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Nonrelativistic Strong-Coupling Model with a Recoiling Source*
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We have replaced the static extended source of traditional strong-coupling models with a point fermion

of finite bare mass. We find self-consistent stationary-state solutions to the problem of the strongly cou-

pled feriaion and pion field in the neutral pseudoscalar theory. We find the usual set of rotational

leveIs, j=-,', —,', —,', .~, and, in addition, find a class of states which strongly suggest identification with the

E'(1470) and its possible rotational excitations. Our model provides a natural interpretation of the re-

pulsive hard-core potential in nuclear forces, and also contains the mechanisms which will lead to negative-

parity nucleon resonances and Regge recurrences when internal symmetries are included. Because of several

important approximations, our numerical results are not yet to be taken seriously.

I. INTRODUCTION

HE strong-coupling theory has a long history
dating back to some of the earliest attempts to

form a field theory of the strong interactions. It has
not been as productive of useful information about
nucleon structure as one might have hoped, and most
of the workers on this model have confined themselves
to predicting the spectrum of baryon resonances using
various forms of static sources in Hamiltonian models'
or the properties of the noncompact strong-coupling
groups. " ' Some attempts have also been made to
explain nuclear forces' and pion-nucleon scattering, '
again within the context of the static model.

The limitation to static models is a severe one and
effectively denies one the opportunity to make un-

ambiguous predictions of such experimentally interest-
ing quantities as the electromagnetic form factors,
photoproduction and pion-production amplitudes for
resonances, and scattering cross sections (both elastic
and inelastic).

In this paper, we propose a method for introducing a
recoiling source into the strong-coupling theory. It
must be emphasized at the outset that our first formula-
tion of this model is rather primitive, and in its present
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form it is not greatly more satisfactory than the static
model itself. Hut the principle involved is physically
more realistic than the static-extended source, and if

certain technical problems can be solved, this new

model will have not only a richer structure in terms of

resonances, but the capacity to predict unambiguously
the quantities previously mentioned.

The basic innovation of this model is the interpreta-
tion of the source to which the pion field is strongly
coupled. We introduce the source as a point fermion

with a finite bare mass and a spin of 2. Ke then look
for solutions in which this fermion and its attendant
pion field are in a self-consistent stationary state.

The self-consistency is obtained by treating the
probability density of the fermion wave function as

the source function which determines the pion field in

the strong-coupling approximation. This pion field

then serves as a potential well in which the fermion can
be shown to have bound states. It is not obvious a
priori that such a system will have self-consistent
bound states, but we show in this paper that such states
do exist.

Ke make several important approximations on the

way to our results and these are discussed as they are
introduced and in Sec.V of the paper. These approxima-
tions make our numerical results quite unreliable, but
we have included some anyway to show the qualita-
tive eAects of variations of the fundamental parameters
of the model.

We have only two free parameters in the model: the
fermion bare mass mo and the bare pion-nucleon cou-

pling constant g. Our aim is to predict the spectrum of

baryon resonances with only these two parameters.
Our preliminary results as presented here represent a
qualitative success but not yet a quantitative one. This
problem will be discussed in detail in Sec. V.

Our model has produced two new results which were

not present in the old static strong-coupling theory. It
provides a physically simple and natural explanation of

the hard core in nuclear forces, and it provides an ex-

planation of the existence of the class of resonances

typified by the E'(1470) or Roper resonance. The
model also contains the potential (which is not ex-
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ploited in this paper) for including negative parity
resonances and "Regge recurrences" in a natur i,l way.
All of these results are discussed in detail in the text.

The paper is organized as follows: Sec. II presents a
brief review of the simplest nontrivial strong-coupling
theory emphasizing the limitations imposed by a static
extended source. In Sec. III, we present our proposal
for introducing a recoiling source, and in Sec. IV, we
find solutions to the model. In Sec. V, the virtues and
limitations of the model are discussed and we suggest
ways in which it might be improved.

II. STATIC STRONG-COUPLING THEORY

We begin our review of strong-coupling theory with
the work of Pauli and Danco6. ' They considered the
problem of a charge-symmetric interaction of a pseudo-
scalar field with a static extended source [p(x)) which
has both spin and isospin degrees of freedom.

In this review we shall treat the simpler problem of a
neutral pseudoscalar field interacting with a neutral
source which has spin —,. The solutions to the two
systems follow very similar lines, and by treating the
simpler problem we economize greatly on notation.

We begin with the Hamiltonian

H =— d x[m (x)+
~
VP (x)

~
+p qP (x)7

2

+— d'x p(x)e Vy(x). (1)

quirements on &(x) and P'(x):

d3x V,p(x) V, ~(x) =S,„ (5)

(Px V';p(x)y'(x) =0. (6)

We note that the only restrictions on ((x) imposed by
(5) are that it be spherically symmetric and normalized
properly. Note also that (6) puts a restriction only on
the p-wave part of P'(x) and therefore all mesons in
other angular momentum states relative to the source
are considered free (i.e., noninteracting). This restric-
tion to p-wave mesons is one of the primary deficiencies
of the static model. It restricts the resonance spectrum
to positive-parity states, and, in the charge-symmetric
theory, those states in which the angular momentum
equals the isospin. Even if higher symmetries such as
SU(3) are used, the resonance spectrum is still deficient
in Regge recurrences and overstocked with unobserved
multiplets.

Some attempts' ' have been made to remove the
restriction to p-wave mesons, but all have rema. ined
within the context of the static model. In Sec. III we
will propose a model which, at least in principle, is

capable of providing both Regge recurrences and
negative-parity states.

Now to get the pion-field Hamiltonian in terms of the
q;, we still need an expression for n (x). This is also
broken up into a bound and free part as follows:

The source density p(x) is assumed to be spherically
symmetric.

The essential step in reducing this problem to an
easily soluble one in the limit where g is large is to
define a set of three dynamical variables.

m(x) =~ Vp(x)+m'(x),

where the ~; are defined in such a way that

(7)

q, = d'x P(x)V,p(x). (2)

Referring to Eq. (5) and using the fact that ~(x)
and g(x) satisfy the equal-time commutation rules,

The q; are operators which represent the strength of
the overlap of the p-wave part of the pion field with the
gradient of the source density. In terms of the q;,
the interaction part of the Hamiltonian becomes
simply

d'x ir (x)V';& (x), (10)

[vr (x),P(x')) = —iP(x —x'), (9)

it is easy to show that the proper definition of m.; is

&r = —(g/p)~ q (3) and it then follows that

Since the q; commute among themselves, the sym-
metry group of this Hamiltonian is SU(2) XT3 which is
the simplest strong-coupling group considered by
Goebel and collaborators. '

The next step is to get the rest of the Hamiltonian in
terms of the q;. This requires the splitting up of the pion
field g(x) into "bound" and "free" parts as follows:

y(x) =il V~(x)yy'(x).

If we now insert (4) into (2), we find the following re-

d'x ir'(x)V', j(x) =0.

For completeness we include the commutation rela-
tions for the ~'(x), g'(x):

[m '(x),P'(x) 7 = —i[2 (x—x') —
V p(x) V' j(x')) . (12)

These commutation relations are nonlocal and lead to a
rather complicated problem when one tries to calculate
scattering of free mesons. This phenomenon (called
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b Sachs') will not concern usortnogonah onality scattering by ac s

4' d (7) itoth fr
ddh t ha

' ' ().W findthatitweaHamiltonian in ~1. e n
restriction on &(x),

—'7'+p') t(x) = (1/&)p(x)

the full Hamiltonian simpim li6es to

H=-'R ~I' (1/2Ã) IqI' —(g/p)e q—
2

d'&I ' (x)+Ivy'(x)I +p'4" x
2

18) we can writeNow using

= 1 ')q(q ) —(1/q')qXL,( /q

into the last term of 14 we getand if this is inserted into

(19)

—q*(q ) d' '()~* ()
——

(q XL); d'x ir'(x) V;p(x) .
g2

(2o)

We now de6ne a new 6eld variable

XL);
XP',p(x)—

7r" (x) =n'(x) —(1/q ) (q
d'x ir'(x) V',p(x),x (14)
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where

E= d'xI v. p-(x) '.
3

(15)

where

T=- d3xI Vt(x) I'.
1

3
(22)

1
~()=

e-s I
x-x'I

d'x' p(x')
I
x—x'I

Now Eq. (13) implies that is
' '

ra h t (11) is still satisfiedThis definition is arra g
vr" x instead of m'(x). Solving

(14) we get finally(16) bstituting into, w

II=nd (5) we can derive the expressionand using (15) and we can
for E:

+-'~
I (1/ ') ( ) I'—+ q' —eq

2T q' 2g p

&=— d'* Lp'(x) —p(x) &t(x)3. (17) * ~'"(x)+ Ivy (x)I +&y (x)j
2

1
7r' x)V',p(~). (23)

d'x 7r'(x) (r XV)y'(x) .=qP~ — x x' tween rotat
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U —g
—z't0'3A'g —s'40 2P

7 (25)

where n and P are, respectively, the azimuthal and
polar angular coordinates of the vector g. The form of U
is quite familiar, and, in fact, if U~ operates on a state
with spin up (along the space-6xed s axis), the effect
is to rotate the spin vector so that it is oriented parallel
to the vector q.

The transformation U has no effect on the second
term of H and the full dependence of the Hamiltonian
on the angles n and P is contained in the term

(1/2T)I') UtL' U. (26)

Now we know the expression for L' in terms of n and P
and the above transformation can be worked out ex-

plicitly. The eigensta, tes of this transformed operator
turn out to be the symmetric top wave functions
D ~i~2«) (n,P,O), where the choice of zero for the third
argument represents only a choice of an over-all phase.
The transformed Hamiltonian has the form

1 1 g/)I 0
UtL'U+ q' ——

i

2T)7' 2$ y (0 —ql
(27)

and since g has been assumed positive, we see that the
last term gives a strong binding in the state where
e q=q and a strong repulsion when e.q= —q. Thus
the correct eigenfunction to choose is D +i~2") (n,P,O),
and this represents a symmetric top with angular mo-
mentum projection +-', along its body-fixed symmetry
axis.

In this state the potential energy becomes

(1/2&) g —(g/~) C,

account properly if decay widths are to be predicted.
Ke do not discuss this problem in this paper.

We now restrict ourselves to the first three terms of
(22) and assume that the third term is large. The
problem is solved by diagonalizing this last term by
means of the unitary transformation

U~o" qU =qo.3.

It is straightforward to show that

for the energy spectrum is then

where we have kept the second term separate from Eo
for easy comparison with the results of Sec. IV, and the
rotational energy has been set to zero for the ground
state.

The above solution of the strong-coupling problem
is quite straightforward and physically understandable,
because we have chosen the simplest interesting system.
If we try to solve the more complicated theories this
same way, we find that the SU(2) XSU(2) theory is
more complicated but still tractable and the SU(2)
XSU(3) model is extremely cumbersome. 3 Fortunately,
Cook and Sakita' have shown how to derive the eigen-
states for any theory by using the elegant method of
induced representations. Using this method we could
have guessed immediately that our eigenfunctions would
be the symmetric top wave functions, since these form
the irreducible representations of the strong-coupling
group SU(2) XT3, which is just the Galilean group in
three dimensions. The eigenfunctions in more com-
plicated theories turn out to be generalized symmetric
top wave functions. '

This concludes our review of the static strong-
coupling theory. The effects of the static, spherically
symmetric source are seen to be the restriction to
positive-parity states and the appearance of only one
state for each value of the angular momentum. In the
SU(2) XSU(2) model this restriction appears as the
requirement that I=J and in the SU(2)XSU(3)
model, the allowed multiplets are those in which the
component with hypercharge +1 also has I=J.

We now introduce a new formulation of the strong-
coupling theory which will, in principle allow for a
richer selection of resonances.

III. RECOILING SOURCE

A. Self-Consistent Equations

We begin with the Hamiltonian

and we complete the square to get

(1/2Ã) P—g'cV/2p', (2g)
1

+— d'xPm'(x)+
~
Vy(x)

~
y~2y2(x) j

where q'= q
—gIii/p represents fluctuations in the ampli-

tude about the equilibrium value q, =gX/p. The term
in q" can be transferred to the neglected part of 1X, and,
in fact, combines with the fourth term in (24) to give
the Hamiltonian for a one-dimensional oscillator.

The eigenvalues of the rotational term are

but the extra —„' can be dropped since it is also a con-
stant added to aB energy levels. The final expression

—
g d'x Pt(x)e. rg (x)y(x) . (31)

We have added a term representing a nonrelativistic
two-component fermion field P(x), and we have also
changed the interaction term by.changing the cr V of
the Pauli-DancoA' model to e r". In addition to being
simpler to deal with, this latter form allows us to use
a dimensionless coupling constant without introducing
a mass
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The next step is to postulate that the eigenstates of
the Hamiltonian can be given in terms of a set of basis
states of the form

H =pi0/2m+ p00/2m+ V(I xi —x0I ), (34)

and, as is well known, one solves this by defining new
momentum and position coordinates, one set referring
to the momentum and position of the c.m. and the
other to the momentum and position of an equivalent
particle of reduced mass in the c.m. frame.

Let us suppose, however, that for some reason we are
prevented from making this change of variables. We
must then proceed with the techniques used by the
many-body theorists when they deal with systems such
as atoms or nuclei, and the standard approach is the
independent-particle or Hartree type of calculation. It
is instructive to examine the two-body problem using

(32)

where I/i~& is a one-particle fermion state of definite
orbital angular momentum about some arbitrarily
chosen origin, and

I
x„) is a two-component spinor. The

definition of I/i ) can be written explicitly as

(33)

where )P( (x) is a one-particle wave function. This
restriction to one-particle fermion states is essentially
automatic in a nonrelativistic theory, but in a rela-
tivistic theory it amounts to the assumption that
virtual fermion pair states have a small eff'ect. This is

just what is done for the relativistic hydrogen atom:
The one-particle Dirac equation is used to get the
energy levels, and then vacuum polarization effects
are calculated in perturbation theory. Our hope is that
this same procedure can be used consistently in our
model. This is an assumption which has not yet been
quantitatively justified.

The state vector I(t r))r& in (32) represents a state of
the pion field of definite angular momentum. This is not
as yet a unique specification, and this definition will be
made more specific below.

Now a general eigenstate of B will be constructed as
a superposition of product states of the type (32). In
general, an exact specification of any eigenstate of H
will require an infinite number of the product states and
in practice this series will be truncated for practical
reasons. Presumably the greater the number of product
states included in the sum the more accurately will be
represented the actual spectrum of states of H.

At this point, before proceeding with the problem at
hand, it will help to clarify the meaning of the subse-
quent calculations if we digress briefly to discuss a more
familiar problem from the viewpoint of our model. We
consider the problem of two nonidentical particles
(taken to have equal masses for simplicity) which
interact via a central force.

The Hamiltonian for this system is

these many-body techniques since this is the closest
analogy to the way we will proceed with our strong-
coupling model.

The standard procedure in a Hartree calculation is
to start with a state which is a product of single-
particle wave functions, these wave functions having
been determined in some convenient starting potential.
To calculate the ground state of H, we might begin by
writing

4 (xi,x0) =(P0 (xi)(P0 (X0), (35)

9'(l) I&lko(l)&I4o(2)&=&IA(2)&,

Qo(2) l&lko(2)&lk (l)&=&IA(l))

Using (34) for H, these equations become

(37)

(
22

+ d'* 4"(")~(l» —* l)W (»))A(»)
2m

= (E—Ei)4'0(X0),
(38)

(
pl l+ d +2 (t 0 (X2) V(I Xl—X2I))(»'0(X2) Itt'0(xi)
2m

where
= (~—&0N"(»)

E,= d'x, )P0*(x,) (P0(x;).
2m

(39)

The solutions of these two equations using the starting
wave functions in the potential integral leads to two
new independent-particle wave functions. These new
functions are put back into Eq. (38) and generate
another new set. This process continues until the wave
functions no longer change and we have a self-consistent
set of solutions to (38).

The f(nal result if only (35) is used is at best a crude
approximation to the real ground state. This can be
demonstrated by choosing a soluble potential, doing
the problem both ways, and comparing the answers. A
particularly simple potential is the harmonic oscillator,
which gives

H =pi'/2m+ p00/2m+-, 'k
I
xi —x0 I

' . (40)

We know the correct answer for the ground state in
terms of c.m. and relative coordinates:

4'(r, R) =ce'R Re—ie" (41)

where P is the momentum of the c.m. , and C is the

where )P0(x,) is the ground-state wave function of a
particle of mass m moving in the potential well V(I x,

I ).
The eigenvalue equation is

H%'(xi, x0) =M (xi,x0), (36)

and this can be written as two coupled equations by
taking matrix elements with respect to (P0(xi) and
()t 0(x0), respectively, i.e.,
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normalization. For the special case P=0, we have

ilr (y) =Cg $8r—2

where"
p= (-,'mk)'".

The energy of the ground state is

(42)

I'. „,=-', (2k/m)'~' = (3/v2)o) . (43)

If we now follow the procedure indicated in (38), we
obtain the following equations:

(p,'/2'+-', kx2')Pp(x2) = (E Ky ——Vr)$0(x2) &

(44)
(pl /2W+gkX1 )$0(xl) = (E K2 V2)I(0(xl) )

where

relations or virtual excitations to excited states. This is
done in our simple model by considering the set of
states

where m and m' take on the values ~1 and 0. This is
a total of 16 states, and, in general, each of the above
products should be determined by a self-consistent
calculation. Once this is done, matrix elements of the
Hamiltonian can be taken between various product
states and the Hamiltonian diagonalized to give the
proper superpositions for the stationary states of II.

If this is done for our oscillator example, the new
ground-state energy is

V;= d'x tPp" (x,) (-', kx,')lt p(x,) . (45) Ec——[4—(7/4) '"](k/nl) '"=2.68co (51)

The problem has separated into two uncoupled problems
because of the simple form of the potential and the
approximate ground state. Since

V(I xg —x2I) =-', k(xt'+xP —2xg x2), (46)

From Eq. (49), we can see explicitly how the transla-
tional invariance of the wave function is broken, and
also the reason why the energy is overestimated: We
have eRectively placed the whole system in an external
oscillator well centered at the origin. Notice also that
the wave function falls off less rapidly in r than the
correct one.

If a better approximation to the ground state is
desired, the next step is to include ground-state cor-

"Note that —,'m is the reduced mass.

the self-consistency search does not have to be done.
The symmetry of the problem tells us that E&=E2
and V~= V~, and the fact that the matrix element of
x~ x2 vanishes for our simple product of S-wave states
then ensures that

Kg+ Vg K2+ U2 ',——E. ———

The separation of this particular problem makes the
calculations simple but does not change qualitatively
the nature of the result.

Now the total energy of our approximate ground
state is

E„,„.„=2[-',(k/m)'"] =3(u. (47)

Comparing this with (43), we see that we have over-
estimated the ground-state energy by a factor of V2

or about 40/o. Our approximate wave function is

+approx(x1&x2)
=C exp[ —(P/W&)rP) exp[ —(P/W&)r22). (48)

It is instructive to put (48) in terms of the relative
and c.m. coordinates (r,R):

%,»„(r,R) =C exp (—V2pR') exp[ —(p/2&&)r') . (49)

which is to be compared with the value 3.00co for the
uncorrelated approximation, and the correct value of
2.13co [Eq. (43)]. The corrected wave function is

4'c(x~, x2) =C exp[ —(P/V2) (rP+r2')]
X (1+0.62Px& x2) . (52)

In terms of r and R, this becomes

Vc(r, R) =C exp( —V2pR') exp[ —(p/2&2)r']
X (1+0.62PR' —0.15Pr') . (53)

B. Fermion Wave Functions

We now return to our model of the nucleon. We write
our approximate ground state as [cf.Eq. (32))

where

(54'j

(55)

"See, e.g, , G. E. Brown, United Theory of Nuclear JIIIodels
(John Wiley & Sons, Inc. , New York, 1967).We also acknowledge
the helpful comments of J. D. Bjorken and M. Einhorn on this
point.

We see that the effect of including the lowest virtual
excitations is to make the wave function fiatter as a
function of R' (i.e. , the whole system is now in a shal-
lower well) and to make the falloff more rapid as a
function of r' (also in the correct direction).

We note in passing that the above procedure leads
to too many states, i.e., the spurious states well known
to nuclear theorists. ' Techniques exist for treating these
states properly in nuclear physics, but the author is
at present unqualified to say anything more about them.
In particular, it is not at all clear how the nuclear-
physics techniques might be adapted to our model,
which is quite different from the usual many-particle
model of the nucleus. Fortunately we avoid this
problem in this initial exposition of the model by not
considering correlations.
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(68)
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tion analogous to 21) isThe transformation a

~ r x —(1/T)((x)j, (70)=- ( )-(1/q)(q&«)'L. (—
—ge d'x Pop*(x)g pp(x)y(x), (58) where

ven bywhere the constae either 1.=0 or L, ==i tom eake the total J=-', . w er
1 bl

d'x p'(x),

We consider the eigenva

(56)Hl~~-& =~lq~.),
e ex ectation valuesE . (37), we take expec ics

d'x p(x)q(x),

a analogy to q, e e~ ec

E=—
3

a

)x) =Ppp(x) rPpp(x)(1/p) &p(

e can solve Eq. aIt is c ear n
used in eechni ues as weresame t q

coupling problem. e

(x)=q r](x)+y' x,
Iir(x)=op rp(x)+~ x,

. (1).The identifica-reminiscent of Eq.which is strongly remin
tion is exact if we set

(59

T= d'x P(x)—.
3

(71)

where

= e+' 7r'(x)e-'m" x =e (72)

Dancoff, this is just the
h. --,) u d be in m xerst-order chang

transformation

where V= (qX L) d'x y'(x)r;~(x).
Tg

(73)

7r;= d'x P;&(x)vr(x). (61d'x r",p(x)p(x), 7r;= x;

We also deman d that

and

d'x r";p(x) r",&(x)=;; (62)

d'x r; x ir = ' r" x'(x) =O. (63).d'xr; (x)ir'(x)= d'xr";p(x x =

f V are small (ofat all matrix e flements o
'( ) i th

ll h
g

e are already smathese d sma

57a) is there-11"""' "1
ery similar to Kq. 2fore very

Finally, we de6ne

and find &(x) from

p(x) —=
I Ap(x) I' (64)

'—gir q+mp+E'pH =L'/2 Tq'+ (1/2N) I q I

—ge.

-'R
I (1/q')q(q pp) I

'

'"( )+I&4'( )I'+p' "+— dxir x
2

V'+ p') r'((x) =—rp(x)/N.

analogous to 1Th Hamiltonian ae a

2-'Z f~l'+(1/2N) fq I
H =mp+Ep

d'x ~'(x)r, p(x). (74+—q(q pp x~' ", . 74
g

'e"(x)jd'xf ~"(x)+IvqV(x) I +p

'( ) (x+ir $

4) is now

ro d
' t as in Sec.d . II and weg o po

of he
roceeds jus

—go.g

h d

d'x x r;p ), (66)
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to the state (55) is" want is

D.+„,«») (~,P,O)
for L= 1

D= i «"'( ,~,0)

, ,«»i(~ P 0)

4—D,~ ii2i ~ i(nip&0)

(75)

PaP '=n and PPP '=P, —(77)

which shows immediately that no matter what the
angular momentum L of a state, its wave function
Yz ~(u,P) always has a parity of +1.Thus the negative-
parity states must come from negative-parity wave
functions for the core fermion.

Since the two states (75) have the same parity, we
can form a linear combination of them to get a state
with zero for the lower element and D +i~~&'"i(a,P,O)

for the upper element. This is our bound-state wave
function.

We have now solved Eq. (57a) and see that the proper
normalized eigenstate to use for

I
C, ) is

(-Pl~;-&=&(»+1&/4-)'»D-"i. "'(-,~,0& (78&

In addition, the vector q has the average magnitude
go= gE. This tells us in turn how to evaluate the ex-
pectation value occurring in Eq. (57b). The eigenstate
(78) is an eigenstate of the transformed Hamiltonian
UtHU

I
see Eq. (27)). Thus the expectation value we

"We use the notation of A. R. Edmonds, Angular 3Eomentum
in Quantum' Mechanics (Princeton University Press, Princeton,

¹ J., 1957).

In the limit of strong coupling, the top element of each
of these column vectors represents the bound state and
the top elements are identical. Thus the wave functions
are independent of whether we use L=O or L=1, but
the energies differ because the eigenvalue of UtL'U
is different in the two cases. The lowest energy cor-
responds to choosing L=O, and the energy difference
between the two states is proportional to g

' just as
the rotational state separations.

One must resist the temptation to see the above
doubling of the states as a parity degeneracy. In fact
both the L=O and L=1 states have the same parity
because q is an axial vector. This must be true since

P(x) must be a pseudoscalar field and therefore must
satisfy

4 (x)= —0(—x).
Referring to (60), we see that this can be true only, if

PqP-'= +q. (76)

But we have written q in terms of its magnitude q and
the spherical angles n, P. For (76) to be satisfied these
angles (which are still operators) must behave dif-
ferently under parity than ordinary spherical angles.
In fact, we have

=(D.+„,»IUtL-'El~I
+(1/2W lql )UID

Now it is straightforward to show that the 1-1 com-
ponent of Ute r"U is precisely j r", so that the last
term on the left-hand side of (80) becomes

—gag(x) ~'r (D-+v2""'
I gg~ ID~ii2«"').

Ke treat j;j, as a tensor operator with both a scalar
and tensor (spin-2) component, but only the scalar
component has an expectation value in the state
specified. In this state, we have

(D~i)2i'~"
I pig&'ID~ig2i'I ') =—&

Thus Eq. (57b) becomes

(82)

(—~'/2~o —
3m 6(x) )6o(&)

= (E—E4 ™o)Ao(x), (83)

which is the Schrodinger equation for a particle of
mass mo in an attractive potential. The potential is
the function $(x) which is connected to p(x) (i.e. , the
probability density of the fermion) by Eq. (69).

We have now defined the self-consistency problem
which must be solved. We can put the coupled equations
into dimensionless form by setting

x=pr, y=mo/p, e= (1/p) (E Ey mo) . (84)

Then the Schrodinger equation for the fermion wave
function is

I
—(1/2y) (d'/dx') ——,'g'g(x))u(x) = eu(x), (85a)

and g(x) is determined from
' 00

i1(x) =—— dk' u'(x')j i(is&)hi "&(ix)), (85b)
4m.

which is the dimensionless form of (69) when p(x) is
spherically symmetric. In the above equations we have
set

too(x) = Ll/V (4 ))Lu(r)/~) (86)

Pelf-consistent solutions to Eqs. (85) have been

where we keep only the 1-1 matrix element of the 2)&2
matrix U~HU.

Equation (57b) now can be written

Ltso+ p /2mo+Eq —g$(x)
X(D ""'I(U" U) q ID i "»i&)too(*)

= EiP00(x) (80)

where we have used (60) for p(x) and the fact that the
expectation value of p'(x) is zero in a state with no free
mesons. Also, in (80) we have defined
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found, and we discuss them in detail in the next section.

C. FieM Wave Functions

The solutions we want for the field are the eigenstates
of the Hamiltonian given by the first six terms of (74).
The seventh term is dropped because we will measure
our energies relative to the "free-meson" vacuum, and
the last term is the coupling between the free fields and
the radial oscillations of the bound Geld. This last term
will contribute to the decays of the baryon states, and
in second order will cause a mass shift. We assume the
second-order effects to be small and we will check this
approximation presently.

As we have seen in Eq. (78), the angular wave func-
tion for the q variables is a D~i~o"'(nPO), and the
eigenvalue equation is

$U I- Ug»D~„, ~ (~P0) = (j+,') D~-„, ~ (~P0) (87).

The energy contributed by the first term, therefore, is

E,.= (j+,')'/2Tg'N-', (88)

where T is given by (71) and N by (68). We have used

Ke can use this to estimate the error we make by
neglecting this vibration-rotation coupling in Eq. (88).
The first nonvanishing correction to (88) is proportional
to (q'o) in the'state Po(q'):

aE„p 3(q "& 3
— (RN)'".

g2+2 2g2g 2
(95)

hE;b ——(R/N) "'. (96)

We will put numbers into these formulas when we
present our solutions below.

Our final expression for the energy is now obtained
using (88) and (93):

(j+-')'
E=omp+ Ep+ ——',g'N+-i-

2g'1PT 2 kN
(97)

where mo is the bare mass of the elementary fermion,
and Eo is its kinetic energy determined by

Finally, we note that Eq. (92) gives us the energy
separation between the vibrational states (again
neglecting rotation-vibration coupling):

~2 g2+2 (89)

where
kp(q') = (p/~)"'(~-'«'/q),

P=(RN) 'I'

(94)

which means that q has been set equal to its equilib-
rium value. This approximation is checked below and
will turn out to be not entirely justified.

After the transformation U $Eq. (25)g the second,
third, and sixth terms of Eq. (74) become

—,'R$ —d'/dq' —(2/q) (d/dq) 7+ (1/2N) q' —gq. (90)

The eigenfunctions and eigenvalues of this part of the
Hamiltonian are easily determined. We write

0(q) =u(q)/q,

and complete the square on the last two terms. The
eigenvalue equation, then, is

(—o' R(d'/dq")+ (1/2N)q" ju(q')
= (E,+-,'g'N)u(q'), (91)

where q'= q
—gE.

This is the equation for a one-dimensional harmonic
oscillator. In the lowest vibrational state we have

E,+-', g'N = ', (R/N)' '-(92)

so that the energy contributed to the system by the
radial oscillations is

E,=-;(R/N) ~ ——,'g N, (93)

with the first term representing the zero-point radial
oscillations and the second the fieM binding energy
Lcf. Eq. (30)j.

The radial eigenfunction for the ground vibrational
state is

&o= d'x 0 oo*(x)l —
~Pop(x) . (98)

FinaHy, we remind the reader that fpp(x) is determined
self-consistently by solving the set of coupled Eqs. (85).

A. Ground State

In the ground state, j= s so Eq. (97) becomes

E=mo+Ep+ 1/2g'N'T ', g'N+ ', (R/N—)'"—. (99-)

YVe have solved the self-consistency problem for various
values of mo and g as follows:

(i) Start with a square-well potential qo(x) as shown
in Fig. 1. Equation (85a) is solved in this potential
with mo and g specified. This produces an eigenvalue
(o) for the ground state in the square well and a wave
function u(x) like the one shown in Fig. 1.

(ii) The u(x) determined from step (i) is inserted
into (85b) and a new ~i(x) is generated.

(iii) Equation (85a) is now solved again using the
g(x) generated in step (ii) and a new eigenvalue c
results.

(iv) This procedure is repeated until the eigenvalue
e stops changing. A typical final result is shown in Fig. 2.

We have experimented with a number, of different
starting potentials in step (i) and 6nd that, as long as'

IV. SELF-CONSISTENT SOLUTIONS

We will now consider the solutions in three groups:
(a) the ground state, (b) rotational states, and (c)
S-wave core excitations.
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U (x)

2.Q

I.O

-I.O

&O(X)

1.5
x

the rotational energy is relatively insensitive to g
makes it impossible in our simple version of the model
to make the rotational separations small enough to 6t
the observed 6 and E5~2~ energies. In Sec. IVB we
will give one mechanism which will lower these energies
and at this point we can mention another.

With the data of Table I we can check the approxima-
tion indicated in Eq. (95). Using values of R, E, and g
for a typical case (e.g. , g= 25, y= 6), we find that

aE/E...=1,

-2.0

—8 P,7

Fir. 1. Square-well potential and solutions for the ground and
first excited 5-wave states used to start search for self-consistent
solutions. The x coordinate in all the 6gures is measured in pion
(.ompton wavelengths, and the potential is in units of the pion,
mass.

the starting potential has a bound state, the procedure
converges to the same final eigenvalue and wave func-
tion no matter what starting potential we use. The rate
of convergence will vary, but the final answer is always
the same.

This fact is not really surprising. The wave function
N(x) is constrained to be zero at both x=0 and x= ~
and it has no nodes. Therefore, no matter what the
starting potential is, the shape of the initial N(x) will
not differ very radically from that of Fig. 1.

We present some of the results of these calculations
in Table I. The five contributions to the ground-state
energy are listed across the table in the order in which
they appear in Eq. (97). We can now comment on the
qualitative effects of variations in the basic parameters

g and ssp.
As g is increased for a given mp the main effects are

to increase the binding energy and the radial vibration
energy. The kinetic energy of the fermion increases
and the rotational energy decreases, but these are
rather slowly varying as functions of g. The fact that

which, of course, violates our assumption that the
centrifugal barrier has a negligible effect on the equilib-
rium value of q. In fact, we have estimated that the
centrifugal barrier can increase Itp by as much as 40
or 50%.

In this paper„we will not pursue this matter further
because to do it properly would require an expansion
of the self-consistency problem to include a self-
consistent determination of qp. This adds considerably
to the complexity of the calculations and will be neces-
sary to obtain reliable numbers. We will present this
expanded calculation in a subsequent paper.

The effects of changing mp are less dramatic than
those of g. Decreasing mo (which for a given g tends to
spread out the fermion wave function) has the effect
of reducing in magnitude all of the terms in (97). The
only useful generalizations we can make are that
decreasing mp decreases the energy of the ground state,
and also raises the energy of the S' state relative to
the 1V state (see Sec. IVC). However, both of these
effects can also be achieved by increasing g.

Because of the approximations we have made which
make our numbers only qualitatively significant, we
have not made an extensive search for the best set of
values for mo and g. A representative set (which fixes
the mass of the nucleon at its known value) is g=25,
pp=6 and we use this set for our illustrations in the
following sections. '4 In Fig. 3 we show the fermion
probability density p(x) and the pion field strength
$(x) for these values of g and 7.

B. Rotational Exeitations

These states are characterized by the angular field
wave functions

2.0

1.0
where

f7
I X~)

I &z~)= ID~+i(~2 "9
3 5
27 27

(100)

1.0
I

1.5
x

Fir.. 2. Self-consistent solution for the ground state when
g=25 and @so——6. The starting potential and wave function
g,re shown by the dashed lines for comparison.

This wave functions is, of course, to be multiplied by
a wave function for the radial q oscillations and a wave
function of the core fermion which must be determined
self-consistently. We must now make an approxima-
tion for this core wave function.

' Xote that since we are overestimating the energies of the
states by neglecting correlations, we will be overestimating the
value of g and/or underestimating the value of Bzp needed to &t
the ground state to the nucleon mass.
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Vib.Bind.Ep Rot.'Jap 5/2

=6- tate ener and energies of excited nucleon states. The values o mp ——TAar.z . e ai e a ow ofco t buto stogou -stat gy

th ko (otmtti ) ofth tt o id d.pion mass, and the last row under the last five columns gives t e nown or en a '

gl

6
8

10
12

6
6.5
7

22
22
22
22
22
28
25
27
27

0.57
0.77
0.98
1.17
1.34
1.19
1.17
1.61
1.71

1.59
1.90
2.23
2.59
2.92
1.13
1.66
1.61
1.70

—3.27—4.77—6.31—7.76—9.14—7.79—7.63—10.97—11.77

3.27
4.56
5.88
7.12
8.29
4.60
5.55
6.73
7.18

6.17
8.46

10.78
13.12
15.41
3.15
6.74
5.49
5.83
6.72

10.94
14.16
17.47
20.89
24.17
6.54

11.72
10.32
10.93
8.97

18.89
23.66
28.62
29.84
38.77
12.19
20.02
18.37
19.43
11.90

7.06
8.68

10.64
12.61
14.76
5.60
8.28
8.16
8.60

10.65

13.69
13.24
15.47
16.99
19.44
8.51

11.58
11.07
11.54
12.20

Referring to Eq. (82), we recall that only the scalar
art of j;j; contributed in the state j= ~. But for jpar o

the tensor part also has an expectation va lue and this
expectation value is not spherically symmetric. As a
consequence, Eq. (83) contains an extra potential
proportional to the l=2 spherical harmonic. This extra
term means that the fermion wave function can no
longer be purely S-wave and must contain a mixture

unsolvedAt the present stage of our model this is an unsolve
problem. We have not yet determined a good way to
treat nonspherically symmetric source functions, so
that we must neglect the tensor potential. This makes
the equation for Ppp(x) independent of j and identical

formulato E . (83). In this case we can use the energy form&
(97) for the rotational states with only j changing, and
the energy separations of the first two rotational ex-
cited states from the ground state are

hE;;= 3/2g'1V'T,
(101)

AEf f= 8/2gsEsT.

All we can say about our neglect of the higher angular
components of the fermion wave functions is that their
inclusion should lower the above energies relative to
the ground state. Thus, the formula (101) will over-
estimate the rotational level separations, but at this
point we cannot say quantitatively by how m

~ ~

h w much the
relative separations will be changed.

Equations (101) give the same rotational spectrum

((x) p(x)

5.0 — 20.0

4.0

as the old static strong-coupling theory. The recent
evi ence or ad f T=—' nucleon isobar" has renewed

the old result that the energy of the —,
' level is predicted.

by (101) to be about 1740 Mev if the 6 mass is fitte
to 1235 MeV. It is "seen" at about 1650 MeV, which is
not inconsistent with our previous rem

~ ~ ~

mark that E s.
(101) will somewhat overestimate the level separations.

We have now discussed two different an p y
mbined efI'ectquite significant corrections whose comb

should be to reduce the rotational-level separations
appreciably. We are unable in the present form o t e
model to bring these rotational levels down enough so
as to make comparison with experiment very meanin-

v lsful. The rotational band (just the lowest three leve s)
for the values of g and mp chosen to be representative
is shown in Fig. 4, and it is clear that our model grossly
exaggerates the rotational splittings.

2760
/

l650
' j=5/2 l6IO

J=

1255
/2

2.0

IO.O '

I.O

.. Io — o - — —--—-- -- -- - - -- - — — ———1- - -- —--—- -- ——
0 0.5 1.0

Fro. 3. Fermion probability density Lp(x)j and pion Geld
amplitude Lg(x)g for g=25 and ezp=6. Note that P(x) approaches
a multiple of (e ~/x) as x gets large.

958
; j=l/2 . : j=l/2

Fxo. 4. Expernnen a va. 4. E '
e tal values of the first three states in the

lowest rotatsona an al b d re shown on the left and our values on
the right. We are o6 by a factor of about 2 when g =25 and mp ——=6.
We have used the energy value for j=-', of Ref. 15.

'~ A. Benvenuti, E. Marquit, and F. Oppenheimer, Phys. Rev.
Letters 22, 970 (1969). Other references are given in this ~aper.
For contrary m ica ions

' d' t' ns see J. S. Danburg et al., ibid.
(,1969).
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We can draw some comfort from another set of
numbers in Table I. It is clear that for the ranges of
neo and g which we are considering, the excitation energy
for the next radial vibration state is generally quite
large compared to the first rotational excitation. The
same centrifugal-barrier eftect which should lower the
rotational levels should raise the vibrational levels,
i.e., the "potential well" in which the radial q oscilla-
tions take place is made narrower and pushed out to
larger values of q by the centrifugal barrier.

Of course, the radial q excitations give another class
of states in the model, and we might predict another
nucleonlike isobar somewhere above 2 BeV. But the
radial q oscillations will have large amplitudes in such a
resonance and one might expect it to decay very rapidly,
i.e., the approximation of small width becomes un-
reliable. At this stage of our model we cannot predict
whether such a state would be observable or not.

C. Core Excitations

Up to this point our results have not been very
diferent from those obtainable from a static extended-
source model. Our model has a potential for a much
more complete description of the ground state and
rotational levels, but this potential is yet to be ex-
ploited. However, it is in the excitations of the core
fermion that this model makes its new contribution.

Since we have postponed consideration of nonspheri-
cal source functions, the only core excitations we can
consider are those with 1=0. In our self-consistency
problem this means searching for self-consistent fermion
wave functions which have a single node. Such solu-
tions exist and an example is shown in Figs. 5 and 6.

It is our proposal that this 5-wave excitation be
identi6ed with the Xtt'(1470), i.e., the well-known
Roper' resonance. We are motivated in this by the
identity of the quantum numbers with those of the

u, (x)

1.2

I.O

0.8

0.6

0.4

$(x) p (x)

5.0 — 2.0
1.8

4.0 — l.6

1.4

3.0 — 1.2

1.0

2.0 — 0.8

0.6

1.0 — 0.4

0.2

1.0 2.0 3.0

I'zo. 6. Probability density of the fermion and pion Geld in-
tensity for 1P resonance when g=25 and mo ——6. We expect that
the E' will be much larger than the nucleon (see Ref. 17).

nucleon, and by the experimentally observed fact that
the Ã~~' does not decay strongly into the ~-S channel.
If the E~~' is really an 5-wave core excitation, and the
decay proceeds via emission of a p-wave pion (as the
strong-coupling approximation would demand) then
we have a selection rule which forbids the decay, i.e.,
no 0-0 transitions. '

Of course we also expect that the E~~' will have rota-
tional excitations, but we find again that our approxi-
mations are too unreliable to allow a prediction of their
energies. In particular, the fermion wave function is
more spread out in the lV' state and the neglect of
rotation-vibration coupling is even less valid than in
the ground state. We note, however, that a "probable"
resonance, which could be called 6', with the quantum
numbers of the 6 is claimed by Lovelace" to occur at
about 1688 MeV. Our model will have to be improved
before we will be able to verify this energy value with
any confidence, although our numbers do indicate that
the rotational separations of the primed states are
smaller than those of the unprimed.

Our chosen set of parameters gives 1140 MeV for
the energy of the E' and 1600 MeV for the 6'. These
values are included for completeness only and are
quite unreliable.

The possible existence of a second 5-wave excitation
has not been considered. However, we see no reason to
believe that it and even higher radial excitations will
not exist.

0.2

-0.2

3.0
7. SUMMARY AND DISCUSSION

-0.4
-0.6
0.8
-0. 1

pro. 5. Self-consistent solution for the erst excited core state
(g' resonance), with g=25 and ma=6. Note that the wave func-
tion and potential extend considerably further out than in the
ground state.

~6 L. D. Roper, R. M. Wright, and 3.T. I"eld, Phys. Rev. 138,
11190(1965).

It has been our intention in this paper to present the
basic structure of a strong-coupling model which in-

~~ Another interesting prediction of our model of the Roper
resonance is its rather large radius (see Figs. 5 and 6). In diffrac-
tion production of the lP the diffraction peak is known to be
extremely steep, suggesting a large radius, although this process
is complicated by the possible presence of kinematical "Deck-
type" effects. LSee, e.g., G. Bellettini et al , Phys Letters 1. 8, .167
(1965).g We wish to thank Dr. Jon Pumplin for reminding us of
this result.

~8 C. Lovelace, in The Fourth International Cmzference on Ele-
trtentary Particles, Heidelberg, 1N7, edited by H. Filthuth (North-
Holland Publishing Co., Amsterdam, 1967).
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eludes a point elementary fermion instead of a static,
extended-source function. In order to make the paper of
reasonable length and make the presentation clear,
we have made a number of rather significant approxima-
tions. These can be summarized as follows:

(a) Nonrelativistic fermion kinematics. Referring
to Table I, we note that the expectation value of the
kinetic energy of the fermion is generally a small
fraction of its mass. If we take this as an estimate of
the validity of our nonrelativistic approximation, we
are encouraged to believe that the approximation is not
too bad. But this could be misleading since if y = E/mo
=7/6, for example, then P=v/c=0. 5. This makes us
believe that re1ativistic kinematic corrections will be
at least of the order of 20% and that vacuum polariza-
tion effects could also be non-negligible.

(b) "Independent-particle" states. We have seen
that the use of product wave functions destroys transla-
tion invariance and must overestimate the energies of
the states. To include ground-state correlations re-
quires a much more extensive calculation and also a
technique to handle l&0 fermion states. This remains
for future work.

(c) Neglect of configuration mixing in states with

j&~. This has been discussed in Sec. IV B.
(d) Neglect of vibration-rotation coupling in the

radial q oscillations. As we have noted in Sec. IV A this
requires a more elaborate self-consistency problem and
will be considered in the next paper.

(e) Assumption of small decay widths and con-
sequently small second-order level shifts. We have
checked this by calculating the width of the 6 in the
case when &0=6 and g = 25. The width is very large, but
we can account for most of this by noting that the
phase space for the decay goes as the cube of the energy
of the emitted pion. Since we have overestimated the
energy separation by so much, this phase-space factor
multiplies the error enormously. We also Qnd that the
width is proportional to (gN) ' as advertised, and that
the same eGect which we expect to reduce the rotational
band separations will also reduce the widths.

(f) Neglect of nonlinear pion-field interactions (e.g.,
&e')

The above list of approximations leads us to distrust
any numerical prediction so far obtained. But it should
be noted that none of them shows any prospect of
qualitatively changing the spectrum of states (with the
possible exception of a strong Xg' term in the Hamil-
tonian). We can then count the following as qualitative
successes of the model:

(I) Prediction of the 6 and X~~~* resonances. These
are of course old predictions, but recent results'5 have
generated new interest in them. The problems that a
T= ~ nucleon isobar causes for some other models are
quite serious.

(2) Physical interpretation of the hard core in
nuclear forces. Hard cores in potentials have been
traditionally the result of the Pauli exclusion principle.
Our model sustains this tradition, and attributes the
hard core to the resistance of two core fermion wave
functions to overlap.

(3) Prediction of the Roper resona, nce. The position
and decay properties of the 1P(1470) are qualitatively
accounted for in this model. As a bonus (or penalty)
we also get a 6' which may (or may not) actually exist.

(4) Negative-parity resonances and "Regge recur-
rences. " These occur naturally in our model and
their properties will be predictable once the technical
problem of the nonspherically symmetric source can
be surmounted.

These qualitative successes, we feel, justify the further
calculational effort which will be necessary to get num-
bers in which we might have some confidence.
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