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The thermodynamic properties of nonideal or interacting gases are studied using a thermo-
dynamically consistent method which derives a state function for the gas from a separable
Hamiltonian for the many-body system. The state function —the Helmholtz free energy-
is a sum of translational, configurational, and internal components, and the statistical equi-
librium state is calculated on a computer by minimizing the free energy in composition space
at a given volume and temperature. A series of free-energy models is constructed to investi-
gate the effects of various interactions. The effects on the equilibrium state of including
Fermi-Dirac statistics in the translational free energy is shown to be small, while Coulomb
and excluded-volume configurational terms produce large thermodynamic effects. The most
important interaction effect, the modification of the internal partition function, is studied using
a free-atom model and a confined-atom model which introduces volume- and temperature-
dependent energy eigenvalues and partition-function sum terminations. The free-energy mini-
mization method is shown to be a versatile and efficient tool for studying interacting gases,
and provides quantitative estimates of the limits of validity of the various interaction models.

1. INTRODUCTION

This paper presents the initial results of a sys-
tematic study of the thermodynamic properties of
nonideal multicomponent mixtures of gases. In
astrophysical problems, among others, one re-
quires the calculation of dissociation and ioniza-
tion equilibria and associated thermodynamic prop-
erties, such as pressures, internal energies, and
specific heats, over a very wide range of temper-
atures and densities for mixtures of gases con-
taining a variety of species. A number of physi-
cal effects enter the theory of gases at various
density-temperature regions, including degener-
acy effects, Coulomb interactions of free charges,
ionization potential lowering, pressure dissocia, —

tion and ionization, excluded volume effects, and
bound-state level shifts and broadening. A vari-
ety of theoretical models has been developed to
describe these effects to some degree of accuracy
in various (p, T) regions. The general problem
is quite complex, and even single aspects such as
the Coulomb interaction in a fully ionized gas have
no rigorous theoretical results of general validity.

The present study extends the theoretical format
and numerical procedure originated by Harris, '~'
which has the advantage of obtaining thermodynam-
ic consistency by defining the many-body system
in terms of a unique total partition function (or
equivalent Helmholtz free energy) and determin-
ing numerically from this fundamental state func-
tion, the statistical equilibrium state and the ther-

modynamic properties. Other advantages of this
free-energy minimization method are that it allows
treatment of all nonideal effects simultaneously
a,nd readily incorporates systematic theoretical
improvements of a specific nonideal term. It han-
dles arbitrarily complex chemical mixtures, and
by monitoring various interaction parameters, can
determine the limits ot validity of the various ap-
proximate nonideal models being used in the cal-
culation.

In the following sections, we first define the
thermodynamic formalism and numerical methods,
and then proceed to analyze various free-energy
models. The effect of incorporating Fermi-Dirac
statistics is presented, then a detailed comparison
is made of the internal partition function for free
and confined atoms. Two configurational terms
are studied; the Coulomb interaction in a simple
form, and a high-order theory for the excluded
volume effect of a hard-sphere mixture.

2. THERMODYNAMIC FORMALISM AND
NUMERICAL METHOD

For a physical system of specified particle num-
bers fN;), volume V, and temperature T, an ap-
propriate description of the statistical ensemble
is given by the canonical partition function &~ or
by its associated thermodynamic potential, the
Helmholtz free energy I'. The partition function
is defined in terms of a phase integral containing
a many-body Hamiltonian of the form
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(2. I)

the internal potential given by a screened nuclear
C oulomb potential.

Once the state function of the system has been
specified, all the thermodynamic properties of
the gas are immediately derivable. If the total
partition function of the system is factorizable,
as in (2. 2), then the free energy may be written
as the sum of three types of terms:

where U(Ff ) is the many-body interaction poten-
tial, the momentum and potential functions being
assumed to be uncoupled. This leads to a factor-
izable many-body partition function, having trans-
lational, configurational, and internal factors,

N
x —,j j exp[-pU(F, F2, . . . , FN)].&ldr.

x g g. exp(-PE. ) = Z Z . Z.j trans conf ig int'
(2. 2)

where P =kT '. —

The translational term reduces to a product of
K one-body terms, and it is possible to reduce
the intractability of the general configurational
term by making certain assumptions, for example,
that U=—0 (the ideal gas), or that

U(F, r, . . . , FN)= Q u(F., F.).
i&j

Here an N-body interaction potential is replaced
by a sum of —,'N(N-I) pair potentials. This con-
figurational potential will be called an external
potential to emphasize its interparticle nature.

The internal partition function includes the sum
over all bound levels, whose energy eigenvalues
are determined by solving a Schrodinger's equa-
tion for ea,ch bound system. The internal Hamil-
tonian also has a potential term ~(FI, .. . , rN,
pl, . . . , pN) which is represented by the Coulomb
potential of the nucleus (independent of rz, pz), as
modified by perturbations (functions of r;, p). In

general, the internal potential lt(rf, p;) should rep-
resent an atomic system whose properties are
consistent with the interparticle potential U(r, p. )
that describes the interaction between other par-
ticles and the bound system. An example of a con-
sistent set of internal potentials in the ideal gas,
where the external potential is assumed to be ze-
ro and the internal potential is the unperturbed
Coulomb potential of the nucleus (the free or iso-
lated atom model). Another example is the Cou-
lomb gas, the external potential being the screened
.Coulomb potential between charged particles, and

(2. 3)

The condition of thermodynamic equilibrium re-
quires that for a system at specified volume V and
temperature T; the free energy must be a mini-
mum. The equilibrium state is determined by
minimizing the free energy with respect to the
particle numbers (Nf); subject to the stoichiomet-
ric constraints. If F is expressible as an analytic
differentiable form, these equations can be solved
by differentiating F with respect to (Nf) and form-
ing a set of simultaneous nonlinear equations in
fN;j, V, and T, the equilibrium composition equa-
tions. This set is generally solved iteratively for
the equilibrium values of (N;), and the thermody-
namic properties then are evaluated. The follow-
ing schematic representation defines the quantities
of interest and summarizes the procedure:

(i) Definition of model:

F = F (fN .), V, T).

(ii) Determination of equilibrium state by minimi-
zation of F:

. {N. . ).equil i equil

(iii) Calculation of thermodynamic properties:

.=-( ::"')„
equil

=-("';"").
equil

where vij is the stoichiometric matrix, and P and
8 are pressure and entropy. The particle number
is replaced in the calculations by X = Nf/No (Np
is Avogadro' s number), which is the number of
particles per initial particle or the mole number.
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In practice, this scheme is not trivial even for
the simplest real systems such as the ideal (non-
interacting) classical gas. This system results
in a set of nonlinear equilibrium equations, the
Saha equations, which must be solved iteratively.
In addition, the internal free energy is generally
approximated as a ground-state term only, with
temperature-dependent corrections to account for
excited- state contributions. Introducing various
nonideal terms into the state function, F greatly
increases the difficulty of obtaining approximate
analytic solutions .

Using the free energy to specify the many-body
system and to derive the full thermodynamic des-
cription of the gas has several advantages. First,
the method is thermodynamically consistent, and
by definition satisfies all the thermodynamic rela-
tions. It admits of a modular approach, allowing
successive models of many-body systems to be
introduced and evaluated by a standard procedure.
The method contains internal checks for validity
of the various models, and by calculating interac-
tion parameters which characterize various non-
ideal effects, we can delinate regions of validity
for the various models.

The method used to find the minimum of the free
energy of the system by means of a digitalcomput-
er is similar to that described by Harris. '~' The
various contributions to the free energy are ob-
tained through a series of subroutine calls. Ana-
lytic expressions are used where they exist, other-
wise high-accuracy (6-8 place) fits are made to
numerical evaluations of complicated integrals.
The complexity of the internal partition function
leads to a relatively long computation time; there-
fore, a table is generated from which intermediate
values are obtained by a bivariate La Grange inter-
polation. The procedure is to start with an arbi-
trary choice of the equilibrium composition (¹~)
at a given (V, 7) and to make a series of small
changes in the composition through the stoichj. o-
metric equations. The size and direction of the
shift that is made with a particular equation is
determined by the free-energy change with re-
spect to the previous cycle. The procedure is
similar to the method of steepest decents. Two
criteria are used to determine when equilibrium
has been reached. First, all possible changes
in the partial molar concentrations of magnitude
~x =10 4 increase the free energy. Second, an
independent initial composition is chosen and the
system is required to return to the same equilib-
rium composition to within Ex' (usually 10 ').

After the equilibrium composition is obtained,
the equation of state and thermal properties are
calculated by evaluating the appropriate partial
derivatives of the free energy.

3. EFFECTS OF FERMI-DIRAC STATISTICS

If interactions between gas particles are as-
sumed negligible, the Helmholtz free energy of

an ideal classical gas at temperature T and vol-
ume V is given by

k TkZ=. (ln (k k ) +1)

- kTQ.N.Z.(T)-—VT~,
'E Z 3c

where N; is the number of particles of type i, mi
is the mass, gi is the spin statistical weight,
Z~(T) is the internal partition function, o is the
Stefan-Boltzmann constant, and c is the velocity
of light. The first term in (3.1) is the free en-
ergy of a noninteracting gas of point particles Fy.
The next term F„ is the free energy due to inter-
nal structure (to be discussed in Sec. 4) and the
last term F„ is the free energy due to the photon
gas, which is important at high temperatures.

At low temperatures or high densities, the ef-
fects of Fermi statistics become important, yet
it has long been known3 that inclusion of Fermi-
Dirac (FD) statistics at high densities fails to re-
move the shift to neutrality of the classical equi-
librium equations. To see the effect of treating
the fermions rigorously (considering regions
where only electrons need to be treated by quan-
tum statistics), the free energy of the electrons,
rather than being represented by a term of the
form of F„will be given by

where 6 (&)-=,„)
The parameter &i which characterizes the degen-
eracy is the chemical potential divided by kT for
the species i and is determined through the rela-
tion

(3.4)

In the classical limit (f-0 or «& —1), the ex-
pression for E3 reduces to the same form as F,.
However, F, increases more rapidly than F, as
a function of f (both are monotonic increasing
functions of f) and the difference between the two
becomes quite noticeable for f)1 (o.') 0). The
effect of the Fermi-Dirac statistics is therefore
to increase the free energy for a given composi-
tion V and T above what it would be in the case
of classical statistics. The composition shifts
to minimize the free energy at equilibrium, and
since F, is monotonic increasing in Ne, the equi-
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librium shifts in the direction of smaller Nz or,
in other words, toward neutralization. A de-
crease in the volume increases f and causes a
shift toward equilibrium in the case of either
classical or quantum statistics, but the effect is
more pronounced in the quantum case. This sup-
pression of ionization due to degeneracy of the
free electrons is expected because of the reduced
volume in phase space available to free electrons
caused by operation of the exclusion principle.

By minimizing the free energy of the system,
a set of coupled equilibrium concentration equa-
tions can be derived for the system. The result
is a Fermi-modified Saha equation for the i th
stage of ionization,

N. Z.(T)
(3.5)

In the classical limit (ne« —I), using (3.4) and
the asymptotic approximation

e '=[Fl 2(& )], (3.5)

Equation (3. 5) reduces to the standard Saha equa-
tion.

The addition of degeneracy to the classical equi-
librium equation is seen to have two features: It
predicts lowered ionization relative to the classi-
cal result, and it modifies the classical result by
at most a few percent. At sufficiently low vol-
ume, both models predict a complete shift to neu-
tral atoms and then to molecules. Although inclu-
sion of Fermi statistics is critical to the accuracy
of the thermodynamic properties at low volume,
by itself this effect predicts an incorrect equilib-
rium state.

The pressure due to the electrons can be shown
to be

P3= (N kT/V)[F3 (a )IF 2(o' )J, (3.7)

a monotonic increasing function of N~, which is
larger than the corresponding case for classical
statistics for a given Nz, V, and T. It is worth-
while to note, in practice, I' is very little affect-

3.
ed by the statistics in the region where the gas
is partially ionized because the effects of having
less electrons but greater pressure per electron
nearly compensate for each other. Where the
gas is fully or nearly fully ionized, however, the
statistics cause an appreciable increase in the
pressure.

Using the free-energy minimization method,
equilibrium calculations were performed for an
ideal hydrogen gas, using both Maxwell-Boltz-

4. NONIDEAL ELECTRONIC EFFECTS FROM
BOUND-STATE PERTURBATIONS

The calculation of equilibrium composition in a
reactive system depends on the internal partition
function of the ensemble of bound states. For an
arbitrary mixture of molecules, molecular ions,
atoms, and ions, this function is mathematically
complicated and depends upon a great number of
specific pieces of physical data. The eigenstates
of the bound system are determined from experi-
ment or from solution of Schrodinger's equation
which contains the multiparticle internal potential
&(rg, i;).

A fundamental requirement for the internal mo-
del of a bound system is that the potential in the
wave equation be consistent with the physical
behavior of the system as described by the con-
figuration terms. As an example, if a system
of strongly ionized gas includes a Coulomb-inter-
action configurational free energy, it is logical
to require the internal states to experience that
same Coulomb potential which the free charges
obey. Or, if a gas has many bound systems,
whose available volume is modified by some hard-
sphere approximation in the configurational free
energy, it would be consistent to include an atomic
system whose eigenstates correspond to a very
stiff or hard core with no interpenetration of the
outer orbitals of neighboring atoms. What is in-
consistent is to include large configurational
effects while assuming the electronic bound states
are unperturbed.

Let us now describe two basic theoretical models
which represent bound-state systems in a gas.
These models are the isolated or free atom and
the confined atom. The isolated one-electron
atom is defined by a potential function

e(~) = —Ze'/~, 0 & ~ & ~. (4. I)

The resultant hydrogenic eigenstates have I-
degenerate energy eigenvalues which are indepen-
dent of the state variables U and T. These elec-
tronic energies of the isolated atom (IA) are then

mann (MB) and FD statistics, which numerically
reproduced the theoretical conclusions reviewed
above. The numerical methods for computing the
FD integrals involve use of highly accurate analy-
tic fits valid for any value of n. A high degree of
accuracy is necessary since the free-energy sur-
face near the minimum typically has variations of
1 part in 10', so that numerical errors in the free-
energy expressions, which are greater than this,
can lead to erroneous equilibrium results. For
all the following free-energy models, the ideal-
gas terms include MB statistics for classical
particles and FD statistics for all fermions.
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used in the internal partition function for the
system,

g = (2S.+l) Q g.e ~(Z .„Z ),~ ~ ~ ~j vib rot '
j=1

(4. 2)

where Si is the nuclear spin of species i, gj is
the electronic-state statistical weight, and Zvib
x Zrot represents the partition function for vibra-
tion and rotation of the molecular species. The
corresponding free energy is

E = —kT ZN 1n,(Z.. ) (4. 3)

e(~) = —ze'/r, 05 7'&Xo,

'7& Vo,

(4.4)

and is simply a hydrogenic atom confined in a
spherical cell of radius x, with hard walls. This
model, developed by Harris et al. ,

' approximates
a one-electron atom which is confined to a spheri-
cal region of mean radius r, by hard-sphere inter-
actions with neighboring bound systems, whose

The termination of the free-atom electronic
partition function is generally determined by
either an ad hoc criterion resulting from some
physical model, or by computational convenience.
Given an internal partition function of this type,
one can use the resultant isolated atom internal
free energy to compute the Saha-Boltzmann
equilibr ium compos ition equations.

The central problem of thermodynamic equili-
brium at high density lies in the consistent deter-
mination of the density and temperature depen-
dence of the perturbed electronic energy levels
and of the partition function cutoff. These related
problems have been treated by various ad koc
approaches, ' since the exact solutions require the
knowledge of the many-body interparticle poten-
tials and the corresponding solutions to the rnany-

body wave equation for all species of the system
(both multielectron and multiatom species). Com-
putationally, this problem exceeds current cap-
abilities. However, it is possible to introduce an

approximate atomic potential into the Hamiltonian

and proceed to evaluate the equilibrium in a
thermodynamically consistent manner. This re-
moves the inaccuracies of putting ad hoc approxi-
mations such as energy level shifts and level cut-
offs into the system without including them as an

integral part of the thermodynamic-state function.
The confined atom model (CA) of a perturbed

atom is more consistent with the various config-
urational effects discussed below than is the IA

model. The confined atom potential is given by

outer electronic orbitals are noninterpenetrating.
The primary requirements of a perturbed atom

are that the atomic properties of the system be
consistent with its external characteristics (its
interaction with other systems). Since this model
assumes that atomic interactions appear on the
average to create an effectively hard boundary
through nearest-neighbor interactions, the atomic
eigenstates should exhibit this hard-core behavior.

The confined hydrogenic atom Schrodinger eq-
uation' has as radial eigenfunctions the confluent
hypergeometric functions. The resultant energy
eigenvalues are dependent on the cell radius x„
and the l degeneracy of the electronic levels is
destroyed, highest E states lying lowest in energy.
There is a minimum value of x, for which each
e, l state changes from real eigenvalues through
zero to imaginary eigenvalues, which can be
interpreted as the transition from states of nega-
tive energy (bound) to states of positive energy
(free) leading to a cutoff position for the two-
particle bound state.

The first six energy eigenvalues for thehydrogen
atom in the CA model are given in Fig. 1. The
characteristics of this model are that it closely
approximates the isolated atom even when r, is

0
as small as a few A. Then the energy increases
very rapidly with decreasing tuntil it 'reaches
zero at some specific value r, (n, l), the cutoff
radius for that level. It is apparent that this
model is an extreme version of the nonideal atom,
exhibiting very little perturbation until near the
cutoff and then showing a rapid and large change.
One would expect this to produce a much more
abrupt behavior in the thermodynamic properties
than a more long-range perturbation.

The internal structure of the confined atom is
in fact reasonably consistent with the physical
features of its external interaction. The very
steep radius dependence of Ez~ exhibited in Fig. 1
indicates that such a system would be a very hard
or incompressible atom. This feature corres-
ponds to the sharp cell boundary produced by the
confining effect of the neighboring atoms, and is
also consistent with a hard-sphere configurational
term (an excluded volume effect), a feature later
incorporated in the model.

While the confined atom internal partition func-
tion is consistent with the external potential of a
hard-sphere gas, it has several deficiencies
which lessen its applicability. First, it is not a
close approximation to the perturbation produced
by the Coulomb potential of the charged particles
present in the system. This perturbation is do-
minant in the region of strong ionization, and is
a longer-range effect' with a more gradual r de-
pendence and a much smaller range for destruc-
tion of the ground state (0.445 A versus 0. 97 A).
Further, the / inversion of the levels is the re-
verse of the Coulomb perturbation which produces
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FIG. 1. Energy levels for the
confined atom (CA) model of
bound states of the H atom and

H2 molecule. At large values
of atomic cell radius, the CA

energies approach the isolated-
atom (IA) values.
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level separation with lowest l levels lying lowest
in energy. The CA energy eigenvalues, thus, only
crudely approximate the Coulomb level shifts in
the atoms present in the high-temperature gas.

At low temperatures, the model is more realis-
tic, but another problem is present. The CA po-
tential corresponds to an unperturbed hydrogenic
potential with a boundary condition that the radial
eigenfunction for all levels vanish at x, (rather
than at ~ as in the isolated atom). In the high-
density low-temperature limit, one expects to
reach a metallic state where periodic boundary
conditions apply, a feature not present in the cur-
rent CA model. This limits the present model at
high density to the high-temperature region, where
a fully ionized dense plasma is the final state.

The partition function cutoff, or maximum num-
ber of bound states nmax(ro), resulting from
counting the number of bound states allowable
in a cell of radius r„ is plotted for hydrogen in
Fig. 2. The cutoff positions are shown for 24
states of the H atom, the l values being reversed
for each energy value of n. The 1s state is much
more stable than the next most stable state 2P.

The CA internal partition function and free
energy are given by

z.. '
E. = Z. , B f(V, T) = E.(~),jn' 0 ' i (4. 7)

where the sum is over all j electrons, n is the

states.
Since the CA exact results apply only to one-

electron systems, some method must be devised
to extend the model to multielectron and multi-
atom (molecular) systems. This has been done in
a modified version of Harris's method' by replacing
the actual multielectron orbitals with a set of one-
electron CA orbitals. The method used by Harris
normalized the energy levels only, and the result-
ant atomic and molecular radii for multielectron
systems varied widely from measured values.
For example, the H, molecule resulting from an
energy normalization of the ground-state orbitals
has a smaller cutoff radius than the H atom, with
the result that pressure ionization occurred at
lower densities than pressure dissociation. To
eliminate this feature, the resultant combined CA
orbitals are normalized to free-atom (unperturbed)
values by requiring both the atomic energies and
radii to be equivalent. First, the total energy of
the system is equated to the measured or com-
puted free-atom energies

nmax(V, T) —pE. (V, T)x Z g. e j ' (&. & ), (45)

(4. 6)

where E. (V, T) are the CA perturbed energy levels
and nm~(U, T) is the maximum number of bound

20

$12

0
10 10

Particle radius —A

10

FIG. 2. Number of bound

states in the CA model for
H, H, and H~, representing
the cutoff of the sum over
states for this form of the
internal partition function.
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unperturbed energy eigenvalue, A, is the Rydberg.
&ij is the effective nuclear charge for species i
and electron j,f(V, T) represents the functional
form of the CA energy eigenvalue dependence on
V and T, and Ei (~) is the experimental or com-
puted energy of the isolated-atom eigenstate.

For the outer electron (imax), the ground-state
orbital (j = 1) must be normalized to the effective
radius of the atom, of mass number Ai. This is
done by setting

(H)
(A. ) =

imax, j =1
(A. )expt i (4. 8)

where r, (H) is the cutoff radius for the n, f level
in the H atom. The actual radius is obtained
from experimental values, or from the actual
electronic charge- density distributions computed
for the free atom of type Ai, in the HFS method. '
By thus normalizing the multielectron CA atomic
orbitals, the resultant CA model has exactly the
isolated-atom energies and radii for large ~,.
The results of this procedure are shown in Figs.
1 and 2. In Fig. 1, the energy levels of the CA
model of H, are shown, having the same qualita-
tive behavior as the H eigenvalues, and repro-
ducing the free-molecule system at larger ro. In
Fig. 2, the maximum number of bound states is
given for H, and H in the CA model. The mole-
cules show a much closer spacing of nmax in x,
space, where the H ion is closer to the H atom
in its x, dependence. The values of x, for the
four-bound systems are:

Species

H

H

H,
H+

Ground state

1s
(1s)'
1sa, 1sv
1SO'

r, (A)

0. 97
2. 05
l. 48
2. 12

The computational data for the internal free en-
ergy E, consists of the CA eigenvalues for 83
states, and for each type of particle, the charge,
mass, electron number, total number of states,
statistical weight, and effective nuclear charge for
each state, and all necessary molecular data.
The FMIN code then calculates the internal par-
tition function for each species for a range of
x, (10' A to r,c) and T(0. 01—10' eV) and the re-
sultant E, values are tabulated. The actual cal-
culation of tne total E, is carried out by perform-
ing a high-order interpolation in the E, table for
each species. The value of T is directly available,
and the value of r, is dependent on {xij and V.

The physical effect represented by the CA model
is the confinement of a bound system by the pre-
sence of its neighbors, which act to confine it to
an average spherical volume of radius x,. Each
species is given that proportion of the total volume

available to the entire system which equals the
ratio of its actual hard-sphere volume to the total
hard-sphere volume of all bound species. Elec-
trons and bare nuclei are assigned zero excluded
volume.

Given the atomic radii (rp )i, composition set
(x;], V, and T, one computes (rp)i for each spe-
cies and then finds the corresponding internal
free energy E, in xo, T space.

In this study, the basic hydrogen-gas system
contains six components: H, (32 states, 6 multiply
excited), H2+ (3states), H (4 states, 2 doubly-
excited states theoretically predicted), H (83
states), H+, and e . Defining two total free-en-
ergy models as the isolated atom (IA) and con-
fined atom (CA) models,

E =E+E +E +EIA IA (4. 10)

CA CA (4. 11)

where E, is the free energy of the noninteracting
Maxwellian particles [the first term in Eq. (3. 1)],
F, is the free energy of the fermions [Eq. (3.2)],
F, is the free energy of the photon as [third
term in (3. 1)], while F, and F, are internal
free energies iven by Eqs. (4. 3) and (4. 6). The
equation for F is the model of the ideal gas with
FD statistics included, while E is the model
of the nonideal gas with CA bound-state pertur-
bations.

Using the six-component hydrogen gas and the
FMIN code, the resultant equilibrium composi-
tions are shown in Fig. 3. The behavior of the
two models is identical at high volume, both pre-
dicting complete dissociation and ionization at
the highest V values. As V decreases, the equili-
brium shifts toward large clusters, recombination
at higher temperatures, and association at lower
temperatures. Here, the models predict increas-
ingly different results, the CA model giving, at
first, slightly enhanced ionization above the IA
results. Then, in the region 0.05-0. 1 cm ',
pressure dissociation is observed in the CA model
results at 0. 5 eV. From 10 ' cm ' to very small
volumes, progressively complete pressure ioniza-
tion occurs in the CA model at all temperatures.
Conversely, the IA model predicts at high density,
complete recombination and, at low temperatures,
complete association. The significance of this
comparison is that a thermodynamically consis-
tent equilibrium state can be produced using the
CA model to represent the bound-state pertur-
bation. No configurational nonideal terms can do
this in a consistent manner, and in fact none are
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FIG. 3. Equilibrium composition for hydrogen as a
function of V . This variable is chosen because it
contains the value of the independent-state variable V,
while being proportional to the physical variable p,
mass density (V = p/m0, where mo is the mass of the
initial composition of 1 mole of H2, 2.01 g). The equi-
librium composition is defined here as total particle
number divided by Avogadro's number, which also is
the total mole number N/No=xt . The two free-energy
models illustrated here include the internal paritition
function for the isolated and the confined atom.

(BP,
( B V {N.), T

needed to achieve the correct composition in the
high-density limit. The equilibrium composition
results of the CA model are not exact due to omis-
sion of the configurational terms, but they do re-
present a qualitatively correct picture of bound-
state perturbations by neighboring bound systems
in the high-temperature and high-density limit.

The resultant pressure equation of state is
illustrated in Fig. 4. The partial pressures (de-
fined here as the negative volume derivative of
the various F terms) produced with the IA model
are everywhere the perfect gas pressure (not
plotted). Since it predicts recombination before
electron degeneracy becomes significant, the
inclusion of FD effects in I', has a negligible effect
on the thermodynamic properties.

The partial pressures computed with the CA mo-
del show a variety of effects. At low densities,
the pressures are nearly equal to the perfect gas
pressures, but as the region of nonideal effects
is reached, the contribution from the translational
terms rises due to pressure dissociation and ion-
ization. The electron pressure rises sharply as
the bound electrons are freed at volumes where
they are moderately degenerate at the start. The
electrons rapidly become strongly degenerate,
providing the largest pressure contribution at
high densities.

A completely new, nonideal pressure term ap-
pears, given by
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FIG. 4. Equilibrium pressure for hydrogen at 2 eV.
The classical ion pressure P~ is almost linear. The
electron pressure P3 demonstrates classical recombi-
nation effects at low density, pressure ionization at
intermediate density, and strong degeneracy at high
density. The pressure due to volume dependence of the
internal partition function P2 reaches large values during
the ionization process, contributing significantly to the
total pressure over the region 10 (cm ) «V «10
(cm ).

which represents the pressure arising from the
volume dependence of the internal partition func-
tion. In the CA model, this nonideal contribution
is the dominant term in the volume region 10 '-0.5
cm '. The bound-state pressure effect is so large
here because of the sharp behavior of the internal
perturbation, having a very strong volume depen-
dence near the cutoff radius of the atomic cell.
This is seen in the energy-level diagram (Fig. 1),
where the energy climbs very rapidly in the re-
gion 2~,-r,. Since at low temperature, I", is
strongly dependent on &ls(rp) and r, is propor-
tional to V' ', we can relate BF2/BV to B +i~/Bf'p
and see that one indeed would expect a large con-

tributionn

to the pressure to arise from I, in the
dissociation and ionization zone. The important
point here is that a thermodynamically consistent
theory of ionization must have just such a term
in the equations of state. A strong perturbation
of the bound states must be consistently repro-
duced not only through the pressure effects re-
sulting from increase in equilibrium particle
number (seen in P, and P, ) but also from the
volume and temperature dependence of the internal
partition function.

Although the CA model used here represents a
simple and extreme approximation to the real
interparticle bound-state perturbation in a charged
dense gas, it demonstrates that this factor can by
itself produce high-density ionization. In the fol-
lowing sections, it is demonstrated that configura-
tional perturbations, although important, cannot
produce a consistent physical model of this criti-
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cal effect. For the remainder of this paper, the
base model used for comparison will be the CA
model as given in (4. 11).

5. NOMDEAL CONFIGURATION EFFECTS
FROM COULOMB INTERACTION

E4 = kTZ N () (. . (5. 1)

The plasma interaction parameter A~ is

—277&/&e3 ~ g 2~ g /I/)&/2 p &/2

Z Z
) (5.2)

and the generalized multicomponent screening
length is

(5.3)

In a strongly ionized gas, the major nonideal
effect is known to be the Coulombic interactions
between the charged components. This Coulomb
perturbation enters the partition function in two
ways. Through the interparticle interaction po-
tential it modifies the configuration integral, and
through the internal potential, it perturbs the
bound states. The latter effect should properly
be discussed in connection with the internal parti-
tion function, and these bound-state Coulombic
effects will be discussed in detail in a later paper.

The most fundamental and rigorous approach to
the treatment of systems of charged particles
interacting via Coulomb forces is the use of per-
turbation methods of quantum field theory with
diagrammatic expansions of the grand partition
function of the interacting many-body system. '
This mathematically complex procedure leads to
difficult integrals, whose solution removes the
long-range divergence of the Coulomb potential
by summing chains of Coulomb interactions to
obtain the Debye (static) screened potential. The

short-range divergence is removed by summing a
two-particle series in (e'/r) to give a short-range
cutoff arising from the uncertainty principle. A
subsequent paper contains a detailed application
of the quantum cluster theory in the configurational
free energy.

Because of the great complexity of this configur-
ational term, we use here a slight modification
of the simple Debye-Huckel (DH) model adopted
by Harris et al. ' This first approximation is
rigorously valid only in the high-temperature
low-density limit, but it does provide an estimate
of the size and significance of the effect.

The Helmholtz free energy of this model is
given by

8, =5'
1 2(o.,)/&) 2(n. ) . (5.4)

r(x) =3[in(I+x) —x+ax']x (5. 5)

(with x = dmin/X~) as a multiplier in (5. 1) may be
shown" to provide such a cutoff. We define the
distance of closest approach as

= (z) e'/E
min

(5.5)

where (z) is the average charge of the positive
ions, and Ey is the average energy of the free
electrons (fermions). In the limit that dmin-0,
7.-1; otherwise, 7&1.

Consider the effect of this interaction term in
an even simpler case, where we assume 7 =1 and

1 In this case, when the free energy from
(5. 1) is included in the total free energy for an
isolated-atom model, a modified Saha equation
describing the system can be derived in which the
only modification is that the ionization potential
E, is replaced by E,-k T A, where A is Ay with
7 = oz =1. This feature of the configurational
Coulomb contribution is generally referred to as
a lowering of the ionization potential, and refers
to the decrease of the interaction potential be-
tween electron and nucleus due to shielding by
the surrounding charged particles.

This form of the configurational Coulomb inter-
action clearly enhances the ionization. Less clear
is the fact that it is a minor perturbation that has
a relatively small effect and is negligible at high
density if it is the only nonideal term considered.
Using the free-energy minimization code, a DH
Coulomb configurational term was included with
an IA model for hydrogen. The resultant equili-
brium composition showed slight ionization
enhancement, but reached complete recombination
at high density. The physical effects responsible
for this behavior are first, that when the tempera-
ture is low, there are very few charged particles

The sum is carried out over all charged species.
This definition of screening takes into account the
screening by all types of charged species, and
includes the FD statistics. The term &~ is iden-
tical to the classical Debye length in the low-
density region, where 8z =1; otherwise, the
screening length is somewhat larger since Oe-0
in the case of extreme degeneracy of the electrons.
The short-range divergence of the DH model can
be eliminated by the rigorous quantum-mechanical
cluster expansion method. ' This is a complex
mathematical formalism currently being adapted
for direct application to a general system of
arbitrary V and T. To eliminate the short-range
divergence, we adopt the approach where a
modified solution theory cutoff is used. The
function
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P = ' 1 —(3N 4 /E. Nz. '1. ) — v —
)

F4 3 1
e e i 2 'L 'L 'T 1 +X

x 1 —(N P /Q. N. &.'8. ) —2' —1
—,'AT

e e i i i i E~O

(5. 7)

where we have assumed that only the electrons
need be described by Fermi statistics so that Hi=1
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FIG. 5. Equilibrium composition for hydrogen com-
paring results of the CA model and this model with a
modified DH Coulomb configurational term. Increased
ionization is present at 2 and 10 eV throughout the inter-
mediate-density region.

to interact. When the temperature is high, there
are more charged particles, but then the excited
states of the atom make a large contribution of the
partition function (favoring recombination at high-
er levels) and also A~ T '~ ' so that the interac-
tion effect becomes small. Thus, although the
Coulomb interactions enhance the ionization, the
classical Saha-equation behavior or recombina-
tion at high densities is still observed. The inter-
action term in the free energy vanishes in the
limit of infinite volume because Ao- t/"-'I' and it
vanishes in the limit of zero volume because the
plasma recombines into neutral gas particles.
Thus, even with the first-order Coulomb effects
taken into account, an incorrect equilibrium com-
position will be calculated if one uses the isolated-
atom partition functions. Using a high-order
theory for the Coulomb configurational effect in-
creases this incorrect result, as the higher-order
terms act to reduce the size of the Coulomb term
from its first-order value.

Combining the Coulomb term with the CA model,
the resultant equilibrium concentrations are
shown in Fig. 5 for the six-component H gas,
where total mole number is given for the CA
model and the CA model with I'"4 as defined in Eq.
(5. 1). Again the enhancement of ionization is
observed at all temperature-volume points where
signific ant ionization exists. The quantitative
differences between the two models range from
a few percent at 2 eV to 7. 5% at 10 eV.

The analytical form for the Coulomb configura-
tional pressure term is
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FIG. 6. Equilibrium pressure of hydrogen at 2 eV.
The ion pressure P~, electron pressure P3, and bound-
state perturbation Pq behave very similarly to the CA
model (Fig. 4), P2 remaining the dominant contributor
during ionization. The Coulomb pressure P4 is a neg-
ative contributor and its rise parallels that of P3, be-
coming the dominant nonideal term at high density.

for all particles except the electrons (subscript e)
and

y =e -e (n )/& (5. 8)

The quantity Qe approaches zero both for zero
degeneracy and for- strong degeneracy and is posi-
tive otherwise; P4 is a negative pressure, that is,
it represents a pressure contribution of an attrac-
tive potential, and tends to "soften" the gas rela-
tive to its ideal-gas-pressure values. Note, how-
ever, that we have here a contribution which
operates in two contradictory directions. The
Coulomb interaction operates in the equilibrium
calculation to increase the number of particles
over the ideal value (hence, if considered by it-
self, to increase the pressure), but its volume
derivative has the opposite sense —it creates a
negative pressure due to the attractive potential,
and hence, acts to decrease the total pressure.
The net effect is smaller total pressure.

The actual pressure values produced by this
system are shown in Fig. 6. The Coulomb pres-
sure is negative everywhere, and obtains maxi-
mum values that are 32 /o of the ideal gas pressure
at 2 eV, 25% at 5 eV, and 20 % at 10 eV. The
maximum Coulomb effect occurs as the bound-
state perturbations are ionizing the gas,
remaining significant at the highest densities
shown, where the strongly degenerate translation-
al free energy has become very large. For all
temperature values where ionization is significant,
the Coulomb interaction must be included to give
an accurate physical model of an ionizing gas.
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Although the free-energy term used in this
analysis is an approximate version of a highly
complex physical process, it contains several
effects whose individual behavior is important,
yet not obvious from the equilibrium results. In

Fig. 7, the magnitude of the free energy I4 has
been plotted in three approximations: (i) classical
value with Boltzmann statistics and no cutoff; (ii)
Fermi statistics used but no cutoff; and (iii) both
Fermi statistics and the short-range cutoff in-
cluded as given by Eq, (5. 1).

The classical DH term becomes infinite in the
limit of zero volume. This singular behavior
demonstrates the invalidity of a first-order plasma
theory at high density. The Fermi-modified DH
curve shows two characteristics of interest. The
first is the uncoupling of the free electrons from
the Coulomb interaction as they become degener-
ate. This is expressed in the Oz term for electrons
since Oe-0 as ne»1, the limit of large degener-
acy. This causes the Fer mi- modified DH term
to attain lower values relative to the classical
term everywhere that electron degeneracy is
significant. Since this factor does not affect the
ion-ion interaction (until extremely high densi-
ties are reached) the modified DH term also
reaches very large values as V becomes small.
Both these models predict that, at sufficiently
high density for any given temperature, the Cou-
lomb pressure I'4 will become larger than the

ideal pressure, and being opposite in sign, will
produce a negative total pressure. The entire
model is invalid long before this point is reached,
and here one must turn to the more rigorous
quantum cluster expansion theory, which is able
to extend the Coulomb model to higher-order
terms that are opposite in sign to this first-order
term. The next curve in the figure gives I4~,
the Coulomb term corrected for short-range di-
vergence via the adapted short-range cutoff cor-
rection. Here the Coulomb free energy is pre-
vented from becoming too large, as it remains
finite and well behaved for all values of V given.
However, the arrow marks the point where the
7(x) correction becomes questionable. A physical-
ly more rigorous short-range cutoff is obtained
through the action of the uncertainty principle as
expressed in the quantum cluster result. ' This
short-range divergence elimination arises from
'the many-body theory in a consistent manner and
can be extended to the high-order terms.

A quantitative expression for the limit of validity
of this model can be given in terms of the degen-
eracy parameter and the plasma interactionparam-
eter. The model is applicable in the limit of weak
degeneracy and weak interactions, given by

n &0
e

A~& 0. 3 .

When these limits are exceeded, the more rig-
orous quantum cluster expansion theory should
be used.

1000

6. NON-COULOMBIC INTERACTION EFFECTS
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FIG. 7. Coulomb configurational free energy for
hydrogen at 2 eV. The classical DH Coulomb term for
point charges increases most rapidly with density. The
FD-modified DH Coulomb term shows the large decrease
in lE4! produced by including the "uncoupling" of the
increasingly degenerate electrons. The short-range
cutoff factor leads to even larger decreases in the
Coulomb free energy. However, at sufficiently high
densities, I 4 increases more rapidly than the I'~+I'3
and the total pressure becomes negative in all these
models.

In a real gas, the particles have finite extension,
and e~en for the neutral species, this has an ef-
fect on the thermodynamic properties of the gas.
As a first approximation to reality, we assume
that the particles have a hard core with radius
Bz equal to the radius at which the lowest-lying
energy level is ionized, as discussed in Sec. 4.

Even for a simple hard-sphere gas, the config-
urational partition function cannot be obtained
exactly for more than a few particles, so it is
necessary to make approximations. Let us first
make the approximation that the gas is of suffi-
ciently low density that only two -particle collis-
ions are important. We write the configuration
integral as

fdr fdr

—fdr exp[- P (u(r )+u(r )+ ~ ~ ~ )],
(6. 1)

where the integration of all particle coordinates
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is over the volume V. Here, u(r) is the inter-
action potential between the hard spheres and

r2j is the distance between centers of particles
i and j. u(rg&) is infinite if re & Rf +Rj and is
zero otherwise. The value of the intergrand in
(6. 1) is therefore unity everywhere except within
the collision spheres for particles of type i and j
of radius Rf+R. and volume fv(Rg+R&)a, where
the integrand is zero. Thus,

f dr e.x. p[- Pu(r ..)] = V-~m(R. +R.)'. (6.2)
2j ij '

2 j'

where $ = —,
' mZ .(N. /V)(2R. ) .S ' i 2 2

(6. 6)

P, = (kz/~) [6&,$,(1 —$,)-'

+18),$,(l —(,) '+Is(, '(I —5, ) ']. (6. 7)

They state that this expression gives pressures
within a few percent of those produced by ma-
chine calculations for binary mixtures with $,
& 0.4. The excess pressure over that of a collec-
tion of noninteracting point particles is

The complete configurational integral can be
evaluated in the approximation that 4m'(Rg+R. )'/
(3 V) « I and its logarithm is given by Fowler, '

N ln. [V. - —,'Q. N, 2m(R. +R.)'].ii ' jj i (6.3)

The finite size of the gas particles, thus, has the
effect of adding a term to the free energy of the
form

E = —kTQ.¹1n[1-2m+. N. (R. +R. )'/3V'].
5 i i j j i j

(6.4)

vPP=6$, (I —(,)
' I+58,&,(1 —g, )

+1st,'(I —5,)
—', (s. 6)

It will be noticed that I, is always positive and
decreases with V. Thus, when the gas is com-
pressed, this term has the effect of increasing
the free energy and thus shifting the equilibrium
in the direction of smaller numbers of particles
having large radii. In particular, it causes pres-
sure ionization. Unfortunately, the validity of
this simple theory breaks down at higher densi-
ties when the approximation that the ratio of the
volume of the particles to the total volume of the
gas is much smaller than unity is violated.
Clearly, (6.4) breaks down if this ratio is
greater than -0. 25.

By adding an excluded volume term such as
(6.4) to the IA free energy, a thermodynamically
consistent pressure-ionization effect has been
achieved, using the free-energy minimization
method. The ionization rise at intermediate
density is fairly rapid, and the hard-sphere vol-
ume reaches the value of 0. 25 V at most tem-
peratures. Another disadvantage to using an
excluded volume term with the isolated-atom
internal partition function is the great discrep-
ancy between the infinite (hard) interparticle
potential and the unperturbed internal potential.

By considering the work of adding an additional
hard sphere to a mixture, Lebowitz etal."have
obtained, for the pressure of a hard-sphere mix-
ture, the expression

Expression (6. 7) may be integrated with respect
to volume to obtain the part of the Helmholtz free
energy due to the finite size of the hard spheres.
We find

F, = (k TV//m) [ —6$, ln(1 —$, ) + 18$,5,

x (1 —$, )
' 9$,'(I —(,) ']. (6. s)

Since from the definition (6. 6), $, is just the
ratio of the volume of the hard spheres to the
total volume of the gas, g, & 1 and all terms in
(6. 7) and (6. 8) are positive. As V decreases,
all the $z increase, E, increases and the equilib-
rium composition is driven toward ionization
where most of the particles (nuclei and electrons)
have very small radii and contribute less to $„
t„and $,. A decrease in V increases the pres-
sure in two ways. First, each 4 increases as
V ' and from (6. 7) it can be seen that P, in-
creases monotonically with each $~. Secondly,
the new equilibrium mixture contains a larger
number of particles, and this increases each of
the 4 also.

The effect of including (6. 8) in the free energy
is shown for hydrogen in Fig. 8. The effects are
negligible at low density, but at higher densities
the total number of particles is significantly in-
creased over the case for point particles. This
is qualitatively the behavior one would expect in
pressure ionization. Note that this is an addi-
tional effect to that change in the energy levels of
the molecules, atoms, and ions due to interac-
tions.

The equilibrium pressure at 2 eV is illustrated
in Fig. 9. The inclusion of the excluded volume
term has increased the total gas pressure
throughout the intermediate density region by the
addition of P„ the hard-sphere mixture pressure.
This term is the dominant nonideal effect in this
region and causes P, to become less significant,
although still a major term.

The corresponding values of 5, are plotted in
Fig. 10 for three temperatures. This demon-
strates that g, & 0. 25 for most densities at
T ~ 2 eV, rendering the simple hard-sphere
model (6.4) totally invalid here. The hard-sphere



222 GRABOSKE, HARWOOD, AND ROGERS 186

I

Confined atom model
———With simple hard sphere

configurational term—rs—With hard sphere mixture

conf ig ura t i ona I term

1.0

0.5

0.5 eV

CO

Z

Z

0
02

1/V —cm
-3

10

1O 1O 1O
'

1/V —cm
-3

10

FIG. 8. Equilibrium composition for hydrogen, il-
lustrating the effect of the simple hard-sphere term,
and the hard-sphere mixture term compared to the CA

model. The simple hard-sphere term is almost tem-
perature-independent for V &0.2 cm, and (3 is
everywhere considerably above its limit of 0.25 for ap-
plicability of this model. The hard-sphere mixture
term produces significant enhancement of ionization and

dissociation over the CA model.

FIG. 10. Excluded volume interaction parameter
(3, as a function of V for hydrogen, for the CA model
with the hard-sphere mixture configurational free en-
ergy. With the simple hard-sphere model $3 would be
10™m20%larger at all points. The simple hard-sphere
validity limit of $3-0.25 is only attained at very high
or low volume until T-10 eV. The hard-sphere mix-
ture limit of accuracy (3 -0,4 is not exceeded for al-
most all densities at T ~ 2 eV.

at relatively low temperatures. The effect of
these attractive forces is included in our calcula-
tion by means of a van der Waals correction.
This correction is for mixtures in the form of a
term"

mixture model (6. 8) is reasonably accurate for
all densities at T~2 eV. This 'region of validity
is extended when a Coulomb term is added to the
configurational free energy, which enhances
ionization and correspondingly decreases the
hard-sphere volume and g, .

The weak attractive part of the potential be-
tween the neutral particles is of importance only

1016

(6.9)

where a. . = (a. .a. . )'I'.
z 2 'Ez 2J'

The aii are the normal van der Waals constants,
and the xi are the mole numbers of species i.

This correction has the familiar effect on the
pressure at low temperatures. The effect on the
equilibrium composition is opposite to the pres-
sure-ionization effect, but it is very weak at
temperatures where there is an appreciable
amount of ionization.

1014 7. EVALUATION OF METHOD
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FIG. 9. Equilibrium pressure for hydrogen at 2 eV.
Ion pressure (P~), electron pressure (P3), and bound-

state perturbation pressure (P2) behave as before. In

the intermediate-density region where nonideal effects
are a maximum, P&, the excluded volume pressure, is
the largest contributor, while P2 is reduced in impor-
tance although still an important contributor.

Sections 4-6 have demonstrated the regions
where the specific nonideal effects are domi-
nant. Combining these various effects f (4. 6),
(5. l), and (6. 8)] into one complete model yields
an improved set of equilibrium thermodynamic
properties which incorporate all the nonideal
terms. The resultant equilibrium composition
and pressure equation of state are given in Figs.
11 and 12. They differ quantitatively from the
foregoing results due to the combination of non-
ideal effects. The number of particles is every-
where as high as or higher than the number ob-
tained by using any of the models of Sec. 4, 5,
or 6. The largest differences occur along the
2- and 10-eV isotherms, where I4 and I', both
contribute significant perturbations. At 0. 5 eV,
I', and I", are the dominant nonideal effects while
at 10 eV, I"4 is most important. The pressure
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The first cutoff model, due to Theimer et al. "
suggests that for a high-temperature gas, one
can use a cutoff determined by equating the Bohr
radius of the highest-bound state with the mean
interparticle distance. This criterion leads to
an expression for the maximum number of bound
states for a hydrogen gas at high temperature,

nmax(V) = I ao' ~3'(N/V)]'".

Note that this criterion assumes that nmax de-
pends solely on particle density. With the addi-
tional assumptions that kT» E, so that a large
number of excited states are important, the in-
ternal partition function for the atoms can be re-
duced to

~. =-'(nmax)',
2

FIG. 11. Comparison of the various nonideal effects
on the hydrogen-equilibrium composition. The lowest
curves represent the simple CA model (ideal configura-
tional term); the intermediate curves represent the CA

model with hard-sphere mixture configurational term
only, and with Coulomb configurational term only. The

upper curves show the results of the full model with both

configurational terms included.

and noting that Nz =Ne, an equilibrium equation
of the following form results:

This reduces to

curves show P, and P, as largest pressure con-
tributors in the intermediate density region at
the lower temperatures, while at higher tempera-
tures P4 becomes large, while P, and P, become
minor contributors. Similar effects are seen in
all the thermodynamic properties, the internal
energy, specific heats, and compressibility, all
demonstrating significant deviation from ideality.

The physical factors which dominate the equi-
librium composition calculation are four in
number: the classical phase-space factor
VT'I'e P 0; the bound-state cutoff nm~(V, T);
the bound-state energy-level shift Enf(V, T); and
the Coulomb screening effect (lowering of the
continuum) represented by Ap. The first factor
dominates in the classical region at high V and T.
The second dominates at high density (low V).
The third is important in the intermediate volume
region as pressure dissociation and ionization
occur, while the A factor is also operative in
this region. The complex nature of these effects
makes it difficult to separate the exact contribu-
tion from any one factor at a specific V, T. It is
much simpler to use some ad I2oc criterion based
on some physical characteristic of gas particles
to obtain uncomplicated formulas for estimating
the level cutoff and the ionization equilibrium in
various V, T regions. Let us examine how ef-
fectively the results of two such simple models
compare with the results of this free-energy
model.

N(H) 1
N(H+) 64m
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FIG. 12. Equilibrium pressure for hydrogen at 2 eV.
The dominant behavior is ideal classical at low density
{P~, P3), pressure ionization and nonideal effects dom-
inant at intermediate density (P5 largest, P2 and P~,
large), and the degenerate electron gas with strong
Coulomb interactions at high density (P3 P4).

A simple density dependence criterion for nmax
results in a recombination factor linearly pro-
portional to A, the plasma parameter (a coinci-
dental result which does not arise from any in-
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elusion of plasma terms in the partition function,
and in fact predicts the opposite behavior, recom-
bination increasing with A).

A second cutoff model, suggested by Riewe and
Rompe" uses a cutoff criterion which depends
only on temperature. Here, the highest bound

state is determined by

Ryd/(nm~)' ~ (k T/T, ),

where T, is a scale factor. This gives

2'~ e4- &/2

n (T=
max h'k(T/T„))

and with the same assumptions as before

The temperature-dependent cutoff leads to an
equilibrium composition proportional to A'. The
term T, may be estimated by using observations
of the number of observed hydrogen lines in the
solar photosphere, (which yields T, ~35) or by
other experimental criteria.

The results obtained for hydrogen with the two
simple cutoff models and the FMIN code using the
complete CA free-energy model are shown in

Fig. 13. The comparison should be limited to
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FIG. 13, Hydrogen ionization equilibrium at high

temperature, as a function of A, the plasma parameter.
(The base of the logarithms is 10.) The density-
dependent-cutoff model and the temperature-dependent-
cutoff model predict equilibria which are functions of
A only. The complete CA model predicts a more com-
plicated (A, P dependence, which is approximately pro-
portional to A in the high-T low-A limit.

the high- temperatur e low-dens ity region, whic h

corresponds to the portion of A space where the
FMIN ionization curves are linear. The density-
dependent (linear A) cutoff results do not agree
qualitatively with the FMIN compositions, which
indicates that this approximation is not well
suited for use in high-temperature regions for
predicting equilibrium compositions. The tem-
perature-dependent (quadratic A) cutoff result
has a A dependence very similar to the FMIN

curves, although it is single valued in A space
as opposed to the A and T dependence of the
FMIN results. If T, is adjusted, the T-dependent

nmax would give reasonably accurate composi-
tion results over a wide range in V, but a very
narrow range in T. The actual high-tempera-
ture low-density composition exhibits both V and
T dependence. This particular result arises
directly from the specific physical model as-
sumed, and only demonstrates that simple cutoff
models are probably not sufficient.

In closing, a brief remark on the basic prob-
lems and limitations of the free-energy minimi-
zation method are in order. The underlying
premise of this approach is the factorizability of
the total partition function. This becomes in-
creasingly difficult as the density of the system
increases and temperature decreases. In the
high-density high-temperature limit where a
dense-plasma final state is approached, there are
theoretical arguments supporting this indepen-
dence even in the case of the quantum-mechanical
many-body partition function. ' In the high-dens-
ity low-temperature limit where a metallic state
is approached, the present model does not repre-
sent the state of the system accurately. To reach
this state, an atomic system with periodic bound-
ary conditions must be included.

A second limitation of the current model is the
inaccuracy of our nonhydrogenic eigenstate
representations. In principle, the Schrodinger
equation for each bound species would contain a
potential which exactly reflected the perturba-
tions of the surrounding neutral and charged
particles. This potential then would be used in a
wave equation for each species to be solved using
self-consistent field methods to solve the multi-
electron (or multiatom) wave equations, whose
results then are used to construct an internal
partition function. This is then used in the free-
energy model, whose resultant interparticle
interaction must agree with the original perturba-
tion potential. This combination of a self-con-
sistent atomic-molecular set of Schrodinger equa-
tions with the thermodynamically consistent,
free-energy model should produce a reasonably
accurate high-density gas theory.

Current modifications of the model include the
use of exact numerical solutions of a static
screened Coulomb potential for confined one-
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electron systems to produce both plasma and
neutral atom bound-state perturbations. Both
confined atom and periodic boundary conditions
are included. This internal model is combined
with a configuration term containing a high-order
version of the quantum-mechanical cluster ex-
pansion theory for dense plasmas.
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When high-frequency waves in a plasma are scattered by an enhanced spectrum of low-fre-
quency waves, they lose energy if the resulting secondary waves are Landau damped. Such a
nonlinear energy loss of longitudinal waves was calculated hydrodynamically by Sturrock.
However, the Vlasov equation gives a more intense scattering. Thus, a wide spectrum of ion
sound waves prevents a weak two-stream instability of electron plasma waves more easily
than according to the hydrodynamic calculation. If the wave vectors of the ion sound waves
are shorter than the width of the instability, the scattering of secondary waves becomes de-
cisive: Electron plasma waves diffuse in k space and the nonlinear stabilizing effect is re-
duced. Also, transverse high-frequency waves are nonlinearly damped, but less so by a
relativistic order at least.

I. INTRODUCTION

When high-frequency waves are scattered by
low-frequency waves, the resultant secondary
waves are likewise of high frequency. But owing

to the shift of the wave vector, they come in re-
sonance with other particles than the primary
waves. Thus, they can be damped linearly, while
the primary waves are unstable. Because of the
nonlinear coupling through scattering, the primary


