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Schwinger Terms, Field Algebra, the Parity-Violating Internucleon
Potential, and Models of the Weak Hamiltonian
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Using the current;field identity, it is shown that the entire vector-meson-exchange contribution to the
parity-violating internucleon potential UIg derives from Schwinger terms arising from the commutator
of the AS=0 F-spin currents and the weak Hamiltonian JI . The vector-meson-exchange contributions
are evaluated using field-algebra commutation relations and are shown to reproduce the generalized Michel
potential. These results are used to express V» as a function of an arbitrary model of II„.
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where p~ is the nucleon anomalous magnetic

ECENTI, Y the one-pion-exchange (OPE) con-
tribution to the parity-violating (p-v) internucleon

potential VI2 was evaluated, ' ' and its dependence on
models of the weak-interaction Hamiltonian density
H„(g) explored. s' It was shown4 that the predictions
for representative models of H„(x) were suKciently
different from one another that a choice among the
models could be made given an experimental knowledge
of OPE contribution alone. This contribution can in

principle be distinguished from that of vector-meson

(p,u&,g) exchange (which, along with OPE, dominates
Vrs) by its space-spin-isospin transformation proper-
ties. ' ' However, present experimental data exist only
for nuclear transitions where both OPE and OVE
(one-vector-meson exchange) may be expected to
contribute, and hence it is necessary to know the model
dependence of OVE in addition to that of OPE. The
evaluation of the OVE contribution reduces to a calcula-
tion of the p-v amplitudes E(p) —+E(p')+V(q) for
q'~0, if we assume that the strong XXV vertices are
described by phenomenological Lagrangian densities
such as

moment and f,'/4x 2.4. In the present paper these
amplitudes are evaluated using the current-Geld
identity (CFI) and are shown to derive entirely from
Schwinger terms' arising from the commutator of the
AS. 0 F-spin currents and H„. When these Schwinger
terms are evaluated using Geld-algebra commutation
relations, the p-v XEV amplitudes are identical to
those previously obtained from the factorization ap-
proximation Lsee Eq. (4) belowj. These results are
used to derive the vector-meson (1 ) exchange con-
tribution to VI2 as a function of the parameters which
characterize an arbitrary model of H . Since the model
dependence of pseudoscalar-meson (0 ) exchange has
been derived previously, the present results permit the
(presumably dominant) 0 and 1 contributions to V~s
to be expressed as functions of an arbitrary model of
H„. The resulting V» is given explicitly in Eqs.
(13)-(17).

Consider, for the sake of definiteness, the p-v vertex
n —+ pp . The amplitude for the weak p-v emission of
a p with momentum q is given by

A(X —+Ep ) =(1Vp le„' (0) lÃ)= g*3fegi+&-

=is),*(q'+me') (2qoV) '~' d'ge —'o'

where p~'+&(x) is the operator which annihilates a
p+, 6&+ is the polarization vector for the emitted p
and m, is its mass. On general covariance grounds, we
can write

M x i+l =s(mx'/2qopopo'V')'"rg(p') ppA~ (q')
+~~ q b~(q')+sq~&~(q'))v. "'N(p). (3)

6 J. Schwinger, Phys. Rev. Letters 3, 296 (1959).
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By isospin conservation, the term proportional to hp
makes no contribution to V~2. The p contribution has
previously been evaluated for the Cabibbo model in the
factorization approximation~

9p IH-n--(0)
~
iV)=(G/W2) cos'8 (XI~~'+'(0)

I &)
X(p-I U. '-&(0)

i 0), (4)

which gives'

h~(0) = (G/v2) cosstl (~~~;G./f. ),
and h&i=0 (by G invariance). Equations (1) and (5)
yield the so-called Michel potential'

h, (0—)f,
Vis~+= —{i(1+@&—p )o'iXo's'Lpis, e ~ /risg-

8irv2i&i&v

+(oi—os) Lpis, e ~~"»/risj+}Ti, &+&, (6)

where yy2(+) = yy(+&/2& —~~gy( ~7-2(+) and py2
—

yy —p2 is
the relative momentum operator. We wish to show that
Eq. (5) is an exact consequence of field algebra. m

Differentiating Mii+& in Eq. (2) and using the CFP'

pi (g) = (f~/r&i ')Vii~&(x), o.'=1, 2, 3

)where V&, t &(a) is the isospin current), we find that

qiM&, i+& = (2qs U) '"(f /t&i ') (q'yr&i ')2 '"

d4g e 's'8(xs)(p~ LUs&+&(x),H„" "(0)) ~N). (8)

The commutation relation in Eq. (8) assumes the form

)U, & &(x,0),H„e (0)j =ib'(x)Pf e'J ~s&(x)V '"'(0)

+f 'V„te&(0)J t'&(x)]+S.t, , P, y, &=1, . . . ,8 (9)

for any current-current model or any schizon model
to order G, where J&, i'& = V&, i'&+Hi "&, and S.t. denotes
as yet unspecified Schwinger terms arising from the
corinnutator of Vp with Js (k=1, 2, 3). Defining the
isospin-rotated H n (0) by H„n '(0), we have from

Eqs. (8) and (9)

q&M&, i+& = (2qsU) '"(fp/r&ip') (q'+mp')

' It is assumed, in addition, that for small q' the polar-vector
form factors are dominated by p, ar, and @.In terms of a 8'-boson
model this approximation corresponds to the one-W-exchange
contribution with form factors.

Gg is the usual nucleon axial-vector form factor and 8 is the
Cabibbo angle.' F. C. Michel, Phys. Rev. 133, B329 (1964);R. J. Blin-Stoyle,
ibM 11S, 1605 (1960).

'f'T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters
18, 1029 (1967};T. D. Lee and B. Zumino, Phys. Rev. 163, 1667
(1967}.

"M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953
(1961);N. M. Kroll, T. D. Lee, and B. Zumino, ibid. 157, 1376
{1967).

We note that if H„I' is CP-conserving, the erst term
in Eq. (10) vanishes in the SU(2) limit, "and hence the
entire contribution to q&Mi'+& at q=O (and hence to
Vis'~) comes from Schwinger terms.

The structure of the Schwinger terms in Eq. (9)
depends strongly on held-theoretic models for the vector
and axial-vector currents. In the particular model of
field algebra, " the Schwinger terms can be evaluated
explicitly and the relevant commutation relations are

/Vs& &(x,0),Vs'e&(x', 0)g =if evVs'»(x, O)i&s(x —x')
i8 s—(ms/f )'c&sb'(x —x'), (11)

/Vs' '(x,0),As's&(x', 0)j =if ernest»(x, O)hs(x —x'),

where V&, (x,0) and Ai(x,O) are the polar and axial-
vector currents. From Eqs. (10) and (11) it follows that
q&M&'+) depends solely on the piece of II„transforming
as J~+J~ (J~+=J'+@) Since H„must be a unitary
symmetric function of J +J, we recover the

~
AI~ =0,

2 selection rule' for the p+ contribution to VI2. It re-
mains to evaluate h~(0) explicitly. From Eqs. (10) and
(11), we have

q&.M), '+'= —i(2qsU) '"(f /m ') (q'+i&ip')(2/~2)(t'ai /f )'

X(Gcos'8/v2) d'x e *s *c&sP(x)(piA, +(0) its)

=i(ines/2q, P,P,'Us)i&i(~P/f ) (qs+r&i s) (G cosst&/~2)

Xii(p')C y tlP&(q')+iq'P»(q') jysr &+&u(p), (12)

where F~ and FI are the usual axial-vector and pseudo-
scalar form factors of the nucleon and F~(0)—=G~."
Assuming that ~q~/r&i&v&&1 Pand hence retaining only
terms linear in ) tl~ in Eqs. (3) and (12)j, we find that

hg (0) = (G/V2) cos'8 (%2m 'G~/f, ),
which is just Eq. (5).This establishes the claimed result
and indicates that the (seemingly naive) factorization
approximation of Eq. (4) is actually an exact conse-
quence of Geld algebra. Ke note, in passing, that the
term in Eq. (10) which vanishes by virtue of CP in-
variance contains the formally divergent contribution
to the weak EEp+ amplitude. '4

~ M. Gell-Mann, Phys. Rev. Letters 12, 155 (1964); B. W. Lee
and A. R. Swift, Phys. Rev. 136, 3228 (1964); M. Suzuki, Phys.
Rev. Letters 15, 986 (1965). Several CP-violating models dis-
cussed in Ref. 4 conserve CP to order 6 and hence may be treated
by our methods.

"The noncovariance of Zq. (12) is a direct consequence of the
fact that the T product in Eq. (2) is not covariant, and may be
remedied by adding to the T product an appropriate Schwinger
term. See, e.g., J. D. Bjorken, Phys. Rev. 148, 1467 (1966).
Note that the contributions introduced by this "covariance"
term are at least quadratic in )q(/ra&v and hence are negligible
from a practical point of view.

~4M. B. Halpern and G. Segre, Phys. Rev. Letters 19, 611
(1967); 19, 1000 (E) (1967};V. S. Mathur and P. Olesen, ibid.
20, 1527 (1968). Another instance in which the divergent con-
tribution to the 65=0 p-v amplitudes vanishes has been discussed
recently by C. Bouchiat, J. Iliopoulos, and J. Prentki, Quovo
Cimento 56A, 1150 (1968).
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Tax,E I. Summary of weak Hamiltonian parameters. '

Model

Conventional
Extra current
Segre ps-invariant
Segrh y5-noninvariant
Lee

Parametersb
A 8

(-1/v2) tsne 0
(I/V2) cote 2

0 0
—4 0

(I/+8) cot8 1

0
—2/VS

0
0
0

0 0
—2/V3

0
—2/v3
—V3 0

& Models are defined in Ref. 4.
b We assume that 1& sin29=1.

The XEp, XErt1, and 1VX&o vertices may be treated
in a similar fashion, the only additional complication
being that the neutral vector mesons can give rise to
both isoscalar and isovector amplitudes, in contrast to
p+ which yield only isovector amplitudes. We have
calculated the p-v XXV amplitudes in the exact SU(3)
limit and hence have neglected any effects of io-p

mixing. In addition we have assumed that the SU(3)-
symmetric vector mass mz is approximately equal to
nz, in order to give the vector-meson contribution to Vi2
a realistic spatial j 'dependence characterized by
e ~""/r». A complete discussion of the effects of
SU(3)-symmetry breaking will be published elsewhere.
The vector-meson-exchange contribution to Vi2 is
then given by

V» ——( kgb/Stre—m~)(zetXo2 I p», e p""/r12]

X((1+i„t.)p'»'+'+4 jt—ri' r2'*'

+1C((rt(s)r i&i+r2i ) ( r))t]2+(I+p +~ )
X (48)C'(r "r2"'yr '*'r "')+-'2V3D(rt ' r2 ' }
+ (Pl 122) '

I p12, 8 ~ /r12]+(T12 +F8&1 r2

+zu3Dcrt erst )+L p)1e2"~""/r12]+
.

L
—~3( '(trtrt(*ir (o) trsrs( irt(oi)

+2C&(trtr2 "rt"'—e r i2'rt1)2]), (13)

where f, and hz are the constants defined in Eqs. (1)
and (5), e1,2 are the spin operators for the two nucleons,
and 7.~" is the 2&2 isospin-identity matrix. The con-
stants 8, C,XC', and D define the ''contribution to
H„& «(AS=0) from the nonstrange F-spin currents
(which are the only currents that contribute to V»r):

H n (AS=0)—= (G/v2) cos'8$(V1,"+A i,
~ +Vi," A1 +)

+&V~~A 1'+CV&~A 1"+C' V12A ~"
+DV12A e+ ]

(14)

Finally, the parameter & in Eq. (13) is defined by

P (») I &»(») I &(»))
s s s. /s

D+I F (p')v.v (p)
V] V2 V3 Vl V2 ~3

2(1—F/D)1— (1
Q(12) 1+F/D

A recent analysis by Brene et al." suggests the value
F/D=s and hence $—1/643. The complete contribu-
tion to Vi2 from 0 and 1 exchanges is then given by
V» ——V»r+ V», where V12 is the potential' "

V12 =Ai'(at++2) I pis, e ~ ""/'r12] Ttsi—',

1.25&(10' sec 'i'g ~~m

SzrV2mi1
(16)

In Eq. (16) the parameter A is defined by

IIw =A T0,1,0 +Tl, l/2, -1,2 y Tv TY,r, ?2 ~ (17)

+ N. Brene, M. Roos, and A. Sirlin, NncL Phys. 86, 255 (1968)."Recall that neutral scalar (or pseudoscalar) mesons make no
contribution to V» as was erst noted by G. Barton, Nuovo
Cimento 19, 512 (1961)."M. Feuer, Ph.o. thesis, Harvard University, 1969 (un-
published); P. Olesen and J. S. Rao, Phys. Letters 29B, 233
(1969).

We see that the dominant contributions to Vi2, which
derive from the exchange of 0 and j. mesons, can be
expressed as a function of the five parameters A, 8,
C, C', and D. Table I gives the values of these param-
eters for the models of II„discussed in Ref. 4.

In conclusion, we wish to emphasize again that since
the vector-meson contributions to V~2 can be dis-
tinguished from those of x+, the structure of the
Schwinger terms in Eq. (11) can be tested experi-
mentally through a study of the matrix elements of V».
Details of calculations along these lines are presently
under way and will be published elsewhere. We also
wish to stress that since the Schwinger-term contribu-
tion exactly reproduces the (nonzero) contribution from
W exchange, ' our (nonvanishing) result for 1 exchange
cannot be ascribed to a neglect of possible "seagull"
terms as has been suggested recently by several
authors. "

Note added in manuscript After c. ompleting this
work, we learned that a treatment of the weak p-v
XSp vertex similar to ours has been given by Feuer. '~

We wish to thank Dr. G. Schar6-Goldhaber for bring-
ing Dr. Feuer's work to our attention.

1Vote added zn proof In response .to our work, Olesen
and Rao (Ref. 17) have suggested that the vector-
meson-exchange diagrams do not contribute to Ui2
because the Schwinger terms are canceled by seagull
terms. We observe that if this were true, it would mean
that the right-hand side of Eq. (4) derived from the
factorization approximation should be canceled by some
other terms. It is hard to see how this cancellation
could occur, however, since the factorization approxima-
tion for the matrix element (Er'E2'

I V„(x)A„(x) I Et%2)
is Q.nite and reproduces the results of a 5' meson pole
diagram. We also note that the cancellation of seagull
and Schwinger terms is generally thought to be a
consequence, and not a proof, of the condition qqMq=0.
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At present it is not clear that such a condition should
be imposed on the parity-violating weak interaction
ÃÃ„vertex. These points will be discussed more fully
elsewhere.

The authors are indebted to H. Primakoff for reading
the manuscript and for many valuable suggestions
during the course of this investigation. It is also a

pleasure to thank G. E. Brown, E. Hadjimichael, H.)T.
Nieh, P. Olesen, S. P. Rosen, G. Segre, and. J. Smith
for helpful discussions on various aspects of nuclear
physics and field algebra. One of us (D.T.) also wishes
to thank Professor C. N. Yang for his hospitality at the
Institute for Theoretical Physics, where part of this
work was carried out.
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Direct-Channel Resonances in Antiproton-Proton Elastic Scattering*
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The effect of a direct-channel resonance on antiproton-proton elastic scattering is investigated. The
differential cross section has a nonresonant term, a pure resonant term, and an interference term. It is not
possible to say much about the interference term. The angular shape of the pure resonant term depends
upon the resonance quantum numbers C and I', as well as the spin J, but in general resembles the square
of the Legendre polynomial Ps(tt). The possibility oi a background amplitude in the resonant partial waves
affects the enhancements in the total elastic and total cross sections.

I. INTRODUCTION

HERE has been increasing interest recently in the
search for high-mass bosons appearing as direct-

channel resonances in the nucleon-antinucleon system,
and in particular in backward elastic scattering. ' '

In the present paper, we investigate the resulting
antiproton-proton elastic scattering in the presence of a
direct-channel resonance. One would like to be able to
deduce the elasticity and quantum numbers of such a
resonance from the observed angular distributions. How-
ever, the large nonresonant background amplitude, and
consequent interference term, plus the variety of difer-
ent quantum numbers attainable in this channel, make
such deduction difficult.

The differential cross section can be written as the
sum of a nonresonant (background) term, a pure reso-
nant term, and an interference term. We can say little
about the interference term. But it is still useful to study
the pure resonant term, especially at backward scatter-
ing angles, where experimentally the cross section is
small. We can write down explicit expressions for the
pure resonant term, depending upon the quantum num-
bers of the resonance. We find that this term, in general,
resembles

~
Ps(0)

~

', where J is the spin of the resonance
(Ps(e) is the Legendre polynomial, II is the c.m. scatter-
ing angle).

*Work supported by the U. S. Atomic Energy Commission.' W. A. Cooper, L. G. Hyman, W. Manner, B. Musgrave, and
L. Voyvodic, Phys. Rev. Letters 20, 1059 (1968).

~ J. Lys, J. W. Chapman, D. G. Falconer, C. T. Murphy, and
J. C. Vander Velde, Phys. Rev. Letters 21, 1116 (1968).

3 D. Cline, J. English, D. D. Reeder, R. Terrell, and J. Twitty,
Phys. Rev. Letters 21, 1268 (1968).

The method we follow makes use of fairly standard
results which can be found in papers by Blatt and
Biedenharn4 and Dalitz. ' The results are immediately
applicable to the charge exchange reaction pp-+nrt
and, after correcting for a simple isospin factor, to anti-
proton-neutron elastic scattering. Other two-body 6nal
states, for example, p p -+ z.+sr, can be investigated in a
similar way.

II. GENERAL EXPRESSION FOR
ELASTIC SCATTERING

We use a standard partial-wave expansion of the elas-
tic scattering amplitude. Since proton and antiproton
are both spin--', particles, there are 16 spin amplitudes
(we assume unpolarized beam and target). Actually, 6
of these 16 amplitudes are zero, and only 5 of the re-
mainder are independent.

The elastic scattering amplitude is written4 '

A„=i(2k) ' Q ($4n(2I;+1)]li" '&(I;s,Om,
~
Jm.)

J, lg, lf

X(lrs,m, m, '~ Jm, )Yt,"f(e,q)

&&OSL(3 '—~ "=')+%'—~ "=')3} (1)

where t is a spin index, standing for (s;,m„sf,m, ');
clearly, v = 1—16. Six of the A „are zero—say for v = 11—

4 J. M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24, 258
(1952).' R. H. Dalitz, Ann. Rev. Nucl. Sci. 13,339 (1963).' We use the amplitude in Kq. {3.14) of Blatt and Biedenharn
(Ref. 4) multiplied by i/h to make it analogous to the f(tt) of their
Eq. (2.2).


