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for 20&s&60 BeV'. The second term gives the rate of

decrease with energy of o&,&. Equation (17) fits the

experimental values" of o ,t(tpp) well.

's K. J. Foley et al. , Phys. Rev. Letters ll, 423 (1963).
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It is shown that to fourth order, the asympotic behavior of the photon-meson helicity amplitudes in
scalar electrodynamics may be viewed as arising from two nearby Regge poles. The photon-meson scattering
amplitude is examined to fourth order in the limit (—s) —+ ~, where s is the cosine of the scattering angle.
The two highest powers of in( —s) are retained. By comparing these forms order by order with those pre-
dicted by the presence of two Regge poles, two trajectories are obtained, one of which passes through
the meson.

I. INTRODUCTION
' 'T has long been known that bound states in potential
& - theory appear as poles in complex J in the partial-
wave amplitudes for the scattering of the bound par-
ticle. It seems natural to expect similar behavior in
relativistic held theory. Early investigations of scalar
field theory showed that such poles indeed exist, but
that they cannot be associated with the particles in
the theories studied. This is true because the poles
occur near J=—1 in scalar theories.

It was later observed' that spin-1 particles could
move the location of the pole up by one unit of angular
momentum. In the case of spin-2 —spin-2 theory, this
led' to the conclusion that the spin--,' particle did in
fact lie on a Regge trajectory. Thus, what in zero order
appears to be a fixed singularity of the form 6r, s (where
L=J——,') actuallv turns out to be a moving pole of the
form —n/(L —n). Crucial to this result is the presence
of a nonsense channel and the unique factorization of
the Born approximation. In the case of spin-0 —spin-1
field theory, the same conclusion cannot be drawn,
because the Born amplitude does not factor, so that
the residues of the Regge pole fail to factor. Therefore
the pole cannot be associated with a single physical
particle. '

In the present paper we show that in the spin-0 —spin-1
case, the asymptotic behavior of the scattering ampli-
tude may be viewed as arising from two nearby Regge
poles. One of the trajectories passes through the spin-0
particle and the other does not. We use the same
method to determine the trajectories as that employed
in Ref. 2. The presence of a Regge pole leads to an

asymptotic form for scattering amplitudes of (—s) as
(—s) becomes large. If we suppose that n is of the
order of e', then this asymptotic form has the expansion

P(—s) =PQ n"Lln( —s)g"/stt!.

This expansion is compared order by order with the
perturbation expansion of the scattering amplitude
under study. In our case, we assume the presence of
two Regge poles and determine the parameters o, 1, o.2,

pi, and ps by calculating the asymptotic behavior of
the helicity amplitudes for photon-meson scattering to
fourth order in scalar electrodynamics. Ke give the
photon a mass X to avoid infrared difhculties.

II. SCALAR-VECTOR SCATTERING IN
PERTURBATION THEORY

Ke will consider the scattering of a massive vector
meson from a scalar meson in the field theory with an
interaction of the form

*Supported in part through funds provided by the U. S.
Atomic Energy Commission under Contract No. AT(30-1)2098.

M. Gell-Mann and M. L. Goldberger, Phys. Rev. Letters 9,
2'75 (1962).' M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx, and
F. Zachariasen, Phys. Rev. 133, 8145 (1964).

3 M. Gell-Mann, M. L. Goldberger, F. E. Low, V. Singh, and
I.Zachariasen, Phys. Rev. 133, B161 (1964).

ie:pter„@—:A"+e'A A& "pter

where g is the field of the scalar meson and Ao is the
field of the vector meson. 4

4 J. D. Bjorken and S. D. Drell, Relativistic Quantum P'fields
(McGraw-Hill Book Co., New York, 1965).
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FIG. 1. Leading second-order dia-
grams. Vector-meson lines are dashed;
scalar-meson lines are solid.

The leading second-order diagrams' as s~~ in the
gauge of Ref. 2 are shown in Fig. 1. The asymptotic
second-order helicity amplitudes corresponding to
these diagrams are, using the notation of Gell-Mann
et rJL' and the conventions of Jacob and Wick, '

SrrW fop+"' —2e'(a'/(s —m') —2X'/k'j

SrrWfop ur 0,
SrrWfr p+@r —2e't —ab/ (s—m') —2ho/V2k'g/s,

SrrWfzo "' 0,
Srr Wf»+ &'&~—2e'Lb'/ (s—m') —oo'/to'j/»,

SrrWf» &'r —2e'/s.

The mass of the scalar meson is ns and that of the
vector meson is A, . The definitions of a and b are given
in the Appendix.

The leading fourth-order diagrams are shown in
Fig. 2. We omit the contact term in the vector-meson
propagator in our calculations. This is permissible since
the theory is invariant with respect to internal gauge.
The sum of the diagrams in Fig. 2 is 6nite under these
circumstances, and we can proceed to extract the
leading terms as t becomes large. The contributions of
Figs. 2(a) and 2(c) dominate that of Fig. 2(b).

The leading terms for both Figs. 2(a) and 2(c) are
of the form (lnt)'. However, the leading term of Fig.
2(a) exactly cancels that of Fig. 2(c). This result can
easily be obtained using the methods of Federbush and
Grisaru. ' Thus, we must obtain the next to the leading
term for these diagrams. This can be done by examining
the Mellin transform with respect to (—t) of the
amplitudes for Figs. 2(a) and 2(c).~ This yields the
following fourth-order contributions to the helicity
amplitudes:

87rWfpp+ &'&~—2G ln( —t) L:,'u'Ip+2acIr+2c'Io+ fX'/to'j

SrrW fop

SrrWfgp+l' 2G ln( —t)L ———', abIp —(bc ad)Ig-
+2cdIo+P, or/%2k' j/s

SrrW fyo

87rW f»+~'&~ —2G ln( —t) fo'O'Ip —2rMIr

+2d'Io+ foro//to' r/rs

SrrWf» &4' Gf ln( t)/z, —

where

G =4rr'e4/ (2rr) 4,

f=I' —ln (X') ——,',
and I and a b c and d are defined in the Appendix.

III. ASYMPTOTIC BEHAVIOR PREDICTED BY
PRESENCE OF TWO REGGE POLES

Assume the presence of two Regge poles with tra-
jectory functions o,&+ and e&+ in the partial-wave ampli-
tudes F;;~+:

Foo/+= u r+(ur++1) rtp'/ (I ur+)—

+up+(up++1) vo"/(& —ao+),
Fp~'+/LI(I+1)3'"= ~Rv'(I —a~+)+~p'~~'/(I —ao+),
~ +="/(I— ')+~ '/(I — ').
Assume also that F—has one simple pole with residue ~~'.
This implies the fo'lowing for the scattering amplitudes:

foo+ = (2ur++ 1)Pa,+ (—s)ur+(ur++ 1)rt po/sinrruq+

+ (2uq++ 1)P,+(—z)up+(up++ 1)rt o' /sinrruo+,

f4 o+ = —(2a r++ 1)P~,+' (—s) rt pg q/sinrru, +
—(2uo++1)P,+'(—s) rtp'rtr'/sin7rup+,

f»+= (2ug++ 1)LP.,+'(—s) —sP..."(—s)q

Xpro/u&+(ay++ 1) sin~u, +

+ (2up++1) LP,+'(—s)—sP,+"(—s)g
Xrty /ao+(up++1) slIlrlup+

—(2u +1)P -"(—s)r4P/u
—

(u +1) sinrra

At integral J, Pz=I'&. At other J, Pz is de6ned by
Eq. (B5) of Ref. 2. Using the formula

P.(s)-r(u+-;)(2s)-/ r r( +1)=Z( ).-,
which is asymptotically correct as s~~, we obtain
the formulas

fop+- (2ui++1)ai+(ui++1) go'cV (ui+) (—z).r"/sin~u, +

1 (2up++1) up+ (up++ 1)rt o"1V(up+) (—s) ~'+/sinrrup+,

fop+~ (2ax++1)rt orth'Ã
—(ui+)ui+( —s) ~'+ '/sinrra~+

—(2uo++1) rt p'q&'E(up+)up+( —s) ~4'-'/sin7ruo+,

f»+- (2u~++1)vi'&(a~+) (ai+)'
X (—s) "-'/up+(ay++1) sin~up+

+ (2up++1) rt g"E(up+) (up+)'

X (—s) " '/u2+(up++1) sin~u, +.

' M. Jacob and G. C. Wick, Ann. Phys. (N. V.) 7, 404 (1959).
'P. Federbush and M. Grisaru, Ann. Phys. (N. Y.) 22, 26$

(&963).
7R. J. Eden et a/. , 1'he Aealytic S-Matrix (Cambridge Uni-

versity Press, Cambridge, England, 1966). (a) (b) (c)

Fro. 2. Leading Sourth-
order diagrams.
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These expressions can be rewritten in the form

S~Wfoo+-Poo( —s) "+Po '(—s) "
S~Wf~o+- P—~o( s—) " ' P—o'(—s) " '

S~Wf»+-P»( —s) " '+P»'( —s) " '

where p;;=y;y, , and the y; are proportional to g;.
If we now assume that o. is of order e', we can expand

these formulas in a perturbation series:

S~Wfoo+ Poo+Poo'+Pooei+»( —t)
+Po' +1 ( t)+—"

87rWfio+ s 'Lpio+Pio'+P&o~i+»( —t)

+p~o'no+ ln( —t)+
S~Wfll ~ s Q»+Px& +Pile&& ln( t)

+P»'no+ ln( —t)+

IV. TRAJECTORY AND RESIDUE FUNCTIONS FOR
TWO REGGE POLES IN SCALAR-VECTOR

8CATTEMNG

We have calculated the following six numbers:

S~Wfoo '=A =Poo+Poo',

»~W fio+ "=B=Pio+Pio',
—»m War+&'& =C=P»+P»'

SmW foo+ &"/ln (—t) =D =poong++ poo'no+,

»mWfgo" ' /ln( —t) =E=Pgo«++Pyo'no+,

8877Wf»+ &'&/in( —t) =F=Pi j&&~++Px&'no+.

If we suppose that o.~ and o.~ are given, then these
equations can be solved in pairs:

Poo = (~o+A —D)/(~o+ —o i+),
Poo' ——(«+A —D)/(ng+ —no+),

Pio= (~o'B—E)/(~o' —~i')
Pro'= (~i+B—E)/(«+ —~o+),

P»= (~o+C—F)/(~o+ —«+)
Pr&'= (ny+C F)/(«+ e&o+).— —

We now require that P and P' factor. That is,

pv=v'v~
/

pij pi pj ~

This occurs when po&'=poopii and (po&')'=poo'p»'. This
requirement leads to quadratic equations for n& and 0.2 ..

(«+B—E)'= («+A D) («+C F), — —
(no+B—E)'= (no+A —D) (no+C —F) .

Since the equation is the same for 0,&+ and n2+, they
must be the two roots of the quadratic form

(B'—AC) x'+ (AF+DC 2BE)x+ (E' DF) . — —

These two roots are given by the formula

n,+= { —(AF+DC —2BE)WP(AF+DC —2BE)o
—4(B'—AC) (E'—DF)7'"}/2 (B'—AC) .

Since the Born approximation fails to factor, 8'/AC,
and this expression is well defined.

Near s= m', A has the form A o/(s —m)'. Referring
to the formula for n~+, we see that n~+(re)'=0, so that
the positive root is the trajectory of the meson.

Relating the residues of the Regge poles to coupling
constants in the usual way, ' we find that the helicity-0—
helicity-0 —spin-0 coupling constant is given by

goooo=e&++Poo/87rse&++ .

At s= nz', poo is of the form A o/(s —m'), so that for the

+ trajectory,
o+ poo ~ a+ A o ~

gooo'(m') =A o/S~~'= 3 (e'/47r)

It is this singularity of the underlying field theory at
s=m' which leads to a coupled Regge particle. If the
trajectory functions pass through zero at other places,
a coupled particle will not result.

V. CONSISTENCY IN SIXTH ORDER

In sixth order, we speculate that foo will approach
(lnt)' as t becomes large. If this is true, then, using

the residue and trajectory functions obtained in fourth

order, we can predict the leading sixth-order asymptotic
form. But this form can also be calculated from the
appropriate sixth-order diagrams. This calculation
would be very lengthy, but it could be done. If the
two forms agree, then the idea that there are two

Regge poles present would be reinforced.
If the two forms do not agree, then it would be

necessary to introduce new parameters. One way to do

this might be the following: In order to renormalize

the theory, one must introduce an interaction of the
form g(PtP)', where g=Ae'+Ze4. If one chooses A =0,
then Z is a divergent constant. Under these circum-

stances the extra interaction does not affect asymptotic
behavior. If, on the other hand, A is chosen to be a
finite constant, then a Z can still be found which

renormalizes the theory (for certain values of A, in

fact, Z is 0), but now the asymptotic behavior will

depend on A. The fourth-order diagrams depending
on 2 are shown in Fig. 3. These diagrams, which lack.

a power of t in the numerator, have the asymptotic

FIG. 3. Leading fourth-order
diagrams depending on A.
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leading ln2 terms, fno approaches Int. Thus, by a choice
of trajectory functions which is uniquely determined
by requiring factorization of residues, we can produce
this asymptotic behavior by two Regge poles.

:Ln sixth order, a consistency problein arises, whi(. .li

iiiay be dealt, with by a method suggested by renormal-
ization requirements. The final answer to this question
depends upon a detailed investigation of sixth-order
asymptotic behavior.
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FIG. 4. Some leading sixth-order diagrams.

form (lnt)'/t. Thus Figs. 2(a) and 2(c) still dominate
in fourth order.

Some relevant sixth-order diagrams are shown in

Fig. 4. In an actual calculation, it would be necessary
to add in all diagrams with crossed subdiagrams and
also radiative corrections to fourth-order diagrams. By
adjusting the parameter A, the helicity amplitudes
calculated from these diagrams might be made equal
to the Regge form.

The author would like to express his appreciation to
Professor K. Johnson for suggesting this problem and,
in particular, for suggesting the method discussed of
introducing an extra parameter in sixth order.

APPENDIX

a =kX[1—(s —m')/k']/(o,

b = (s—m')/v2k,

c=X (s —m2+X')/2(vk,

d = (s—m'+ X')/2&2k,

UI. CONCLUSIONS

Ke have seen that, to fourth order, the asymptotic
behavior of the scalar-vector helicity amplitudes in
scalar electrodynamics can be viewed as arising from
two nearby Regge poles, one of which passes through
the scalar particle. This is possible because in second
order, foo approaches a constant as t becomes large, and
in fourth order, by virtue of a cancellation of the

I„= dx x"/I m'x+X'(1 —x) —sx(1 —x)],

I'= dx in''x+X'(1 —x) —sx(1 —x)]

=ln (m') —(m' —X'—s)Iq —2sI„
Pg —vr 'Q g g t——anom.


