obtained
by summing over all states

R =total rate =~ W (p, o) =e ~e p
tj. kT -E kT

p em p

(2. 11)

which is a statement of detailed balance. ' We now

specialize to the situation of experimental interest,
namely, evaporation into a vacuum. In this case,
we wish to calculate
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where L) (T) is presumably aslowlyvaryingfunction
of T, compared to e1"/bT. Eq. (2. 11) is our
basic expression for the evaporation rate. '

III. CONNECTION BETWEEN EXCITATIONS
AND EVAPORATION

We now wish to argue for a specific form for
the operators (sp) . In doing so, we must look
at the properties of He II in some detail.

It is an experimental fact that for temperatures
well below the X point, He II can be regarded as
a gas of weakly interacting excitations. The en-
ergy-versus-momentum curve of these excita-
tions is shown in Fig. 1. To understand their
relevance to evaporation, we must remember
that it takes a finite amount of energy to remove
an atom from the liquid. At low temperatures,
this binding energy is approximately 7. 15' K;
we show this energy as a dashed horizontal line
in Fig. 1. Thus, the problem is to ascertain the
way in which the energy of these excitations is
transfer red to evaporating atoms.

The simplest dynamical process that could
lead to evaporation is the annihilation of an ex-
citation near the liquid surface, accompanied by
the emission of a free atom. However, since we
require energies & ( p, ), Fig. 1 shows that only
rotons and high-energy phonons would contribute.
Nevertheless, we believe that such processes
should account for a significant fraction of the
total evaporation. In fact, reasonable support
for this conjecture comes from experimental re-
sults of neutron scattering from He II. ' It is
known that a substantial fraction of the inelastic
scattering is accounted for by the production of a
single excitation in the liquid. For wave vectors
q & 0. 6 A ', almostall the scattering takes place via

single phonon production. In the region of the ro-
ton minimum, Miller et al. ' estimate that about
60%%uo of the scattering is accounted for by roton pro-
duction. If we now imagine an experiment in which

. (t)=Z-„.
p k pkk (3. 1)

the ( b ] satisfy the usua. l boson commutation re-
lations k

[b b ] =6
p' q pq

—l 1Lt If
and the factor e expresses the fact that s

p
couples states of N and N- 1 particles. We then
find that

(s (t)s (0)) =Q ~X
~

exp[- ip, t/h](b (t)b (0)),
p p q pq q q

(3. 2)

and D'(p, Z)=Z ~~
~

G (q, Z L),
pq

(3. 3)

where G (q, ((L) =(2m) 'J e (b (t)b (0)) dt .

Therefore, the emission rate into the state p is
given by

W (p, o)= expOL -E )/I T)(2~/b)

X Q X~ G (k, E —1L).k pk '
p

(3.4)

cold He4 atoms are used as a probe instead of neu-
trons, then the neutron results would suggest that
a similar fraction of the absorbed atoms would cre-
ate single excitations. Since evaporation is essen-
tially the inverse of this process, we would then ex-
pect from detailed balance, [Eq. (2.10)], that our
single excitation mechanism accounts for roughly
50%%uo of the total evaporation. We will, therefore,
examine evaporation in the context of this assump-
tion.

Introducing the destruction operator bg for an
excitation of momentum 0, we write the operator
s in the form

p

20--

16—

(L—12
LLJ

4—
I

/
0'

0

)LLt] = 7. 15 K

1 (I 1

1.0 2.0
0

Momentum 0 (A )

Equation (3.4) is our formal expression for the
emission rate as a function of momentum. In the
absence of a detailed theory of the matrix elements
(X g], we will analyze the respective contributions
ot rotons and phonons to Wem(p) from phase-space
considerations.

If we regard phonons as having infinite lifetimes
at low temperatures, then we may write

G „(k,(d) = {I+f (&u) ].(2L() 6 ((d —ek),

where f ((d) =(e 8 1), '(d/0 T

FIG. 1. Experimental excitation spectrum of He II,
obtained by Henshaw and Woods (Qef. 7). The horizontal
dotted line at 8=7.15 'K represents the chemical poten-
tial, or binding energy per atom.

and c is the speed of sound in the liquid. Since we
need (d &

~ p, ~, it is clear that exp(~/kpT)» 1 at low
temperatures. Therefore, we may write
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G (k, (o) = (2m)6((o-ck)
pho non

with sufficient accuracy. We use this expression
to evaluate the phonon contribution to Eq. (3.4).
After replacing the matrix elements fX~k) by some
constant X, and converting the sum to an integral,
we find

W (P, o) 8» fdk(2~k')6(z —i -ck)(p, E )/k T
em p

W (E, o) ~ exp((p, —E)/k T)((E—p —&)'
em B

+-,' y') '" F( E), (3. 6)

where E(E)= —,
' y, for (E —p, —5) & 0,

We evaluate this integral in Appendix C. The re-
sult is

fe'&(E —V- e )dc
(p, -z )/k r

p

(P-EP)/AT(z )2 (3.6)

and F(z)=(2(z- q-~)' +-.' y2)»,
for (E —p, —A)&0 .

To obtain the emission rate into an energy inter-
val de around Ep, we multiply (3. 6) by the free-
particle density of states N(EP):

W (p, o)N(E )dz =constant
em

G t (P, ~) = ( 1+f(~)){y/[(~ -Ep)'+ wD

=y/[(u-E )'+ay'] (3. 7)

The energy-dependent part of (3.6) is shown as the
broad curve in Fig. 2. It can be seen that the pho-
non contribution resembles somewhat a thermal
distribution peaked at an energy = 0.4' K. This
analysis shows, therefore, that phonons alone
cannot account for the form of the distribution mea-
sured in Ref. 1. Rather, they can only lead to
appreciable evaporation at energies less than
1.5-1.O' K.

To evaluate the roton contribution to Wem(p),
we need to include explicitly the finite (but small)
roton linewidth. In the absence of the latter, the
infinite roton density of states at e»ton= ~ would
lead to a divergent result for Wem (p). Thus, as-
suming a Lorentzian line shape for rotons, we
may write

This distribution is the very narrow spike shown
in Fig. 2; we have chosen y/kz =0. 001'K as a rea-
sonable estimate of the roton linewidth for
T= 0. 6 K (cf. Appendix A). The roton contribu-
tion is seen to be sharply peaked at an energy
= 1.5 'K. This is a direct consequence of the very
high density of states of rotons for e-4. However,
single-roton processes do not account for the
major part of the evaporation at energies 4 1.5 K.
Nevertheless, our analysis suggests that, at least
for T = 0. 6 'K, the peak in the experimentally
measured velocity distribution is due to direct
conversion of rotons into evaporated atoms at the
surface of the liquid. %'e expect the rotons to
dominate near the peak because for T &0.6'K, there
are many more rotons available compared to high-
energy phonons. Even at T = 0.6 K, nr/nph-9,
where nr is the number density of rotons, and nph
is the number density of phonons with energies
~ V. 15 K. Thus, if the peak is due to single-

4)
O
O

V)

i
O

Ch

where y is an average roton linewidth. An approx-
imate theoretical calculation of y is given in Ap-
pendix A. With this Lorentzian line shape

.00 AO .80 1.20 1.60 2.00 240 2.80 3.20 5.60 4.00
E(K)

em rotons

(~ E)/k&T, d
(e- &) '"y

o n (E —p —~)'+ —,
' y'

FIG. 2. Broad curve is the evaporation rate due to
high-energy phonons [Eq. (3.6) j. The thin spike is the
rate due to rotons IEq. (3.8)]. Both curves frere cal-
culated for T=0.6'K, and the vertical scale of each is
in arbitrary units.
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roton processes, then our analysis leads to the
following predictions: (a) The energy of the peak
in the velocity distribution is given by E = ~+ p, .
(b) The evaporation rate into an energy interval
dE around E should have a temperature depend-
ence given essentially by exp[- &/kT].

Experiments that would test these predictions
are currently in progress. "

It is clear from our phase-space analysis that
much of the evaporation at high energies must be
due to multiexcitation processes. In order to esti-
mate graphically the contribution of the neglected
processes, we compare the experimental emission
rate with a linear superposition of the phonon-

roton contributions of Fig. 2; such a comparison
is shown in Fig. 3. The outer curve is a Max-
wellian distribution; W(E) =Ee E/~~Te, with Te
= 1.5 'K. The inner curve is the linear superposi-
tion, adjusted so that the height of the peak at
1.5 'K matches that of the Maxwellian. Again,
since this is a phase-space analysis, the curves
represent evaporation rates in arbitrary units.
Figure 3 thus suggests that approximately 65% of
the evaporation arises from multiexcitation pro-
cesses. Prominent among these are probably
roton-phonon interactions leading to evaporated
atoms. That is, one might be able to account for
more of the evaporation at energies - 1.5 'K by
processes in which a roton decays at the surface
of the liquid into a low-energy phonon and an evap-
orated atom. However, we have not investigated
this mechanism in detail. In addition, surface
excitations do exist, "and they undoubtedly play
some role as well. These, and other more com-
plicated processes become difficult to estimate
precisely. Nevertheless, we feel that our analysis

la
O

.00 40 .80 I.20 1.60 2.00 240 2.80 3.20 3.60 4.00
E ('K)

FIG. 3. Comparison of Maxwellian distribution at
1.5 K (outer curve) with linear combination of evapo-
ration rates at T=0.6'K due to phonons and rotons
(inner curve) . Vertical scale is in arbitrary units.

in terms of the simplest processes does offer a
reasonable explanation for the relative abundance
of evaporated atoms at energies - 1.5-1.6 'K.

IV. SUGGESTED EXPERIMENTS

On the basis of the preceding discussion, we
suggest two new experiments that would test our
model and provide new information concerning ex-
citations in liquid helium. The first would involve
repeating the Johnston-King experiment with thin
He II films. If, in a suitable temperature range,
the peak in the evaporation curve is due to single-
roton annihilation, then the value of the corre-
sponding energy at the peak will give the value of
(a+ p, ) for the film. Since p, can be obtained from
existing thermodynamic data, the value of 4 for
thin films could then be determined.

In addition, the general form of the interaction
Ha. miltonian [Eq. (2. 2)] suggests a novel extension
of photon counting experiments to the case of evap-
orating He4 atoms. One expects (cf. Appendix B)
that those atoms which are ejected due to the an-
nihilation of a roton will obey Bose-Einstein sta-
tistics. That is,

P~(n, t) = [n~(t)]n/[1+n (t)]"+

where I' t,(n, t) is the probability tha, t n atoms of
momentum k evaporated in a time interval t, and
n~(t) is the mean number of such atoms.

Equation (4. 1) is recognized as a Bose-Einstein
distribution; as such, it implies correlations in
the arrival times of He atoms at a detector. This
phenomenon, which was first observed by Hanbury
Brown and Twiss" with photon beams, is fully dis-
cussed in the literature. " The correlations can
be seen experimentally by measuring P k(2, t),
which is the probability that two evaporated atoms
of momentum k will be counted in a time interval
t. In the range of energies in which single-roton
processes give a large contribution to the evapora-
tion, Pk (2, t) will be twice as large as the value
expected from the Poisson statistics of random
events, provided t& (roton lifetime). At tempera-
tures for which the roton lifetime is approximately
10 '-10 ' sec (corresponding to a linewidth
=10 '-10 ' 'K), such a, correlation experiment
would be feasible. Apart from the intrinsic in-
terest of seeing "boson bunching" with He~ atoms
instead of photons, this experiment would pro-
vide a direct measure of the roton lifetime at
low temperatures.

The above experiment would tend to confirm
the assumptions of this model. To the extent
that Eq. (3. 1) is valid, the above correlation
effect is a rigorous result. That is, it can be
obtained as an exact solution to the equations of
motion for the system.
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V. CONCLUSIONS

We have shown in the preceding sections that
evaporation from superfluid helium can be treated
as a quasiparticle tunneling process. Our calcula-
tion of the evaporation rate from phase-space con-
siderations, although not complete, does suggest
a plausible explanation of the experimental re-
sults of Johnston and King. In addition, it suggests
that evaporation can serve as a useful tool for in-
vestigating rotons in He II. Toward this end, we
feel that our approach offers a useful starting
point for more detailed calculations.
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second order, and the second term contributes in
first order. The relevant matrix elements are
given by

l

.
) p (p,'q,'l v, ln)(nl v, lp,q,) ( /2 )

x (q„q,') '"([p, 'q, q,'(m ~ n)(m ~ n')

+P,'q, 'q'(m n)(n n')][(cq, ) '

+ (m ~ n)'/2p. ,c'] + [- (cq,') '+ (m ~ n')'/2p, c']

x Q, 'q, q,'(m ~ n) (m ~ n') —P,q, (q', )'(m ~ n') (n ~ n') ]]

x 5 (P, + q, —p', —q,')

APPENDIX A

V=-,'(p v+v p)+-,', + — ' [&p(r)]~P' ~o ~Po

=—Vl+ V2 (Al)

where p is the roton momentum, v is the velocity
field associated with a long-wavelength phonon;
p„h, and po are parameters characterizing the
roton spectrum; and bp(r) is the density fluctua-
tion associated with the phonon. In this quantum
hydrodynamic approach, bp(r) and v(r) are re-
lated to the phonon creation and destruction opera-
tors (b+, b ) byk' k

~ ~jk ~ r g -ik ~ r
bp(r) =Q-(b-e +b- e )k

We indicate here the essential steps in a calcula-
tion of the roton lifetime at low temperatures. For
T & 1, the dominant processes leading to a finite
roton lifetime are roton-phonon collisions. Follow-
ing Landau and Khalatnikov, "~ ", we assume that
the relevant interaction is given by

(A4)
x 5 (II, + q, —IY,

' —q, ) =-A (q,q,')"' ~ (P, + q, —
9& ) .

In (A3) and (A4), we have set lp, l
=p, ; m is a

unit vector in the direction of the initial roton, and
likewise n and n refer to the incident and scattered
phonon, respectively. In addition, since the pro-
cess is similar to the scattering of a light particle
by a heavy one, the direction of the roton, and the
energy of the phonon, are left practically unchanged.
This is reflected in the simplified form of the ma-
trix elements given in (A2).

The lifetime is now obtained by averaging over
the incident phonon momentum, and summing over
final states

'=(2~/@) J [e x(pcq, &/T) —I]l(fIV, +&, li)
l

xb[cqx —cqi-(Pi'-po)'/2po](2vh) 'dq, dq, dp, . (A5)

Substituting (A3) and (A4) into (A5), and letting

~[cq,—cq,
'

(P,' P, )'/2p. ,] = ~-[cq,—-cq,'],
ik ~ r 't —ik ~ r

)
(A2)

v(k) =(ck/pp)bk, p, is the uniform liquid density,
c is the speed of sound in the liquid, and

we find the result of the integration to be

-' = (b'c)-'5!P(7)[u T/c]'

x f&'+ (b./p. )'[0./p. c)'+ 2]], (A6)

[b, b ]=6k' p kp

For the scattering process pl+ql-pl/+q/l in which

p, (p', ) refers to the initial (final) roton and q~(q4')
refers to the initial (final) phonon, the first term
on the right-hand side of (Al) contributes only in

where g(7) is the Riemann g function. Expressing
this as an energy width in 'K, and evaluating it
for T = 0. 6 K, we find

be =(b/b )7 '=4x10 4'K.
roton b roton
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Since this kind of calculation is probably accurate
only to a power of 10, the above number is only
a guide, but nevertheless a useful one.

APPENDIX 8

Systems of coupled oscillators have been well
studied in the context of radiation theory and pho-
ton statistics. ' For the sake of completeness,
however, we will outline here the proof of the re-
sult stated in Sec. IV. Furthermore, to reduce
the algebra, we will treat a simpler version of our
Hamiltonian; this involves no loss of generality,
and it enables us to see the point clearly.

We consider two coupled oscillator modes de-
scribed by the Hamiltonian

ff = nb b + eaa+ X(a b + ab ); (al)

the operators (a, a ) describe an evaporated atom,
and the (b, b ) describe an excitation in the liquid.
We introduce the coherent states In& of an oscil-
lator "defined by

a ln& = n ln&,

and given by ln& =e
l
0)

p(0) =z "fd p I p& lo&&ol&plP(p)

where P(P) is the appropriate statistical weight,
and the integration is over the two-dimensional
complex P plane. The time evolution of the sys-
tem is then described by

p(t) =e P(0)e P(0)e

To evaluate this, we make use of a theorem due to
Glauber, "which states that for the kind of Hamil-
tonian we are considering, a state which is initial-
ly coherent remains coherent in time. Thus the
state given by

The parameter z is an arbitrary complex number,
and aI 0& = 0. If, at time t=o, the b mode is in ther-
mal equilibrium, and the a mode is in its ground'.

state, we can write the initial statistical operator
for the system in the form

i S „=en (t) +y p(t),

iS —=&up(t)+yn(t) .dp
dt

These have the solution"

n(t) = p(t)n (0) +)(t)p(o),

p{t) = ~(t)n(0)+n(t)p(o),

where p, , g, v, and g are coefficients whose explicit
form we do not need. In our problem, n(0) =0,
and P(0) is arbitrary. For a thermal ensemble,

P(p) -f(~ ) [t-'(~)-I]exp(l p I' [f(~)- I]], (as)

f ( )
-(g/kI3Twith

Using (al), we may calculate the probability that
the gas contains n atoms at time t

P(n, t) =&b&n, b
l
p(t) ln b&

and we sum over all b states. This gives

P (t) =f (~)[f '((o) -1]'[C(t)] /[1-f ((u)+t'(t)j

However, defining
(as)

n(t) = Tr(p(t)a a},

we find n(t) = [g(t)]'/[I- f (~)] .

This enables us to rewrite P(n, t) as

P(n, t) = [n(t)] /[1+n(t)]

This we recognize as the result characteristic of
Bose-Einstein statistics, and it implies the corre-
lations first observed by Ha.nbury Brown and
Twiss. "The generalization of this derivation to
the case of an arbitrary set of (b& ] and (ai) is
straightforward. Moreover, if a given mode Aj
has a natural lifetime, then our above result is
essentially correct for time t&(excitation life-
time). For t» the lifetime, poisson statistics
are reproduced.

APPENDIX C

le(0)& = lo& Ip&

evolves in time as I4(t)& = ln(t)& lP(t) ), where
n(t) and p(t) are easily calculated in terms of n(0)
and P(0). It then follows that:

p(t) = (w)
' J d'p P(p) ln(t)&

l
p(t ))(p(t) l(n(t) l. (a4)

We wish to evaluate the integral

1(Z) = f de(e-n) '" —, , (Cl)

With the substitution e —h=y', (Cl) becomes

f(E) = (2a)j dy [a'+ (E- p- a-y')'] '

Now, n(t) and P(t) satisfy the coupled equations =af dy [a'+(k-y')'j ', (c2)
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where g =E-p, -A.

i86H YMAN, SCULLY, AND WIDOM

i i
»», '"(».-», ) (-&»,"')(».-")I

The denominator in the integrand of (C2) can be
factored into the form

(y +zi'")(y —z, '")(y+ z,'")(y —z,'"),
where z~ ~ =( +$0.

Therefore, (C2) is readily evaluated as a con-
tour integral, in which the path encloses the upper-
half g plane

f(g) —$ g[(z ~ z &/~)(z z &/&)(z + z &/&)(z z &/&)]-&-dz

(C2)

The positions of the poles of the integrand depend
on the sign of g. For g &0, gz, and (-)/zz) are in
the upper-half z plane. We then obtain

=g(a'+g') ' ' cos-,'[tan '(a/g)]

( /g2 )(g2 2~2)1/2(g2 ~ )2)-3/4

f(E) = a(2') i
28] 83 Zg a», "'(»,—», )I

=-7)(a'+g') '/4 sin —,'[tan '(a/g)]

=(m/v'2) a(a'+g') "'.
It is clear that the two contributions are equal for
f =0, as they should be.

For r& 0, fz, and vzz are in the upper-half z plane.
Therefore,
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