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Explicit asymptotic formulas are derived for the generalized functions A(z~, z&) and B(zf z2),
which define the matrix elements of the electron-collision operator, in the impact broadening
theory of Griem, Baranger, Kolb, and Oertel, recently extended in order to take into account
any degree of degeneracy of the overlapping lines in plasmas. The results are shown graph-
ically and confirm a complementary behavior previously predicted. The shift function remains
greater than the width function in the whole asymptotic domain.

I. INTRODUCTION

Recently, a unified treatment of the electron-
impact broadening of neutral lines' has been ob-
tained, with the evaluation of the off-diagonal ma-
trix elements of the electron-collision operator,
defined in the generalized impact broadening the-
ory of Griem, Baranger, Kolb, and Oertel. ' The
new functions A(z„z, ) and B(z„z,) graphed in
Ref. 1 were for values of adiabaticity parameters
~, and ~, from —2 to 2.

However, for the complete calculation of the
electron broadening of partially degenerate lines, '
there is need for values of the width and shift
functions for values of ]~, ) and (z, ] greater than
three. The explicit representation of the J3 func-
tion given previously' is not well adapted for pro-
viding these asymptotic values. So, we are led
to establish directly the asymptotic expansion of
the shift function. It is the purpose of this paper
to calculate and discuss A(z„z, ) and B(z„z,) for

) 8] ~ values greater than three.

II. GENERAL EXPRESSIONS

Our starting point will be the expression for the angular average, taken over the electronic perturber
trajectories r=p+ vu, of the impact broadening for the sublevels (n, i), (n, l'), and (n, l) constiti. ing the
upper state n of a given line, i. e. ,
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considered in the monopole-dipole approximation, and expressed with the aid of the dimensionless quan-
tities zl=&ug&p/v, z2= +ff~p/v, and x= vu/p. Here, +ff& and &off represent the angular frequencies cor-
responding to transitions between the given sublevels in presence of a static Stark effect. Sz(0) is the one-
electron collision matrix at time u = 0, I is the unit matrix, and r~ denotes a component of the optical elec-
tron position vector r. The main result of Ref. 1 was a rigorous evaluation of the integral

x, i(z,x, -z,x, ) (1+x,x, )
—,
' J dx, f 'dx2e ' ' ' '

(1 2)s~2('1' x,)„~ = (z„z,)pgB(z„z,).

Unfortunately, because of the double integrals therein, the expression then obtained for B(z z ) is not
at all suited to provide asymptotic values. Therefore, if one desires an asymptotic expression for B, the
best thing to do is to derive it directly for Eq. (2), with the aid of an integration by parts. This procedure,
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outlined in Appendix A, allows us to write first

(3)

an expression already given in Ref. 1 and valid for all ~„z2 values. The asymptotic values of I3 will be
computed using the relation
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In Eqs. (3) and (4), K (x) represents a modified Bessel function of the second kind, and, F2(a; b, c; —,'z')
is a hypergeometric function.

The symmetry properties'

A(z„z, ) = A(z„z,)=A(-z„-z,),

and the relation

B(z„z,) = 0, if z, zs«0

B(z„z,) = B(z„z,}=—B(-z„-z, )

show clearly that Eq. (4) exhibits the asymptotic behavior of B(z„z,), whatever z, and z, may be. So, in
the remaining part of this work, the B values will be discussed only for positive (z„z,) values.

A. Asymptotic Expressions for A(z I, z2)

Values of A(z„z,}for large values of z, and z, are immediately obtained by inserting the asymptotic ex-
pansion (see, for instance, Ref. 5, p. 963)

'll' 1 2
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2 e,F, —,'+n, —,
' —n; —2, as Iz I -~,

n 2!&I 2 0

in Eq. (3). If ones keeps the atomic ratio a= z, /z, fixed, one gets first

-I&l-la&I
A(z, az) —,&2 I z I (I a I + a) e2jgj /

as [zj -~,
and the isolated-line result, previously given by Seaton4 and Griem et al. ,

'

-2jzj 1 1
z((z, z) -slz la (+4 + &s, + ), as Iz I-

is recovered for a= 1.
When z, remains fixed and ja I unbounded, the off-diagonal matrix elements of the electron-collision

operator may exhibit another asymptotic expansion

X(z, s )-( v I/2 s&2
—laz I

2jal lz I'"e [la IK, (lz, l)+a%, (lz l)j, as lal -~, (9)

which reduces to Eq. (8) with lz I
-~.

As a first result, Eqs. (8} and (9) show that the inelastic collisions with a «0 give a negligible asymptotic
contribution to the width.
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B. Asymptotic Expressions for B(z, , z2)

Now we have to extract the corresponding expansions for B(z„z,) from Eq. (4). This will be done if one
expands the hypergeometric functions explicitly. However, the divergent asymptotic behavior of,F,(a;
b, c; —,'z ) does not allow a straightforward approach, and it is much more interesting to start from the re-
lations established in Appendix B:
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where S& &(I z I) denotes the Lommel function. '
Then the asymptotic series'
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introduced in Eq. (4) give immediately
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for finite values of z, ~ 2. If we let z, reach arbitrary high values, Fq. (12) becomes

&(~„«,) -4 e ' 1+
2 )((+z, la —(I)+0((«,) '),

4az, 2a

in a second-order expansion.
Moreover, the isolated-line result

(12)

B(z z) -—+——+O(z-') as z- ~
4& 32 z3 (4')

is derived in a straightforward manner from the Eq. (4). The first term in the right-hand side of Eq. (4')
has already been obtained by Griem et al. '

III. RESULTS AND DISCUSSION

In Figs. 1 and 2, respectively, formulas (8) and
(9) for A(z„z, ) and formulas (12) and (18) for
B(z„z,) completed with the exact expressions of
Ref. 1, are plotted versus the variable z, in the
range 3 «~, «9, the atomic ratio a in z, = a~, being
considered as a parameter. The essential fea-
tures of these curves can be summarized in Sec.
III A.

A(z, az) o A(z, z), B(z, az) ~B(z, z), (i4)

with 0 & a «1, and also for z = a'z with a'= a ' when

A. Positive Atomic Ratio (a) 0)

In contrast with the case of small ~, values, ' the
shift function B(z„z,) always remains greater
than the width function A(z„z, ) in the asymptotic
domain and decreases much more slowly.

The complementary relations'
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9. Negative Atomic Ratio (a »«0)

In view of Eqs. (5) and (6), we have only to dis-
cuss the A(z„z, ) values for positive z, and z,
values. They reproduce a behavior already seen
for a &0 and fulfill the condition

'3
I

8 z1~ 9

A(z„—z, ) &A(z„z,} (I5)

for all positive values of z, and z, . Finally, we
have to note that the isolated-line results tabulated
by Griem' for the functions A(z, z) and B(z, z) are
in good agreement with ours when z ~ 3.

IV. CONCLUSION

FIG, l. Graphs of A(z~, az&) as a function of z~ for
different values a taken as a parameter.

g & 1, are clearly verified in the asymptotic do-
main. The corresponding graphs define, respec-
tively, upper and lower bounds for the A, and B
values. It is also of interest to note that Eq. (9)
gives A values systematically greater than those
shown by Eq. (8). On the other hand, B values
calculated with Eq. (12) exhibit a reversed trend
for z, ~ 3, when they are compared with the re-
sults of Eq. (13). More generally, the B values
are widespread over the whole range of the ordi-
nate, while the A. values show a strong tendency
to merge into a unique curve. It is then possible
to summarize the foregoing discussion with the
following argument: A(z„z, ) is mainly depen-
dent on the z, values, while B(z„z,) is mostly
influenced by the z, variations.

Physically, this amounts to saying that the
width is essentially given by the first step of the
second-order atomic transition i —/'-l, and the
shift by the second one.

The results derived in this work will allow the
electronic contribution to the complete Stark pro-
file of neutral lines (and also of hydrogenic ionized
lines at high electron temperature'} to be calcu-
lated for any degree of partial degeneracy. Fur-
thermore, the shift and width functions exhibit
strong complementary features.
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FIG. 2. Graphs of B(z~, az~) as a function of z~ for
different values a taken as a parameter.

APPENDIX A

1I(z„z,) -=A(z„z, )+ 2B(z„z,) =—

We now present the derivation of Eqs. (3) and (4). Starting from Eq. (2)

2 (Z1X1 Z2X2 )F(i+ X~X2) d1 (I 2)3/2(l x 2) 3/2 2 1

it appears of interest to take (Al) in the form

jo dx, j dx, +Jo dx, j dx, .

Expressing the definite integrals in terms of special functions, we obtain

where

I = I, +I
2i=A( „z,) ~ iI~ . ,-',)K, ,(, ), ,F (1; —,', -„' i ——,(,F, -„1,-„—')
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and f2 f21(ZIP 2)+ 22( lp 2) 21( lp 2) f22( lp 2) 0 (As)

with I»(z» z, ) =—
2+ /X' Xg ~ 1+2X2

dXI e dX2 e
(] yx )3/2 (] yx )

'0

(A4)
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22( 1& 2)

J (] 2)3/2 (] 2)3/2
0 0

Equation (4) will be evaluated with the aid of the incomplete Fourier integral

d(z, ) = j 'dx, e' ' ' f(x,),
0

41(x2) being a continuous and differentiable function for x, values ranging from 0 to x, . Furthermore,
if 4 V')(x2) represents a derivative of order p, we can write

lim C (x, ) = 0.(p)

~ 00

(A5)

Integrating J(z2) by parts, it is then possible to get a series expansion with respect to z, , which will de-
fine the asymptotic expansion of I,.

Thus, we are led to write'

d(z )=a (z )-W (z )+O(z ), (z - )

N-1
with AN(z2) = Q i I& (0)z2

n l(n) -.(n-+ I)
@=0 (AS)
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( ) ~ n l(n)(

)
. --(n+ I) iz,x,

n=o

N being an arbitrary integer. The remainder term O(z, ) is proportional to

Jx, (N)( )
iz, x,

a quantity vanishing with z2- ~, as is shown by Biemann s lemma. Finally, the asymptotic expansion of
I2 will be obtained with the integration of 8(+z2)//(I+ x,')"' with respect to x„ term by term Such .a pro-
cedure is permissible here because the final series is convergent. Restricting the development of J(z2) to
N=4, which is largely sufficient in practice, the integration of the successive derivatives of C(x) will give
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an expression easily expanded with the aid of (see Ref. 5, p. 429)
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~

n —i k
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0

~

~

OQ -lz, —~, l n —i k
x sin[(z, —z, )x Jdx w(z2 —z, )e ' ' ~ (2n —t2 —2)!(2!z,—z, 1)

»n+1 2n
t
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Finally, with Eqs. (A2), (A3), and (A8), we obtain Eqs. (3) and (8).

APPENDIX B

Here, we establish the relations (10). First, we use (see Ref. 5, p. 68t) the integral representations

1 3 1 2 2
I 3 3 3 2 dtt J(t)

3+2(li 2i 2i 4z2 ) 4 z21 3+2(2i 2i zi 4z2 ) — 2 2 i+82
(B1)

~ 1 1 ~ 1 2 at t'J. (t)
1+2( i 2i 2 i 4z2 ) 2 z2 1+2(2i li 2i 4 z2 ) t2 2+ Z2

0

Next, let us consider the decompositions

t J,(t)dt
g

2 + g2
J,(t)at
(t2 + z2)2

JA(t )dt
t2+ ~2

t 'J„(t)dt'
/+8

J,(t)dt
t2+ g2

(B2)

of which the first has been obtained by using the differential relation J,(t) = —J,'(t) and an integration by
parts. Then we can write

f JA(t)at 1
( I I )t +z izj

0

2' 2 2
= 2 SQ A(!z!)+S-1 -l(!z!)J,(t)dt 1 1'

The second relation of (B3)is established with a differentiation of the first one with respect to z', and the
relation S,', ( I

z I ) = —S, ,(l z I ).
Collecting together Eqs. (Bl)-(B3), we obtain Eq. (10).
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