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The problem of the linear response to a longitudinal driving field of low frequency and long
wavelength for a system of interacting fermions at low temperatures in the presence of dilute
random impurities is studied by the use of temperature Green's function techniques. A

quasiparticle distribution function for this system is defined and its connection with induced

quantities, such as the particle and current densities, is determined. It is shown that this
distribution function satisfies a transport equation with a nondissipative part of the form sug-
gested by Landau and a dissipative part made up of the sum of impurity and interparticle
scattering terms. The quantities entering the theory, among which are the coefficients of
the transport equation, are determined to all orders in the interparticle and impurity inter-
action strengths, and, where appropriate, to first order in the impurity density. Many of
these results are obtained from the development and use of a generalization to an impure

system of Eliashberg's work on pure Fermi liquids.

I. INTRODUCTION

The phenomenological theory of long-wavelength
low-frequency transport in a normal Fermi liquid at
low temperature was first discussed by Landau'
for a pure system with short-range interparticle
interactions and extended to a system with Coulomb
interactions by Silin4; several other authors'
have reviewed this work, as well as discussing
some of its implications. This theory was given
in terms of a quasiparticle transport equation with
a nondissipative part closely resembling in form
that obtained in the weak coupling limit, except
that energy and velocity are renormalized, and
there is a quasiparticle interaction term. For
the dissipative part of the equation, Landau sug-
gested an interquasiparticle scattering term, also
of a form analogous to the weak coupling limit,
which has the important property that it vanishes
in the zero-temperature limit. Silin, Heine, '
and Heine et al. "have considered the extension
of the theory to the case of a Fermi liquid at zero
temperature in the presence of dilute random im-
purities. This extension essentially amounts to
having a transport equation with a nondissipative
part of the form suggested by Landau and a dissi-
pative part, appropriately renormalized, in the
form of the usual impurity scattering term. It is
natural to expect that at nonzero temperatures,
the transport equation appropriate to an impure
Fermi system has a nondissipative part of the
Landau form and a dissipative part, just the sum
of the interparticle and impurity scattering terms
discussed above. We shall establish this result
to all orders in perturbation theory in this paper.

Much work has been done to justify the phenom-

enological theory of transport in a Fermi liquid.
A transport equation has been derived for a pure
zero-temperature system by Nozihres and Lutt-
inger, "~"using the zero-temperature limit of the
temperature Green's function technique, and by
Nozibres, ' using the zero-temperature Green's
function technique. Both of these studies depend
on Landau's' idea for the handling of the type of
singularity, crucial to the theory, which comes
about because the poles of two propagators are
very close to, but on opposite sides of an appro-
priate integration contour. The derivation of the
quasiparticle transport equation for a pure system
at low (and possibly zero) temperature has been
given to all orders in perturbation theory by Eli-
ashberg, "~ ' whose work is reviewed in the book
of Abrikosov, Gor'kov, and Dzyaloshinskii. " This
calculation required a careful study of the analytic
properties of various many-body functions entering
in the temperature Green's function technique, and
produced a result in agreement with the prediction
of Landau' ' (including the appropriate dissipative
part). Results of a similar form were found by
Resibois, "~"and Watabe and Dagonnier" using
a diagram technique developed by Resibois (in
which the coefficients of the transport equation
for the bare-particle distribution function are
found directly). This method has not lent itself
to a complete summation with respect to the inter-
actions and thus the calculation was done only to
finite order in perturbation theory.

The problem of transport in an impure inter-
acting Fermi liquid has been studied by various
authors. Langer, ' in a series of papers, eval-
uated the current induced in such a system at zero
temperature by a static uniform field; he made a
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start, as well, at obtaining interparticle scattering
effects in this system. To make these calcula-
tions, Langer developed a systematic tech-
nique, "~" of which we will make use in our work,
for the evaluation of the discontinuities of many-
body functions across their branch line singular-
ities. Using zero-temperature Green's function

~ 4
techniques, Betbeder-Matibet and Nozieres"~ '4

derived a zero-temperature quasiparticle trans-
port equation of the form suggested in the phe-
nomenological theory' "for an impure Fermi
liquid. In the work of Sigel and Argyres, '~

this problem has been studied by the extension of
the techniques of Resibois to an impure system.
In these papers, a dissipative part of the form
suggested earlier, namely, the sum of impurity
and interparticle scattering terms, was found.
As in the case of Resibois, this work was done
only to finite order in perturbation theory.

In the present paper, we attack the problem of
the linear response to a longitudinal driving field
of low frequency &@and long wavelength q

' for a
normal Fermi liquid at low temperatures in the
presence of dilute random impurities. We derive
a quasiparticle transport equation with coefficients
determined to all orders in the. interaction
strengths (but to first order in the impurity densi-
ty), which has the form suggested above. To
reach this result, we develop a technique which is
the generalization to the case of an impure system
of the one given by Eliashberg" "for a pure sys-

tern. We use this method because of the great
ease and clarity with which it allows one to study
certain types of singular behavior (including that
mentioned above') connected with various prop-
erties of the Fermi surface (as, for example, the
incomplete degeneracy st nonzero temperatures).
The understanding of this behavior, we feel, can
be exploited to explain other phenomena (not dis-
cussed here) involving, essentially, the features
of the Fermi surface.

To complete this section, we indicate briefly the
organization of the rest of the paper. In Sec. II,
we discuss the impurity averaged bare-particle
distribution function and its connection with the
two-particle temperature Green's function. In
Sec. III, we introduce the relevant features of the
diagram technique, and from a study of the ana-
lytic properties of the functions relevant to the
theory, we obtain integral equations of the Bethe-
Salpeter type. Sections IV and V are devoted to
a detailed determination of the quantities involved
in these equations. In Sec. VI, we collect to-
gether our results and show how one of the in-
tegral equations obtained in Sec. III can be in-
terpreted as a quasiparticle transport equation;
we also discuss here the partial connection of the
quasiparticle distribution function to the bare-
particle distribution function. To conclude Sec.
VI, we point out, very briefly, the modifications
necessary when the interactions are Coulombic
in nature.

II. BARE-PARTICLE DISTRIBUTION FUNCTION AND GREEN'S FUNCTIONS

In this section, we formulate the problem of transport for a system of interacting fermions in the
presence of random impurities, in terms of the impurity averaged bare-particle distribution function.
This function determines the linear response of most of the single-particle quantities associated with the
system. We further review the connection between this distribution function and the impurity averaged
two- particle Green's function.

The unperturbed system, consisting of a set of interacting fermions in the presence of randomly placed
spinless impurity centers all confined to unit volume, has a Hamiltonian

H=ge a a,—,
'

ygp pl

n.
z -'k-k' ~ Rl'(&ll' &')a a a. ,a +Z Z [u(k-k') e &]a a, (2. 1)

Inthis equation, ay(ay~) is the annihilation (creation) operator for a fermion of momentum k and spin v;
e& is the energy of a bare particle having momentum and spin k [e&= (k) /2m in the case of a homogeneous
gas and we take 8 = 1]. V(k ll' k ) is the antisymmetrized matrix element of the interparticle interaction,
while u(k-k') exp [- i(k- k') ~ R ] is the matrix element of the interaction between an electron and the im-
purity at position R& [without loss of generality we take u(0) —=0]. The sum over j in the third term on the
right-hand side of Eq. (2. 1) is over all nf impurities, and the matrix element is proportional to a unit
matrix in the spin coordinates. In equilibrium at temperature P -', the properties of the system are de-
termined by the density matrix

p = exp[ —p (H iJN) J /Tr( exp[ —p (-H pN)]]- (2. 2)

where p, is the chemical potential, and N is the fermion number operator.
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We suppose the system described above is subjected to an adiabatically switched weak time and space
varying longitudinal field with potential

-=e (r, t) = Q exp[i(q ~ r —(ut)]+c. c.
ext '

q(u
(2. 3)

where q, & are the wave vector and frequency of the disturbance, and (d is assumed to have an infinitesimal
imaginary part i' with p positive. Assuming the system to be in equilibrium at temperature P

' in the
remote past, we find the density matrix at time t, up to terms linear in the external field, to be

t
p(t) —p =i 1 dt'exp(- iwt')exp[ —iH(t t')][p-, p P ]exp[iH(t- t ')] +H. a,. (2. 4)0 0 -q qco

where H. a. stands for Hermitian adjoint and the particle-density operator is defined by

-=~ p -=~ a ~a
(2. 6)

(2. 6)

The impurity averaged bare-particle distribution function linear in the external field of wave vector q and
frequency vis given by

OQ

f () i~t
&

i~t (T(.f dg i~t'[Ht'k iHt ]])
q(d 0 -q q0

where the angular bracket indicates an average over the positions of the impurities, i; e. ,

( ~ ~ ~ ) =-1 II d'H. ( ~ ~ ~ )
j=i

Since the impurities are assumed to be randomly distributed, the averaged function fk(q, &u) determines the
linear response of the physically interesting one-particle quantities as, for example, the current and
particle densities. Thus,

=2 (k/~)fk(q ~),
q(d

p =Z f (q, ~). (2. 7}

We now review the connection between the function fk (q, u&) and the two-particle temperature Green's
function. We follow the argument of Luttinger and Nozihres. " Writing the trace in Eq. (2. 6) in terms of
the eigenstates ( I' n ) ) of the Hamiltonian H, we have

f (q, (u)
I2 ((nip In) —(n'ip In' ))(nip In' )(n'Ip In)(E —E,—a) '

g 0 0 -q q n n' i
Plg

(2. 6)

~h~re w«ake (H PN}I n) =EnI n-), and we recall that +has an infinitesimal Positive imaginary Part.
We define the two-particle temperature Green's function averaged over impurities as

K, , (u, v, u', v') =-6, ,(Tr $p T(a (u)a (v)a, (u')a, (v'))j). (2. 9)

where, for instance,

a (u) =exp[ u(H- pN)]a exp[ -u(H- pN)], (2. 10}

with 0&u, u', v, v'-- P. T is the imaginary time-ordering operator which takes into account the sign of fer-
mion-operator permutations. (For a, discussion of the temperature Green's function technique, we refer
the reader to the book of Abrikosov et. al. ")As can easily be seen,
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similar relationships are true for the variables v, v', and u' as well. This means that E can be expanded
in Fourier series;thus, one finds

A, ,(u, v, u', v')= —, Z exp[8 (u-u')+a, (v-v')+u) (u v'-)]Z' f, ,(h, S „(u ),klk'I'
nn'm

(2. 12)

k (q, (a ) -=- f duexp(-u(u )(Tr[p p (u)p ]) .P k
k ' ~z p m o-q q i

where 8 = (2mi/P)(n+ —,
'

), and e = (2mi/P)m. The dependence of the Fourier transform on only three vari-
ables is a result of the time translation properties of K.

Next, consider the function kk(q, &u ) defined as follows:

=Z, —QZ' (8 „h, (o ),I P, I+q/2, k —q/2, I —q/2, k+q/2 n" n' m ' (2. 13)

where p q(u) is defined with respect to p q by an equation like (2. 10), and we have used definitions (2. 9)
and (2. 12) to arrive at the second line of (2. 13). Expanding the trace in the first line of (2. 13) in terms
of the eigenstates of the Hamiltonian H, we arrive at the formula

k (q, &u ) = Z ((n~ p ~n) —(n'~ p ~n'))(n~ p ~n')(n' p ~n) (E —E,—ur )
'

nn' p q q n n m z

Analytically continuing this expression"~" &u -&u (m positive —recall that &u has apositive imaginarypart),
we find by reference to (2. 8) that

f (q, (o)/y =k (q, (u).

Equations (2. 13) and (2. 15) constitute the connection between the distribution function f and the two-
particle temperature Green's function.

We have made this connection because of the availability of diagrammatic and analytic techniques for the
study of the temperature Green's function. We shall use these techniques in the following sections to study
the properties of Iz thereby obtaining an integral equation for a function, intimately related to Iz, which can
be interpreted in terms of the distribution function for quasiparticles discussed by Landau. '

III. DIAGRAM TECHNIQUE AND ANALYTIC PROPERTIES; BETHE-SALPETER EQUATIONS

In the first half of this section, we briefly review the features of the diagram technique which will be of
importance to us. We shall relate, as well, the way in which the fermion-impurity interaction is included
in the diagrammatic expansion of impurity averaged temperature Green s functions. For detailed descrip-
tions of the diagrammatic technique as applied to the study of temperature Green s function, we refer to
the works of Abrikosov, Gor'kov, and Dzyaloshinskii" and Luttinger and Ward"; and for some of the im-
portant results discussed in this section, the paper by Nozihres and Luttinger. " The inclusion of the
fermion-impurity interaction in the diagram technique has been discussed by Edwards and Langer' and
a good description is found in the work of Betbeder-Matibet and Nozihres. "~" The second half of this
section is taken up by a discussion, following Eliashberg, " "of some of the analytic properties of the
functions entering into the theory.

In the diagram technique, a particle-particle interaction is represented by the crossing of two fermion
lines, while an impurity interaction is depicted by a dashed line of momentum k- k ' emanating from a
fermion line which up to the dashed line has momentum k ' spin o and beyond has momentum k spin o' (the
orientation of a fermion line is from creation to annihilation operator). We take into account the average
over the positions of the impurities diagrammatically by having each dashed line belong to some bunch
of such lines, all of which end at the same point. In each diagram, there can be a number of such bunches,
and all diagrams which represent distinct ways of bunching the lines must be considered separately.
Mathematically each bunch of n lines represents a factor u(qi) u(qn)n&6(gq, 0) in the evaluation of the
diagram. [Here, 5( ~ ~ ~, ~ ~ ~ ) is just the usual Kronecker 5, and q represents the momentum transfer to
a fermion line via the impurity interaction. ] We note that diagrams having any bunch consisting of a single
dashed line vanish since u(0) = 0; also a diagram having any closed set of fermion lines (i. e. , no external
lines) connected to the rest of the diagram by only bunches of impurity lines must never be considered.

Just as for a system not having impurity interactions, inwhich case the important functions are deter-
mined in terms of the exact single-particle propagators and skeleton diagrams (those having no self-energy
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parts in any internal lines), so for the case under consideration, the impurity averaged functions of in-
terest are related to appropriately defined skeleton diagrams and impurity averaged exact single-particle
propagator s

G' (8 ) =- J dec exp(-u8 )(Tr[p a (u)ak]), . (3. 1)

[In this definition, 8n = (2 xi/P)(n + —,). ]
In the impurity averaged case, we define a proper self-energy part of momentum-spin k and frequency

to be a diagram with a stub for one entering and one exiting fermion line each of momentum spin k
and frequency 8„, and with no internal line constrained to have the same values for all of these parameters
(see, for example, Fig. 1). As usual, the relation between the propagators and the sum of all proper
self-energy parts, denoted by Mk(8 ), is given by the equation

(3. 2)

A skeleton diagram, which is unambiguously defined for diagrams having either external lines or stubs
for such lines, is one in which no line has any self-energy part inserted in it. [Figures 1(a) and 1(b) are
skeleton self-energy diagrams. )

We now turn to a consideration of the diagrammatic representation of the two-particle Green s function.
We shall also discuss other functions which are related to the two-particle Green s function as they will
be useful for obtaining later results. Graphically, the two-particle Green's function can be represented
by a free part in which two lines propagate independently, and a part in which two lines enter and two lines
leave a central core called the scattering function I' [see Fig. 2(a)]. These remarks are represented by
the equation (for ~~e0)

k'+q/2 k —q/2 k' —q/2 k+q/2 n'' n' k'k q n'' n' k q/2 n nc k-q/2 n

(3. 3)

By extracting the factors multiplying the square bracket on the right-hand side of (3. 3), we can define the
so-called vertex functions A~

(3.4)

where Xz =k /m for n =1, 2, 3 and Ac=1. Diagrammatically, the functions A+ are represented by Fig. 2(b).
In the case of a system with a vanishing particle-impurity interaction, there is no restriction on the value
of S~, with respect to S~~ in any diagram for I'; however, in the case under consideration, there are di-
agrams [see, for example, Fig. 3(a)] which have a value proportional to penn& . As we shall see, these

k, C
K, (O'C, cu)

k k;q

k+q/2, C+ cu

k-q/2, C k+q/2, C+cu

(b)

k -q/2, C

k + q/2, C'+~ k-q/2, C

(a)

FIG. 1. Skeleton diagrams for the proper self-energy
part. (a) Diagram contributing to Mp( ) (8), the part of
the self-energy not directly dependent on the impurity
density n . Diagrams for M(0) are the same as those
for the self-energy part in a pure system. (b) Diagram
contributing to Mg,

' (8), the part of the self-energy
proportional to powers of nz, Deletion of the factor nz

in the contribution of this diagram (there is just one
bunch of impurity lines) gives a contribution to the di-
agonal t matrix element of momentum A'.

h, (kC)

k+q/2, C+(u

k-q/2, C

(b)

k+q/2, C+w

k-q/2, C

FIG. 2. (a) Diagrammatic representation of the two-
particle Green's function E in terms of the scattering
function I" and the one-particle propagators. (b) Repre-
sentation of the vertex function in terms of I', the one-
particle propagators, and XQ'.
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diagrams are crucial in determining the impurity scattering term in the transport equation. "~'
In the standard way, "the function I' can be decomposed into irreducible parts I, which have no pairs

of lines of the form Gf, »+&/2(hscc+ur~)G~22 &/2 (h„»), connected together by such pairs of lines. Ex-
amples of diagrams for I are found in Fig. 3. In terms of I, we have the Bethe-Salpeter equations

t2, n

(3.6)

and A (k, h ) =)k + —2, & ()'2', 8,)G, , (8,+(u }G, , (8,) I, (8, , h, (o ). (3.6)

Later, when discussing the analytic properties of F and A we shall find it useful to decompose these func-
tions in a manner somewhat different from the above.

As has been discussed by Eliashberg" and later by others, 2O~" the scattering function F(8', 8, &u) has
important analytic properties as a function of the variables h, h, co when continued away from the dis-
crete points on which it was originally defined. The continuation is not unique, ' however, this presents
no problem in the present context. Restricting ourselves to the case Im+ &0, we find the singularities of
the function I' are as represented by Figs. 4(a) and 4(b). For the part of I' for which n' is not restricted
to be equal to n, there are 16 analytic parts with discontinuities at Im h'= 0, Im(8'q-~) = 0, Im'(h+ &u) =0,
ImS = 0, Im($'- 8) = 0, and Im($+ 8'+ v) = 0. For the part of I" for which n =n', there are three branches
with discontinuities at 1mB = 0 and Im($+ u&) =0; note that p5s+2- p5($ —8 ) upon continuation. We also
observe that A has the same analytic structure as depicted in Fig. 4(b).

For our purposes it is also important to know the analytic properties. of G&(h). It is easily seen from
the spectral representation of G~($) 22 that there are two analytic branches with a discontinuity at ImS = 0,
moreover, [G&(h)] =G~($ } so that the discontinuity across the real axis occurs in the. imaginary part of

GI,(h). The function Gf, (h) in the upper (lower) half-plane is denoted by GP(A) (h) [R(A) stands for re-
tarded (advanced)]. It is useful to note that the combination G~+ &/2(h„+ vm)Gy &/2(8„) when continued
away from the discrete points 8„,~~ has three branches

k + q/2, C + cd k+ q/2, C+ ~

(o)

k-q/2, C k.+q/2, C+~

k+q/2, 2+~~ k+q/2, 2+~

k —q/2, C k-q/2, C

CCk CO

1Z M sgf
Ex

(1,3) ( 1,1)

(1,2)
(1,3) ( 1,1 )r ' ImCImC= 0 AXIS

k, (2,2) r

(2,3) (2 2) ~ ~ (2 2) (2,1)I ~~g 11I

(2,2)
Im(C+&v) = 0

I I
(3,3)~~ (3 2) x (31)

k

(3,3) (3,1)
kl

Il 4'x

+
3 Ckk

X
EO

q

(a)

CO CIk

&x

h

(b)

ImC= 0

Im(C+(v) =0

k-q/2, C

(b)

k-q/2, C k+q/2, C+e k —q/2, C

FIG. 3. Diagrams for the scattering function I',
more specifically these are all diagrams for the ir-
reducible scattering function I. (a) Contribution to I,
proportional to nz. This type of diagram is important
for the determination of impurity scattering effects.
(b) Contribution to PI typical of those having a discon-
tinuity at im( 8' —8) = 0. (c) Contribution to PI typical
of those having a discontinuity at Im(8+ 8'+(d) =0.

FIG, 4. (a) Analytic structure for Imco &0, of the
functions ~I'(8', 5, cu), PI( 8',8, cu), 0 I'(8', 8, co) . This
diagram is a representation in the plane of the variables
Im S, Im 8' of the lines of discontinuity and regions of
analyticity of these functions. The part of one of these
functions analytic in one of these regions is labeled in
the same way as that region. (b) Analytic structure,
for Im(u&0, of the functions 'I'(8', 8, ~), 'I(&', S,~),
OI'(8', 8, v) (with frequency 6 functions deleted). The
structure of G(8 + cu) G (8) and A~( 8, (d) is also repre-
sented here.
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2($+(u)G
~

(S) -=g (k, q, $, (u), ImS &0, Im($+(g) &0
A A

k+q 2 k-q 2

2($+~)t „(S)-=g (k, q, S, (u),k+q 2 k-q 2
ImS & 0, Im (S + ~) & 0 (3.7)

2($+ ~)G
~

(S) -=g (0, q, $, &},k+q 2 0-q 2
im $ & 0, Im($+ (u) & 0.

Following Eliashberg, "~"we shall also define

(y, $)=~A (a, $), ImS, im($+~)&0
qc0 qco

A (k, $) ='A (k, S), ImS&0, Im($+u))&0qe ' qv

(u, S)='A (u, S), I S, Im($ ~)&0.
qv ' qR

(3. 3)

For the part of F proportional to 5n „i, which we call I', there are three branches I'~ '& ' defined as in
(3. 8). The part of I' depending on the three variables S„i, S„, and &u~, which we call I has, a.s we
said, 16 branches which are labeled as in Fig. 4(a) in a way consistent with the labeling of the functions g
in (3. 7). We note that the discussion of the analytic properties of ~ 1" and 1 and the labeling of these func-
tions holds equally well for functions ~I and I which are the parts of I, the irreducible scattering function,
analogous to ~ l" and ~T', the parts of 1.

The usefulness of the analytic continuations discussed above comes from the fact that sums over discrete
variables can be turned into integrations. We choose contours of integration lying within the different do-
mains of analyticity of the functions in question and surrounding those discrete points which are summed
over in each domain. The integral is taken of the functions in question multiplied by a function which has
poles, with appropriate residues, at the discrete points. For a variable such as $„=(2mi/P)(n+ —, ), an
appropriate function is (—, P ) tanh —,

'
P $ which has residues, at the points S~, equal to unity. (For a discus-

sion of this technique see I uttinger and Ward" and Abrikosov et al. "~")
As an example of these techniques, we obtain by use of Eqs. (2. 13), (3. 3), and (3.4)

g (q, u) )= . J dS tanh-,'(pS) 'A' (k, S)gl(k, q, S, u) ) —'A' (k, S)g (k, q, $, (u )
m

+ 'A4 (u, S—(u )g (k, q, S—(u, (u ) — A' {0,S—u) )g {u,q, S—u), (o ) (3. 9)

which upon continuing &u
- &u (a has a positive infinitesimal imaginary part) we can write, after some

change in integration variables,

h (q, &u) =(4vi) ' 1 dS tanh (-,' pS) 'A' (k, $)gl(k, q, S, &u) + tanh
2

-tanh

p ($+ &u)& *A' ():, S)g )k, q, )), (o) —tanh 'A' ()., big )k, q, )', ~)
I

(3. 10)

We observe here the important fact that in the term involving g, in {3.10) the integration over the fre-
quency is essentially limited by the factor (tanh [-,' P ($+ &u)] —tanh (-,

'
P S)). Integration of this factor alone

over 8 gives a result-2~; thus it appears, at first glance, that for small ~, the contribution of the term
involving g, is small compared with the rest of (3.10). Under conditions we now describe, this conclusion
is false. To most simply state these conditions, let us consider a parameter s collectively characterizing
qg&, &, y and y~; here v+ is the Fermi velocity, y the widthdue to impurity scattering is proportional
to ng, and y~ the widthdue to interparticle scatteringis proportional to I3 'p. '. When, as we shall assume in
this paper, the parameters characterized by s are small, the contribution from the term involving g, is as im-
portant as the rest of the terms in {3.10). The reason for this is as follows: Since the two quasiparticle poles
multiplied together in g, lie on either side of the real axis, the contribution of this function has a part
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which is essentially the inverse ot the (complex) difference in the positions of the two poles. (This is
shown explicitly in Sec. IV when we integrate g2 over I k I. ) As this difference is linear in the quantities
characterized by s, it follows that when s is small, the term in (3. 10) involving Sec. II is just as
important as the rest of (3.10) because the large contribution of the poles of g, just counterbalances the
small contribution of the tanh factors. (In this connection, note that the poles of g, and g, cannot introduce
large factors of order s-' because they lie on the same side of the real axis; on the other hand, there is
no limitation in the frequency integral due to the tanh factors involved with these functions. ) The situation
described here is quite general: Terms with a Sec. II, involving g2, also always involve some function
which, either because it effectively limits the range of the frequency integration or because it is propor-
tional to nz, introduces a factor s; this factor, however, is offset by the poles of g, which contribute a
factor s-'. As is evident from what has been said, the contributions from Sec. II have the characteristic,
unique to them, that they are very sensitive to the four quantities characterized by s; it will thus be
necessary in what follows, to treat separately these sections so that their delicate s dependence can be
handled properly.

In order to segregate the sections involving factors g, from the other sections, we define new functions

,I', ,A&, and kk'(q, ~); these are, respectively, the sum of all diagrams having no factors g, for the
scattering function I', the vertex function A, and the function kk(q, ~). As before, we can identify a
contribution to, I' proportional to P5„„~-P5(8 —6') which we call I I"; the rest of, l" we call ~l'. It is
easy to see that

a graphical representation of PI' is given in Fig. 5. Let us note the simple relationship between, A and
kk'(q, (u), namely,

h "(q, v)= f tanh '(( (k, 8)g ((., q, B, v) —tanh — —', A (k, 8)g (k, q, (), iu)I, (S. (2)d 8 pS, , p(8+(o)
4m

A convenient way to write the contribution to kk(q, e) of terms having factors g, is to single out the first
factor g, which is found as one follows the appropriate diagram from the lines having momentum k + q. "
Doing this we get

k„(q, (o)=k„'(q, (u)+Q„, —. — . Q (k, k', h, h')g (k', q, 8', (o)
dS dg'

(g~+ gt
x tanh ' — —tanh ~ 'A4 (k', g') .

Here,

Q (k, k', h, 8') =-4vif)(h —h')6, +tanh(-,'Pg), I'. . . (g', g, ~)g (k, q, g, (g)
/CO

—tanhr zP(~+&)],I' 2 3qk, k
(8', h, (u)g (k, q, 8, (u),

and we note that

k -q/2, C k + q/2, 6 +~

k+ q/2, 6+ (L) k —q/2, 0

FIG. 5. Graphical representation of the function, r.
In the second and subsequent terms on the right-hand
side, at least one of the factors I must be of the form
PI. The subscripts l, l', l", etc. , on the factors g can
take on the values 1 or 3; they should be summed over
where appropriate.
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[In (3. 14), ,I'(2 I)/ = 1, 3 is that branch of, I" analytic for Img negative, Im(g +~) positive, and both ImS,
Im(g y~) positive (negative) for l =1 (3), see Fig. 4(a). ] It proves useful to make a similar decomposition
for 2A&, and we are led to the Bethe-Salpeter type equation,

(k, g)= A (k, g)+Z, —. A (k', g')g (k', q, S', )
q'Qr

' o qco
' u' 4ri q~ ' 2

(3. 16)x [4vi6(g —S') 'f,„(g',~)+g', (g, g ~)]kk, q kk, q

where 2, (S', S, (u) -=r. . . (g', S, (o) tanh[-,'P(g'+(u)] — r. . . (S', S, (o)tanh[-,'PS']

+ coth[-,'P(g' —S)] [ I'
( ), (S', S, ~) —~r, (S', g, (u)] + coth[ 2P(g+S'+&u)]

x PrIII, P IV
(2, 2)k'k; q

' ' o (2, 2) k'k; (3. 1V)

[See Fig. 4(a) for the regions of analyticity of the various functions i, I" in (3.17).] We remark here that
the steps leading to this equation are appropriate only for Im(g+ —, z ) ) 0, for Im(S+ —, w) & 0 the correct
steps lead to a function different from g; when, as in our case, 8 and ~ are continued to the real axis
these functions coincide, and the use of 2 in (3. 16) is justified.

Our goal in the next sections will be to obtain more explicit forms for (3. 13) and (3.16); this will enable
us to defin@ a function which can be interpreted as a quasiparticle distribution function obeying a transport
equation of the Landau form and having appropriate relationships with such quantities as the current and
particle densities.

IV. EVALUATION OF TERMS INVOLVING SMALL PARAMETER (s)

In Sec. III, we indicated qualitatively that the dependence on the small parameters qvF, co, y, and p,
characterized by s, is all found in terms involving Sec. II with factors g, . To make more precise what
we mean, we point out that when s/p, «1 (as we assume throughout this paper) we can accurately find the
response of such quantities as the current and particle densities by determining them to lowest order in
the parameter s. For this purpose, we consider the function kk (q, &u) to lowest nonvanishing order in s,
namely, the zeroth. (Actually the physical quantities of interest are of order s '; this is understood by
the observation that the distribution function f= kg, but if the external field of force -iqQ is finite then

1/s and thus, f 1/s. ) It is when we consider the dependence on s of the zeroth-order contributions of
functions such as kk (q, (u) and 'Aq~ (k, S) that we find that all s dependence resides in Sec. II. In the rest
of this paper, we shall focus our attention on these zeroth-order contributions of the functions mentioned,
and from this study, we shall be able to obtain a quasiparticle transport equation. Our purpose in this
section is to obtain, explicitly, the zeroth-order dependence of Sec. II; specifically, we calculate the con-
tribution of order s ' of g, and the contributions of order s of y~, g, ~I', and 2'.

We have indicated that the poles of g, give a contribution of order s; we now see how this contribution
is evaluated. Note first that we only have to consider g, (k, q, S, &u) for

~
g o&max(P ', v)«p. In (3. 13),

this is obvious because of the tanh factors; for the same reason, it is necessary to consider (3. 16) only
for

~

S
~

« iL, and since the contribution of 2' (S', S, u&) is important only for small values of S' when S is
small, it follows that in (3.16), as well, g, (k', q, S', ~) is needed just for ~g'~ «p. Writing

g, (k, q, S,.~)=[g+~- (e -p)-ReM, 2(g+(u)-ilnQN, 2(g+~+ig)] '
k+ g/8 k+ Cf/2 Q+ g/2

x[g- (e 2- g)-ReM (g)+iinuVI 2(g+i71)] ', (4. 1)

and noting, as will be shown, that
~

ImM (S)
~

is of order s for
~

S
~

& max(p, &u), we see that g, is impor-
tant for values k such that the real parts of the denominators in (4. 1) are of order s. Consider then the
equation

S- (e - p) —ReM (S)= 0
u u

(4. 2)
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&ReM (g)
(e--g) —ReM„(h)= 8-Ek —Re[Mk(h) Mk-(Ek)] =(8 —Ek) ~

1—
k k k k k k k

~
eg (4. 2)

for small 8, we assume this equation defines a one-to-one continuous relationship between h and
~

k
~

with
(~ k

~

—k&)/k&«1. Letting Ek (the quasiparticle energy) be the value of 8 determined by (4. 2) for fixed
~

k
~

(as we are going to integrate over
~

k ~, we need keep only the part of Ek independent of impurities),

l
we have

For the use of (4. 3), it is assumed that the coefficient of 8-Ek is of order 1 and only varies significantly as
a function of Ikl, over a range of order ky. This coefficient is the inverse of the renormalization constant,
e. g. ,

sReM (h)

() g 'kl
(4 4)

Note that, for our purposes, impurity contributions to zI, can be neglected as they introduce terms of high-
er order in s. From (4. 3), (4. 4), and (4. 1), for small ~k~-kF, we have, to the desired accuracy,

g, (k, q, h, &)= k
(z )'

([8+~--,'(q v )-E ]+iy„($+~))([S+-,'(g. v„)-E„]-iy„($)]
(4. 6)

where vk = Vk Ek is the quasiparticle velocity of magnitude vf, and yk(h) =ski imMk(h} ) is the quasiparticle
width. From this equation we see that the significant values of

~
k~ lie in a range of order s/vF, over this

range we may ignore the variation of vk and ImlVIk(S) as functions of
~
k~. A sum over k of g, taken with

any function Bk (varying slowly over a range of order s/v&} is now easily evaluated (by use of the method
of partial fractions and cognizance of the discontinuity of the logarithm across its branch line) to give

k k 2 ' ' '
J lkl=k 4 — '[ (h ) (&)]

(4. 6)

where D(0) =kg'/vF2w' is the density of states at the Fermi surface. (We have here used the fact that
Ek&=0. 28) For completeness, we remark that the contribution to (4. 6) from large values of k does not
diverge since g, (k}-m /k as k-~; clearly the (finite) contribution from this region does not give terms
of order s-' and so may be ignored.

In order to complete the investigation of the contribution of g„we now evaluate yk( h). The evaluation
of the imaginary part of the self-energy for small values of 8 is most conveniently carried out by use of
a technique due to Langer"&" for the determination of the branch discontinuities of functions occurring in
many-body theory. This method, which is an adaption of one developed by Landau' for field theory in
high-energy physics, works as follows: To determine the discontinuity of a function in one of its fre-
quency variables, first consider in a skeleton diagram for the function, all sets of fermion lines the appro-
priate sum (or difference) of frequencies of which equals the external frequency of interest. It is easy to
find such a set of lines since the severance of the lines belonging to it cuts the fermion part of the diagram
into two pieces (which may still be connected by dashed impurity lines); one of the pieces has external
vertices with total incoming (the other with total outgoing) frequency equal to that in which the singularity
is being determined. The contribution to the discontinuity from a given set of lines is calculated by as-
suming that all the singular behavior comes from these lines. All such contributions for each pertinent
diagram are added together to get the total discontinuity of the function of interest. (In connection with
this, see Ref. 20 for the treatment of overlapping singularities. ) We remark that under certain circum-
stances the use of this method becomes dubious: This happens when one of the internal lines of a diagram,
not a member of the set of lines singled out as described above, has values of energy and momentum which
are restricted to lie near a propagator pole by the small values of certain external parameters and by the
frequency 5 function and fermion occupation factors introduced in the evaluation of the discontinuity.
Specifically, this situation occurs when there is a pair of lines, with momentum-frequency difference (or
sum) equal to externally determined values, one of which is a member of the set of lines used to evaluate
the discontinuity; the other member of the pair is then a line of the general type described above. This



JAMES L. SIGE L 186

problem is relevant when the discontinuities across the real axis are being considered for the variables
8, 8+&@ in A~&I~(k, 8) and for the variables 8, 8+v&, 8', 8'+a& in I'

t, rt . q(8', 8, &u); no difficulty of this sort
is encountered in the consideration of the self-energy part or in the irreducible scattering function I'
(see Fig. 6).

It is useful in the application of the techniques described above to the determination of the imaginary
part of the self-energy to distinguish terms which are not directly proportional to the impurity density
(and are thus represented by diagrams with no explicit impurity lines) from those which are proportional
to nonzero powers of nz' (with diagrams having explicit impurity lines). As we just have to keep terms
of order s in calculating yp(8), we need only evaluate terms of the latter type proportional to ni. The
contribution of such terms can be written [see Fig. 1(b) for a representative diagram]

M "& (8+i&I) =r~. t(i'r, 0, 8+i&i),

where t (k, k, 8+irt ) is just the diagonal matrix element of the t matrix for a single impurity in the Fermi
liquid. The diagrams for the off-diagonal element t (0', I&, 8+irI ) are the same as those for M"', except
that the momentum transfer is restricted to k' —k instead of 0 and the factor v~ is dropped. The sets of
lines which can cut the fermion part of M~" in two pieces contain one, three or in general an odd number
of lines. The discontinuity obtained from considering a set with three lines gives a factor P-'g ' or m'/tL

[as we shall see when considering the other pa, rt of Mp(8)]; thus, a contribution of this type to the discon-
tinuity of M~') is at least of order s' and can be dropped. Sets with a greater number of lines clearly
yield even higher orders in s and need not be considered. The discontinuity from the sum of all sets
containing only one line is given by

ImM &'&(8+i&I)=-.'[M ' (8+i@)-M "&(8-t&i)]
k k k

ImM, (8+i& )

tr ' ' "" [h ( -t)-ReM, (8)]' [I M (8 ' )]' (4. 8)

We are interested in this formula for small S, and thus, we again use the fact that ImM is of order s.
Inasmuch as nz is of order s in smallness, we see that we only have to keep the contribution from the
denominator in (4. 8) of order s . This is done as in the discussion given above for the contribution of g2.
Assuming that t(k, k, 8+i@) is not rapidly varying as a function of its momentum variables, we have

ImM~ (8+ 2'g ) =
y~ (8) = —n. 7T i 4 D(0)z~ i

t (k k 8+ t&I ) i
2 7T

(4. 9)

where we have used the fact that ImMy(8 iq+) must be negative. [This follows from Eq. (3.2) and the
analyticity of G~(8) in the upper half-plane. ] A result of this form for zero temperature Green's func-
tion was obtained in Refs. 23 and 24. Note that the assumption that the t matrix is slowly varying in mo-
mentum means that y~~ (8) is slowly varying as well.

We now discuss the contribution to the imaginary part of the self-energy of the terms not directly pro-
portional to the impurity density [see, for example, Fig. 1(a)]. This part which we call M &'& (8) has, as
we indicated, a diagrammatic representation which is precisely the same as that of the selt-energy in the
case of a pure system. The sets of lines which when cut, separate the skeleton diagrams for Mt, @& (8) into

k+ q/2, C+~

k-q/2, B

FIG. 6. This diagram is an example of the situation
in which the use of the technique described in the text
for the evaluation of a discontinuity is in doubt. For
the calculation of the discontinuity at Im($+ co) = 0 of
this contribution to A (8, co), the method calls for the
consideration of the detailed behavior of only the three
fermion lines cut by the light diagonal line; however,
when q, $, cu, P are all small, the behavior of the

propagator represented by the line labeled k' —&q, ~ '

cannot be ignored because of the proximity of its vari-
ables to its quasiparticle pole which is forced when the
discontinuity is being evaluated.
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two pieces, have an odd number, greater than 3, of lines. The contributions of sets containing five or
more lines to the imaginary part of the self-energy for small frequency 8 are smaller than those obtained
from sets containing three lines by powers of s p, ', "&"and thus, may be ignored. The calculation of the
imaginary part of the self-energy from "onsideration of sets of three lines has been done by Eliashberg"
(see as well, Ref. 15) and in part by Langer, " For I 8 I & max(&o, P ') and I k I- kF, we have to lowest
order in s

z ImM &0&(h+iq)=--y ~(S)=(-v) Q
01 0'2

)k. ) =0
2

dQ
1

4m

dQ

4
' '"'k'k'k

4m 1 2

xz I'
k k

'(k v ) '5 (Ik+k2 —k, l
—1)+ 2 1 & 2& 1& + 2 1

1 cosh( P 8/2)
cosh(P 8,/2) cosh(P 8,/2) cosh[ P ( h+ 8, —8,)/2]

(4. 10}

where jp is a unit vector in the direction of k~, and I is just the scattering function evaluated at Sz= 0.
In order to obtain this result, it must be assumed that I' is an insensitive function of its arguments [this
makes yk~(h) insensitive to I kl as well]; of course, this is not true for angular regions corresponding to
such situations as forward scattering, however, as these regions are very small, no difficulty occurs in
an integral over all angles. Also, away from these angles, the imaginary parts of the frequency argu-
ments in the I' s appearing in (4.10) are arbitrary; alteration of these imaginary parts merely introduces
factors of siL '«1, thus, we may simply write I

I'I' in (4.10). The frequency integrals in (4.10) have
been carried out' and give

k
' 'k v w 4m 2P 17 2 1

01Cr2

(4.11)

In this expression, the factor z'D(0)I' is of order unity [in He', for example, this factor is of the same
order as the ratio of the effective mass (m*=-kF/vF) to the bare mass, this ratio is of order 1]; it follows
therefore, that for I Sl & max(p ', (u)

y (8)-p '/p -s, for &u«p ', and y (h)-uP/p, -s'/p, , fo ~& p '.p (4.12)

The second part of Eq. (4.12) reflects the fact that interparticle scattering is unimportant when the tem-
perature is less than the frequency of the driving field —in the case of a pure system this is the collision-
less regime —it is useful to have this result nevertheless, since it essentially gives the (very small) val-
ue of the damping for such collective modes as zero sound" (in a. pure system). Collecting our results
we have for I8 I ~ max(P ', ~)

—z ImM (8+i')=y ($)=y (h)+y (8)+0(s /p, ). (4.13)

We have completed the evaluation of the contribution of the factor g2 in Sec. II. It is now necessary to
evaluate the other terms ~I and g. The term ~I gives a contribution of order s or higher because it is
directly proportional to powers of nz, we need consider here only that part proportional to nz which gives
[a, diagra. mmatic representation is found in Fig. 3(a)] for

1m 8& 0, Im($+ ~) &0, I, (8, ~) = n. t( k+q, k'+ —,q, 8+ &+iq)t(k' —,q, k ——,q, 8-- i'q),
2

(4.14)

where t is the single-impurity t matrix discussed earlier. We have already assumed t to be slowly vary-
ing in its momentum variables (compared with the characteristic momentum s/vF); if also the frequency
derivative does not introduce a factor s ', we may write to order s

'I, (h, ~) = n
~
i(k, k', S+ iq) ~'.k'k q

' i (4.15)
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Note that to the appropriate accuracy

dQ i 2

4m k k' k'k;q (4.16)

Unlike the impurity term, the contribution of 2 to Sec. II is of order s because of the limitation of the
frequency integral imposed by the hyperbolic functions of the frequencies. It follows that terms with any
direct proportionality to s in 2, such as those with factors nf, may be ignored. We can thus consider
the same contributions to 2' as analyzed by Eliashberg' ~" for the pure case. To determine these con-
tributions, we note from (3.17) that we need the values of the discontinuities across the real axis in the
variables (g'- g) and (g+ g'+ v) of the function PI"&»&(g', g, ~). Since these variables are bosonlike
(in their discrete form they are integral multiples of 2»i//P), the evaluation of the discontinuity for them
involves (in the method previously described) sets of even numbers (~ 2) of lines. The evaluation of the
discontinuity for four or more lines leads to contributions of order s' or higher and will not be made here. "
Consideration of sets of two lines the sum or difference of the frequencies of which is equal to one of the
variables 8'- 8 or 8+ 8'++ shows that such pairs can only occur in diagrams for PI' having no intermedi-
ate cuts gf(k "& q& g", ~); thus, we need only consider the discontinuities in the function PI in these vari-
ables. The diagram appropriate for the evaluation of the discontinuity in g'- g is shown in Fig. 3(b),while
that for the variable (g+ g'+ ~) is found in Fig. 3(c). For I gl, I

g'I & max(]6 ', a&) and I k I, I k'I -kF, one
finds for the discontinuity in 8'- 8, to the desired order, "~"

P II P III '"k
(2, 2)k'k; ' ' (2, 2)k'k; ' ' "

4 k k+k'-k~ k'k k+k' kk~-
1

(4.1&)

for the discontinuity in 8+ 8'+, we have

P III P IV im
dQ

k, 2 1"'k'k+' k ~'k k k k+k k ~'k .
aa

' cosh(hh', /h& cosh]P(8 c 8 '+ ro —8,&/S]
' (4.18)

In these two equations, the functions 1" are defined as after (4.10); in order to obtain this form, the fact
that the main contribution in these expressions comes from $]«p, has been used. The dependence of the
functions I in these expressions on q, ~ has been dropped, since it introduces terms of order s in the final
result.

The discontinuities h&I only account for part of 2, to simplify writing the rest, we define a function
which is an average of PI'„, over some of its branches; thus,

(4.i9)

We shall be interested in this function for I gl, I
g'I & max(p ', ]d) and IkI, Ik'I-kF, in this region it can

be characterized as a similar average I~ of I&»,plus the sum of all terms contributing to, I'„» having
~ ~ ~ ~at least one of the sections of the type gf(l= 1, 3). In terms of I" and the discontinuities n. I we can write

the four branches of PI'&») in the region mentioned as

From (4.20) and (3.17), we now easily get

(4.20)

~„,k. (g', g, ~) = I, (g', g, ~)(ta~[-.'p(g'+~)]-tanh(-, 'pg')] + —,'~, l(2cot [-,'p(g'- g)]-tanh(-,'pg')

—tanh[ —,
' P(g'+ u&)]) + —,

' 6,I(2 coth[-,' P(g+ g'+ &)]- tanh( —,']Sg') —tanh[ —,
' P(g'+ ~)]] . (4.21)
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It is appropriate here to make an identification of the function I"; this is an important step in showing
how the reactive part of the transport equation is related to the zero-temperature Landau equation. "~"~'
First let us emphasize that because of the tanh factors multiplying I'~ in (4. 21), we only have to determine
it to zeroth order in s (as a consequence we need not consider terms with direct proportionality to nf ).
With this in mind, let us investigate I . Assuming that the interaction matrix elements occurring in the
irreducible scattering function are slowly varying functions of q (the problem of the long-range or Cou-
lomb interaction must be handled separately; it is briefly discussed in Sec. VI), we find that the only pos-
sible significant dependence of I on q must come from the internal lines in diagrams for it. However, in
such graphs no two lines are required to have a frequency (momentum) difference with value ~ (q), thus,
there is no forced near coincidence of propagator poles in I and we conclude that the difference of this
function from its value at q, ~ = 0 is at least of order s and hence may be ignored (an argument of this type
for zero-temperature Green's functions is given by Nozieres'). Since the only possible zeroth-order de-
pendence on the temperature and impurity density in I must involve the quasiparticle width, it follows
that the lack of coincidence of poles in I means that we can evaluate it in the zero-temperature zero-im-
purity density limit. Inasmuch as we have removed the singular behavior (branch cut) in the frequency
variables by considering the average I, we can reasonably expect that this function is slowly varying
with respect to 8, 8', (k'(, and (k'( for values near the Fermi surface. More precisely, consideration of the
dependence on these variables would lead us to terms of higher order in s than are called for. The rest of
the terms contributing to F all have diagrams with a number of pairs of lines with momentum, frequency
differing by q, &u; however, these come only in the form g»(k", q, h", &u) and are always sandwiched be-
tween factors I which are, according to our assumptions, slowly varying functions of k" near the Fermi
surface. It is clear that all the zeroth-order dependence on s of these terms can only come from the re-
gion around the poles ing» near the real axis, i.e. , for 8-0 and (k"

( -k&, In this region, we can re-
place g, ,(k", q, 8",(u) by

('k -'~'"- 'k -
y2
"&k - y2" + ")~ '~' —'k - y2 "&k-- y2")~

' (4. 22)

where the plus (minus) sign refers to g, (g, ). Since both poles in (4. 22) are on the same side of the real
axis, we obtain upon integration over (k" ( essentially the momentum derivative of the slowly varying I
factors; thus, there is no s dependence in zeroth order. Having considered all terms in 1 &, we can now
conclude that I' can be taken as its zero temperature, wavelength, frequency, and impurity density limit.
As in the case of I, for our purposes, we can take I" to be its value at $, 8' =0; moreover, since by
definition, I'~ contains no sections g, (so that diagrams contributing to I'~ are those which would contrib-
ute if ~ —= 0),we can identify it with the function I'k ~kq(8 8) defined by Landau' " ' "which in the zero-
temperature case is the limit of I' as v/q-0, q-0. This is the connection that allows us to identify the
reactive part of our transport equation with the zero-temperature Landau equation. Just to complete this
discussion, we note the symmetry of the function I"kk~ with respect to the interchange of k and k'.

We have discussed the s-dependent features of expressions involving Sec. II (with factors g, ); in Sec. V,
we interest ourselves in the properties of some of the functions not involving sections of this type.

V. TERMS INDEPENDENT OF SMALL PA1V&lETERS (s); WARD IDENTITIES

For the same reasons cited in the ease of I', the functions o A, ko, and Q do not depend on the quanti-
ties characterized by s, when evaluated to zeroth order in that parameter. (In particular, direct depen-
dence on the impurity density nf can be neglected. ) The importance of these functions is that they provide
the important s-independent quantities which enter into the theory. In this section, we display some iden-
tities involving these functions which will allow us to make a physical interpretation of the quasiparticle
transport equation we obtain.

We begin our considerations with a discussion of the functions 0 A~(k, 8). It is taken for granted that
near the Fermi surface these functions are slowly varying in [k ~

over a range of order sjvF. The slow-
ness of variation with respect to 8 (in the sense that this variation leads to no contribution of zeroth order
in s) needs some elaboration. We give a plausibility argument as we did for I', i.e. , we suggest that if
the discontinuities in, A across the cuts ImS =0 and Im(S+ ~) =0 do not involve contributions of zeroth or-
der, then for ] 8) &s, we can safely take, A (8) to be its value at 8=0. We pointed out in Sec. IV, that
the techniques for evaluating discontinuities of Larger' ~" must be applied with great caution when pairs
of internal lines with frequency-momentum difference fixed at ~, q are present. Such pairs are found in

,A (as well as in ~ I which occurs in Q); however, by definition, they cannot be in the form g„but must
be either g, or g, . It is the essence of an argument of Eliashberg" that complications are introduced by a
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pair of lines of the type described above when factors g, are involved, but not otherwise. The Langer
technique gives the correct result when only factors g, and g, occur. As was pointed out above, contribu-
tions to,A directly proportional to nz need not be taken into account; thus, we need only consider the dia-
grams for, A which occur in the case of a pure system. The discontinuities in such diagrams in the vari-
ables 8 and 8+co are determined by cutting, in the Langer method, three or a greater odd number of lines;
it follows that the discontinuities are proportional to s when ) 8) & max (P, &u) and thus, may be ignored.

Some important properties of the functions oP are embodied in the Nard identities" ~"»"~"which we
review here. In a way similar to that used by Nozieres and Luttinger" to reach their Eq. (4. 32) and (4. 33),
we find

(5. 1)

thus, it follows that

e M„(8+I ri)
1 —Re g

= lim —,'['A' (0, b)+'A' (k, &)].
Om

'
0(d

(5.2)

In order to obtain a relationship between, A and Eq. (5. 2), which for jk(-k~ and S=Ef is the inverseof the
renormalization constant zk, we separate, as in Sec. III, terms with factors g, from the rest; thus for
j k )

-k~ and j 8 ) & s we have to zeroth order

-'['A (k, 8)+'A4 (k, 8)] =',A'(k, S)
0(d 0(d

J
tk't =k

dQ
(5.3)

In this equation,

N'(8, (u) —= (1/2(u)1tanh [ —,
'

p (8+ (u)]- tanh (—,
'

p 8)j, (5.4)

note that the integral of N'(8, e) over 8 is unity and that in the limit &u-0, N' is the negative derivative
of the Fermi function;

(5. 5)

A,

(we have used here the fact that zy is independent of k in zeroth order). To be able to use (5. 5) we have
replaced —,(,I'&»& +,I'&„») by —,

'
(, I"

&, » +~01' &»&) which, by the argument given earlier, is accurate to
zeroth order in s. Similar reasoning allows us to use, A in (5. 3}.

An important feature of Eq. (5. 3) is the fact that it is not dependent on the value of &u; to see this we

study the function 'A'0 (k, 8). Note that the special case of q=0 of Eq. (3. 16) is rotationally invariant and

thus at the Fermi surface we need not consider the k dependence. 'A'0~($) is conveniently represented
as the sum of two functions; one, y~, is the part essentially independent of, 8, while the other X '~(S)
has all the h dependence. These functions satisfy [see Eqs. (4. 9), (4. 10), (4. 15), (4. 17), (4. 16), and

(4. 21)]

dQ
2 A4+ Q I, dg' N(h', (u)[(u'A (8')] /{~+i [y (8')+y (8'+co)] j,0' 4m kk '

0(d
(5. 6)

(8')
Ocop+iC

~ + i[y($') +y($'+ &u]
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f [y(g) + y(g+(o)]

~+t[y(g) + y(g+u)]

Here C~ and CP are, respectively, i'mpurity and interparticle scattering functionals; thus,

(5. 7)

dQ~ r

C g [y igI] —= 2mn. zk 4 D(0) It(k, k, g +iq)l'(ykig-y g)Ik' I =kF
(5. 8)

and C
dQ dQ

kgt [yk'g']=4 ~ 4 4 k ~ 'kD (0) fdgldg2~Fk k k k-k k~'
v 0 Ik.)=k E k a~ + 2 X) 2~

I 2 i F

x ( ~k k k
~

1
N (g„~) cosh[-,p(S, + ~)] cosh(~ pg].) 1

k, g, N'(g „) «»h[~p(g+~)] cosh(2pg) cosset~ pg, )cosh[ 2]8(g+ S2 gy)]

N (g» &o) cosh[2p(g, +a&)] cosh(&PS, ) 1
k, g, N (g, &) cosh(-,'Pg) cosh[2P(g+&}] cosh[~zpg, ]cosh[:p(g+ g, +(d —g|)]

cosh( —,'p g) cosh[ —',p(g + &a )] 1

cosh[ ,'0[8+8, —-8,)] cash[-, P(8+~+6, —8, )] ~o~h(*P&, )«~h(*P&, ) }
For future reference, we define a functional C closely related to CP, i. e. ,

[F g
-='(g', ),g,] = '(g, )C g [,g ]. (5. 10)

Note the important fact3' that for a rotationally invariant function y g,

fdgN (g, u)) Ckg [y ] = 0; (5. 11)

clearly, also C g[yg] vanishes. From (5. 7), (5. 11), and the properties of X and)t (g), it easily fol-
lows that

y = fd g N'(g, &u) (g) .
ru + i[y(g) + y(g + (u]

(5. i2)

Putting this into (5.6), we get

dQ i
X =,'A'+&, f 4, &kkX„; (5. ia)

the solution of this equation is clearly independent of z. From (5. 3), (5. 12), and (5. 13), we can identify
with 2('A~0 +'A~0 ) which is thus also w-independent. Note also, from the remarks following (5. 2),

that y = I /~k (5. i4)

Equations (5. 13) and (5. 14) will prove extremely useful in obtaining a quasiparticle transport equation.
Another Nard identity which we need is much simpler and is important in determining the relationship

of the induced current density to the quasiparticle distribution; it reads"

k BM (g+iq)
+ Re sk

——,'[,A (k, g) +, A (k, g)] . (5. 15)
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The definition of vy, the quasiparticle velocity,

v
ak

we (h~fq)
= —+ Re

8k

we (g)
+He (5. 16)

leads to the result

v =-,'z [,A (k, S)+, A (k, h)] (5. 1&)

Since we are interested in (5. 1V) only to zeroth order in s, we can ignore impurity effects and can write
for Iul -u&

k'
Q 2 Q d8 Q

k k0 ' h-0 kj4g k'm ' ' ' g-0' (5. 18)

the firsiequalityfollows from the discussion at the beginning of this section and the second follows from
Eq. (3. 15).

As a final result of this section, we derive a useful identity for the zeroth-order part of hpo. From
Eq. (2. 13), it is evident that for ~ g0, kk(0, ~ ) = 0. Analytically continuing in the upper half-plane,
we find, as well, that kk(0, v) vani%ses; thus, from (3. 13), it follows that

kk = —f4 g, (k,. 0, h, (u)2(oN' (b, (o) 'A' (k, g)

—f Q, .f a(0) q(k, k', h, 8')~ &, 0(zk, )'y (5. 19)

Here we have used Eq. (5. 12), and we take [see Eq. (3.14)]

q (k, k', 8, h' ) -=q(k, k', 8, 8') —4~i 6(S —h')5 (5. 20)

Normally, we use hyo in a sum over 0 with a function BI which is not a rapidly varying function of t k)
at the Fermi surface; from (4. 6), it follows that such a sum is given by

0 dQy
Q Bkkk = —Q f D(0)(BQ) z 'y (5. 21)

where (Bq) = j' Q, B. , q(k', k, S', g)
~ &

(5. 22)

We have now built up the machinery for the derivation of a quasiparticle transport equation, which is
the subject of Sec. VI.

VI. QUASIPARTICLE DISTRIBUTION FUNCTION AND TRANSPORT EQUATION

In this section, we shall show. that a quasiparticle distribution can be defined which depends on spin o,
direction on the Fermi surface k, and frequency 8. The partial connection of this function to the bare-
particle distribution function will be discussed and its relationship to the current and particle densities
will be explicitly determined. Finally, we shall obtain a transport equation for this quasiparticle distri-
bution function. The reactive part of this equation is of the Landau form'; the absorptive part is the sum
of an impurity scattering term of an expected form, 7-' and an interparticle scattering term. '

To begin our considerations, let us study Eq. (3. 13) for kk(q, &o); using Eqs. (4. 6), (5. 19), and (5.20),
we obtain for the impurity averaged bare-particle distribution function to lowest order in s,
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= k (q, (u) = f -.— 2N' ($, (o)(u[g, (k, q, S, a)) 'A' (k, h)
4m qV

g(d

-g, (k, o, b, ~) 'A'6 (k, h)]+ 1—.Q, f D(0)q (k, k', h, o)0 4 '
) )

4

&& fdic'N' (h', (u)b, )'(-— — — —— =— —'A' (k', h' )-y }
e-v i'q+z[ yk(g'y~)yyk(h )]

(6. 1)

[In this equation, we have used the fact that the integral over 8 of N (8, ~) is unity. ] Just as in the case
of kk, discussed in Sec. V, we avail ourselves of the fact that f is normally used in a sum over k with
a smooth function Bk, thus, we have, for the induced quantity associated with Bk,

de
(k) =g f — D(0) z (Bq)„jdSn (k„o, 8,).

q+ 0 Ipi ~ 4m
(6.2)

Here, we have used Eqs. (4. 6), (5. 22), and the definition

n (k, v, 8)/P -=N'(8, (u)v (k, o, 8)
q(d q(d q 40

=N'(8, (u) (k, h) —zp
~-v j E[y (8 ~) y (8)] ~

l&~i =a
(6. 3)

we shall identify n&~ (k, o, 8) with the deviation of the qua. siparticle distribution function from local quasi-
particle equilibrium. From our identification of I' with I'0 (see Sec. IV), we are led to describe the
total induced quasiparticle distribution function by

dQ,
n (k, (x, h) =n (k, o, h) —N'(h, (o)JdS'Q, f E, n (k', a', h').

qm ' ' qe
(6.4)

If we define a function EI I, f on the Fermi surface so that it satisfies

dQ „
kk' kk' o" I 4m kk" k"klu" I= uF

(6. 5)

(note that since Eis symmetric with respect to interchange, so is E), we can easily write the inverse of
the relationship (6.4), namely,

dA,
n (k, cr, 8)=n (k, o, h)+N'(&, &u) fdb'Q, J 4 F,n (k', o', h') .

qv ' '
qco

(6.6)

(For a discussion of the physical significance of the difference between n and n see, for instance, Refs. 6,
7, and 9. )

To justify our identification of n, and thus, n, we now show that the special cases of (6. 2) which give
the induced current and particle densities can be written in the standard form for quasiparticles. '~ 'y ' For
the particle density we have

dQ

p =Eked (k) =Z j, D(0).„(lq) fdic~ (k, o, 8);q~ 0 qur o
t I &

4m k k qw
(6.7)

noting from (5. 22) and(3. 15) that (1Q)k is just 20A~ (k, 0), we find by reference to (5. 13), (5. 14), and (6.4),
that
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dQ~
p =Z

4
D(0) fdSn (k, o', b)

Q Qp 0
~ p ~ p

47/
(6. 8)

[we have used again the fact that f dSN (S, w) = 1]. The current density is given by

dA~ k

D(0)z„'q fdSn (S, o, S);
4n km k q&

(6. 9)

this result together with (5. 18) leads to the relation

dQ~
j = Q f D(0)v fdSn (0 v S). (6. iO)

[In a translationally invariant system, another Ward identity, not discussed here, can be used to give the
current in terms of n, thus

dQ
j = Q f D(0) —fdSn (k, o, S) . ] (6. ii)

If in (6. 8), (6. 10), and (6. 11), we think of the S integration as an integration over the quasiparticle ener-
gy, then we see that indeed these equations are in the standard quasiparticle form.

Now that we have defined the quasiparticle functions v and n, we are in a position to point out that it is
not possible, in any obvious way, to determine f completely in terms of n or n; that is, of course, be-
cause the first term in (6. 1) does not have an integration over the variable )k) which is found in the fac-
tors g, . This feature is not unique to the impure case we are studying, but clearly is also relevant for a
pure system. In contrast with this result is the work on a pure system of Resibois"~" and of Watabe and
Dagonnier" and that on an impure system of Sigel and Argyres. "~" In these studies, a quasiparticle dis-
tribution function defined by the invertible relation n (k) =$&~M&I ~f& (k ) was found which made the
transport equation derived for f readily interpretable in terms of the Landau theory We s.tress that these
calculations were done to finite order in the interparticle (and the impurity) interaction. We may speculate as

P
tothepossiblereasonsfor thedifferences in results: (a) The results of Resibois, etc. , may not hold up to
all orders in the interaction strengths. (b) There may be more than one way to define a quasiparticle
distribution function having appropriate features. In this connection note that in the theory of Eliashberg
for a pure system, and our work for an impure system, an important variable in describing v and n is the
frequency 8; a variable of this type never occurs in the Besibois theory, instead the appropriate quasi-
particle distribution function depends on the magnitude of the momentum. This difference could indicate
that these two types of quasiparticle distribution functions differ in an essential way although, as we shall
see, they satisfy similar equations.

To get the transport equation satisfied by n (or n), we multiply Eq. (3. 16) by the factor &zI, and then,
doing a little algebra, write it in terms of v [as defined in (6. 3)], thus,

dQ
((u —v ~ qv (A. , o, S) —(uQ .f 4 F~~if dS'N'(S', ~)v (0', v', S') —v~ ~ qz~y ]q ' ' 0 4p k'k

=iC [v (k', (x', S)+ ~gz]+iC [v (5', o', S')+z y ]kg q~ ' ' 4 (u &SP(u q(u
(6. 12)

Here, we have used (4. 21), (5. 5), (5. 8), (5. 9), and (5. 13). It is not difficult to see" that when applied to
a constant the functional C~ vanishes; this is also obviously true of C~, thus,

(6. iS)

Multiplying (6. 12) by Q N (S, &), we obtain the transport equation for n

~n (k, O', S) —v ~ qn ($, o, S) —v ~ qQ N (S, &u)
Q~ 0 Q~ ~ QN
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= z (C g[n (k', o'', g')]+C ~& [n (k', o', g')]],
kS q~ kS & q(u

(6. 14)

where we have used (6. 4), (5. 10), and (5. 14). From (5. 8), we can easily see that the impurity scattering
functional can be written

dQk r
C'

g [n (V, o', g')]=2~n f . D(0) fdg'z„z, ~f(k, k', g+fq)
~kS q&

' ' i 4m

x 5(g g')[n (k', o, g') —n (k, o, g)],
q(d qco

(6. 15)

which is the impurity scattering term as found in Refs. 23 and 24.
The discussion of Cp is a little more involved; we can discuss this functional in two regions which,

since they overlap, cover together the whole range for which the theory is valid. The first of these is
characterized by the inequality ap«1. Included in this region are the cases in which interparticle col-
lisions are important (i. e. , yp ~ &u) and as well, some of the cases in which they are not (i. e. , yp-
—P 'iL '«&u«P '). Defining the equilibrium Fermi function

N'(g) = (eP +1) ', (6. 16)

we can write in this limit (vp «1)
dQk r

n (k, o, S) =n (k, o, g)+sg N'(g)fdg Z i f 4 Ekkin (k', o', g'),
qe qco o 4g kk q~

(6. 17)

this follows since N (g, ~)- —SN'(g)/& g. Note also

n (k, o, g)--—N"(g)v (k, o, g)P
q~ ' ' ~8 q~ ' ' q~

The interparticle scattering functional in this regime no longer depends directly on and can be written
after some trivial manipulation

d Qk dQk dQk

0 0 a Ik. I =k

x ~1 „~(2&) 5(k+k —k —k )5 5(g+g -g, -g )
l& 2& 3& i 2 6~+62 03+V

x L(N (k, o, g) N (k&, o, g&)[l —N (k, o, g )][1—N (k2, o2, g )]

—[1—N (k, o, g)][1 —N (k, o, g )]N (k, o, g )N (k, o, g )j, (6. 18)

where N (k, o, g) = N'(g) + r7 (k, o, g),
q40 q(d

(6. 19)

and L is a linearization operator with respect to n. Note that (6. 18) is in the standa'rd form of interfer-
mion scattering. For &p«1, then, the transport equation can be written

~n (k, o, g) —v ~ qn (k, o, g) + v ~ qQ —N'(g)
q k q k q~8

= C,g[;—. (k', .', g')] ~ C„g [- (k, ",g )].
A' 8 qQ) kgp q&

(6. 20)

The second region in which a simple discussion of the interparticle scattering functional can be made is
characterized by the inequality yp«max(w, qvF, y~). Note that this region includes all p with pe ~1 and
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in particular zero temperature; also note that it overlaps the region previously discussed (i. e. , &up& 1),
thus, the two cases cover all temperatures with P 'i| '«1. To see the behavior in the regime under con-
sideration, we show that it is consistent to assume that vq (k, o, h) is independent of g. From (5. 9) and
(5. 10) for a function v independent of 8, it is not hard to see that the integrals over frequency are of the
same form as in (4. 10), and thus, as in (4. 11) and (4. 12) we have

C [N (S', e)v]-(P +&@ )pN , (8, &u)y«max (e, qv, y )N (S, w)y;

the interparticle scattering functional can thus be ignored and we are left with

A

~n (k, o, g) —v ~ qn (8, o, g) —vk ~ q P N (g, &o) =iC @[n (P, o', 8')j.

We can remove the common factor N (8, &u) from (6. 21) to get an equation satisfied by v (k, o, b), which
it is not difficult to see, has a solution independent of 8 (consistent with the assumption). We can thus
use (6. 21) to determine n and n or equivalently the relation for vq~(k, o) (we drop the superfluous label 8)

dQ r

v (k, o)p —Q I Ekkiv (k', o')Q
q~ q& 0 471' k~ g v Q'e

—q ~ v v (ko)P —v ~ qP ]k' q+ ' q k q

(6. 22)

in the region under discussion. If, as well, we write Eqs. (6. 8), (6. 10), and (6. 11) in terms of

yqz(k, o)Pq by carrying out the Sintegrations, we recover the results of Betbeder-Matibet and
Nozieres»~&4 which are obtained by the use of zero-temperature techniques. [A cautionary note: If one
is interested in the damping of the undriven modes of the system, then Eq. (6. 14) should be used especial-
ly if yP/yi & 1 ]

To summarize our results, we have found a transport equation which for temperatures high enough for
interparticle scattering to be important has a nondissipative part of the usual Landau form and a dissi-
pative part which is the sum of the standard impurity and interparticle scattering terms. For lower tem-
peratures, the equation we get is equivalent to the zero-temperature results which do not include inter-
particle scattering.

VII. COULOMB FORCES

We discuss, finally, the modifications of the
theory necessary for the case of the long-range
Coulomb forces. As this problem has been ade-
quately handled for Green's functions by Nozieres
and Luttinger" and in the book by Nozieres, 6 we
just briefly state the major changes. The trans-
port equation obtained in this case is in the same
form as (6. 14) [or in the various limits as (6. 20),
(6. 21), or (6. 22)] except that &f&, the external
potential, is replaced by the mean potential in the
medium jq~ = Pq~/e (q, (u), where e(q, (u) is the
impurity averaged longitudinal dielectric constant.

The rest of the quantities involved in the trans-
port equation are calculated by using only proper
diagrams [i.e. , those not having factors v(q)
= 4ve'/q'j. The screening of the long-range part
of the impurity potential (if present) is included
in the t matrix; this result can be seen in detail
in the work of Langer. "
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