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Comments on Einstein Scalar Solutions
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Simple solutions of the Einstein scalar and Brans-Dicke Geld equations are exhibited, and the nature
of the Killing horizons of some static solutions is discussed.

I. INTRODUCTION

ECENTI Y there has been some discussion of the
coupled gravitational and zero rest-mass scalar

fields in connection with investigations of the Killing
horizons of static asymptotically Qat fields. ' ' The
purpose of this note is to exhibit some methods of
obtaining simple solutions of the Einstein Geld equa-
tions when a massless scalar field is present and to
indicate the corresponding solutions of the Brans-Dicke
scalar-tensor theory. In particular, the spherically sym-
metric solution analyzed by Janis et at.i will be recon-
sidered in the light of some comments by Penney, '
and the significance of the singular nature of the event
horizon goo ——0 will be discussed.

II. SOLUTIONS

The Einstein field equations are given by

where u=82rGo/c4, and Go is Newton's gravitational
constant. 4 For rest-mass-zero scalar 6elds

P A r 2grrP

where B;; is the Ricci tensor for the auxiliary metric
h;;, and the covariant derivatives are taken with respect
to this metric.

In the axially symmetric cases, Eqs. (4a) reduce to
the two-dimensional I.aplace equations when cylindrical
coordinates are used, and Eq. (4b) is then simply
integrated in terms of any two independent solutions,
U and P, of these equations. ' '

Simple calculations, similar to those of Ref. 5, lead
to the following results:

(i) If a vacuum solution of the Einstein equations is
given by the metric of the line element

ds2 e 2 Irh dxrdx j e—2 v (dxo) 2

then a solution of the coupled Einstein scalar equations
is given by the metric of the line element (3) and lb,
where

lb=AU and U= U(1+uA2) ij2, 2 a constant. (6)

(ii) If a static solution of the Einstein scalar equa-
tions is given by the metric of the line element (3)
and iP, then a static solution of the coupled Einstein-
Maxwell scalar Geld equations

and

Cga = 0. (2)

When the gravitational equations (1) are satisfied,
Eq. (2) is a consequence of the Bianchi identities. For
static fields, the line element may be written

ds2= e 2~h; dx'dxs e'U(dx')—'

where U and h;; are functions of x' alone. The 6eld
equations (1) and (2) take the form'

(4a)

is given by

Clf= 0, Fo",„=0, .~tt &; pl=0

P = (2/K)1/2e2W(b OU b OU )
and the metric of the line element

ds'= e 2~h;,dx'dx' e2~(dxo)2, —

where 0 = —ln sinhU.

G"= s(N. A .. 2g"—4.,4"+F—-F.' 'g"F"I'"),—-
(7)

i. 0

2;j+2U, ;U,j= —qk, ,.iP,j,
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Corresponding to each of these solutions of the
Einstein field equations is a solution of the Brans-
Dicke scalar-tensor theory. For under the gauge
transformations,

gJ. & ~I.=Go' I'I.
&

X=e«v, P=(2co+3/2u)ij2

the field equations (7) become the Brans-Dicke field
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equations
Z=O, (9a) where

I = (r B—/. +B)e~,

D'= (C+1)'—C(1——,'p~C) &~ 0.

—(1/Z) (I,„„—g„„~I).(9b)

The energy-momentum tensor of the electromagnetic
fjLeld 1'„„is given by

Consequently, if g„„,P, and F„„raesolutions of the
Einstein field equations (7), g„„,F„„,and X satisfy the
Brans-Dicke equations. In general, the trace l' of the
energy-momentum tensor of the nongravitational fields
acts as the source of the scalar field, and Eq. (9a) has

X= T&&8'/(3+2pi)e4. (10)
I

However, the trace of the energy-momentum tensor
of the electromagnetic field is zero, and, in this case,
the scalar field equation (9a) is source free.

III. SPHERICALLY SYMMETRIC SOLUTIONS

By applying the result (i) above to the Schwarzschild
solution of the vacuum Einstein equations

ds'= (R+m/R m)gdR + (R ——m') (d8'/sin'8dq') j
—(R—m/R+m) dt' (1l)

the Einstein scalar solution, discussed by Janis eI al
in Ref. 1, is obtained:

ds = (R+m/R m)»gdR+(R —m)(d8 +—sin 8dp) j
(R m/R+—m)'i~—d1P,

tP = (A/2Ii) ln(R m/R+m) —(12)

p=-,'(4+2aA')'"& 1

The corresponding Brans-Dicke solution is given by

ds'= (R+m/R —m) I~+'» ~'»

&& t dR'+ (R —m') (d8'+ sin'8dq&') )
(R+m/R m) &" »i—i'»dP, (13—)

a= (R—m/R+m)" i'».

By introducing the constants 8, C, D, and the
coordinate r, defined by

R= ,'m(r/B+B/r)-
and

C A 2 2 2
7 7

IiP uP

this solution may be put in the form

m' r+Bq'&a+' D»D/ B~'-
ds'= — —

I 11+—I

4B2 r—B) r)

This is just that one of the four spherically symmetric
static solutions, found by Brans, which is asymptoti-
cally Rat.

Although the event horizon gpp
——0 is a regular hyper-

surface for the Schwarzschild metric, the curvature
scalar is singular there for the other two metrics. In
the case of the Einstein scalar fields, the event horizon
is a singular point. For the Brans-Dicke fields, how-
ever, the nature of the event horizon depends on the
values taken by the parameters C and co.

The value of the coupling constant cv has been set
by Dicke in his interpretation of the precession of the
perihelion of Mercury at co=6, and the range of values
that C may take is determined by the asymptotic form
of the solutions for X and gpp. For physically realistic
fields, the trace of the energy-momentum tensor of
the matter source F, the energy density e, and the
pressure p of matter satisfy the inequalities

T=3p —p(0, e&~0, p&0.

In these cases, it follows directly from Eqs. (9) and
(10) and the values of gpp and X given by Eq. (14)
that C must be negative. The event horizon gpp=0 is
then a singular point.

It should be noted that axially symmetric solutions
of the Einstein scalar fields have been investigated by
Gautreau and Penney. '' The former considered solu-
tions of the type given by Eqs. (5) and (6) and found
that these solutions also have singular event horizons
gpp=O. In contrast to the static vacuum case, ' it was
found that solutions with singular point horizons, which
act as multipole sources of the field, may exist when
the scalar field is present.

In previous considerations of the spherically sym-
metric Einstein scalar solution, ' an ana1ysis of the
behavior of the luminosity distance

rz= (R+m)i+i»(R —m)i i»

ln the IlIIllt of vanishing coupling constant K Ied to the
suggestion that the physical solution corresponding to
a spherically symmetric point mass might diGer from
the usual Schwarzschild solution by having a singular
point event horizon gpp=O. Penney has suggested that
if nonspherically symmetric solutions of the scalar
wave equation are considered, one is led to the usual
Schwarzschild so1ution in the limit of vanishing cou-

pling constant, and, consequently, an;tlyses of this

(r+B) 2/D-
&(Ldr'+r'(d8'+sin'8dqp') j—

~ ~

dP
y (14)
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type do not indicate a physical singularity at the
Schwarzschild radius. However, the example he gives
in support of this contention contains a calculational
error, and, in fact, his solution is singular at the horizon
goo= o.'

' In Ref. 2, Eq. (19) should be replaced by

sa'(R (R 2—m) +m' sin'ej f ea'R (R—2m) sin'ttR„&=- exp-R'QR(R 2)+ ' '1—$' $2QR(R —2 j+ ' '8]')'
The curvature scalar is then singular when R(R—2m)+m' cos'e
=0, for all values of f(:.

A more serious objection has been raised by Misner, '
who has pointed out that it is not possible to provide
a material source, under normal conditions of hydro-
static support, for the solution (12), beyond a minimum

distance

rr.= (rrt'/4tt') (ts+1)'+""(tJ, 1)'—"v.

Consequently, the singularity at goo=0 would seem
to be of no physical significance in this case.

"C.Misner (to be published).
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A recent proposal of asymptotic symmetry for the proper amplitudes is tested with reference to the
Adler-Weisberger sum rule and is found to lead to an inconsistency, thereby demonstrating its incom-
patibility with local chiral current algebra.

HERE has recently been a very interesting sug-
gestion by Barry, Gounaris, and Sakurai, ' who

seek a modification of the Adler-Fubini sum rule' ' by
postulating specie. c asymptotic requirements on the
proper amplitudes rather than on amplitudes involving
matrix elements of currents. In view of Gerstein's proof'
of the inconsistency of this approach with local current
algebra involving currents of Inequal masses, it is inter-

esting to ask if the inconsistency persists for equal
masses. In this paper, we propose to answer this in the
afhrmative within the framework of asymptotic SU(2)
XSU(2) symmetry. We first present a derivation of the
modified sum rule resulting from asymptotic SU(2)
XSU(2) of the proper amplitude and explicitly demon-

strate that it violates the well-established Adler- Weis-
berger' (AW) sum rule. Finally, we give a simple and
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direct argument based on Regge theory as to why the
asymptotic symmetry for the proper amplitudes will be
inconsistent with the usual form of asymptotic chiral
symmetry.

I.et the amplitudes for the forward weak vector and
weak axial-vector scattering off nucleons be defined by

M„,&v" '(v, q') =i d4sc e *& *8(xe)''

x(A&(p)
I
Lv„'(~),v„'(o)j I x(p)),

M &""'(v q') =i d x e "*&(xe)

where i and j denote isospin and v= —p q/rrt, rtt being
the nucleon mass. Following Fayyazuddin and Hussain, '
let us write the invariant decomposition of the spin-
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