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Branch Cuts in the Balazs Method*
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The Balazs method of parametrizing distant singularities is discussed for the case when the near part
of the left-hand cut is retained explicitly. A closed-form solution of the 1V/D equations is derived which
allows the method to be applied in a systematic manner. The solution is approximate, but can be made
extremely accurate if the cut retained is not too large. The method is applied to the case of Yukawa scat-
tering where it is shown that the addition of the cut substantially reduces the ambiguities associated with
a pure-pole approach and leads to solutions in good agreement with those obtained from the Schrodinger
equation. The case 1=0 requires separate treatment, and some modified treatments are discussed which
improve the results.

I. INTRODUCTION
' 'N using the N/D method, ' it is often convenient
~ - to treat the near and distant parts of the left-hand
cut in different ways. To calculate the near part of the
cut, we can use the Froissart-| ribov expression for the
partial-wave amplitude'

where

A t(v) = - Ct A, (s,t)Qt(1+t/2v),
2' V

s =4(v+1) .

For simplicity, we will always write expressions for the
equal-mass case, set m = 1, and ignore I-channel
effects.

The left-hand cut begins at s=0 (v= —1), and comes
from the cut of Qt(1+t/2v). Using on the cut of Qt

ImQt (1+t/2v) = —',srPt(1+ t/2v) (3)

for —1&1+t/2v&+1, we have

—4v

ImAt(v) =— Ct At(s, t)Pt(1+t/2v), (4)
4v

A, (s,t) =P (2V+1) ]nuit (t)Pv(coset), (6)

where the region of integration is shown in Fig. 1.
This expression holds out to the beginning of the double
spectral function A ~„at s= —32 when A ~ becomes com-
plex. To obtain A t(s, t), we can expand the full scatter-
ing amplitude in terms of the t-channel partial waves

A (s,t) =g (2/'+1)At (t)I'v(cose, ),

channel,
cos0,=1+2s/(t 4) . —

The series for A, in (6) converges for —32&s&4
and can therefore be used to continue A» outside the
physical region of the t channel to the region of integra-
tion in (4). In this way, then, ImAt(v) can be calculated
on the near part of the left-hand cut if the crossed-
channel partial waves are known.

The method fails, however, for s& —32, since then
the expansion for A & must be used beyond its region of
convergence.

Some time ago, a method was suggested by Balazs of
estimating the contributions from these distant sin-
gularities. ' The idea is that A t(s, t) can also be calculated
in the region 0&s&4 (—1&v&0) between the cuts;
the series (6) converges there, and if desired, Regge
pole theory can be used for large t. The amplitude itself,
A t (v), can thus be obtained from (1).Then, if the distant
parts of the left-hand cut are replaced by poles, their
contributions can be determined by demanding that the
output of the N/D calculation reproduce this amplitude
as well as possible between the cuts.

Unfortunately, although the procedure is clearly
de6ned, it is not easy to apply. The problem is that the
matching conditions which determine the pole param-
eters are on the output amplitude, and the only way to
satisfy them is by a trial and error method, solving the
N/D integral equations numerically while varying the
parameters until the conditions are satisfied. To cir-
cumvent this difficulty, what Balazs did in his actual
calculations was to replace the entire left-hand cut by
poles, thus reducing the equations to algebraic ones
and making the problem numerically tractable. ' 4

However, using only a few poles, it appears to be quite

where 0~ is the center-of-mass scattering angle for the t
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dificult to reproduce A~(v) over the entire gap; this
leads to an ambiguity of the procedure, and the results
can depend considerably on the details of how the
matching is carried out. '

In this paper, we wish to reexamine the original
proposal and look at the eGect of keeping explicitly
the near part of the left-hand cut. ' One motivation for
this is the hope that the matching difficulties referred
to above will be alleviated by keeping the cut. Another
is provided by the observation that the information
contained in the cut and in the amplitude is not quite
the same. For example, consider the effects of the
t-channel process in the region 4(f(t. In (1), the
amplitude is only partly determined by contributions
from this region since the integral goes to infinity. In
(4), on the other hand, the integral cuts off at t= —4v

(u= 0) so that, for s(4—f, A & is completely determined.
Thus, the low-mass t-channel singularities give more
precise information about ImA & than they do about the
amplitude itself, and this additional information can
be used if part of the cut is retained.

In Sec. II, an approximate closed form solution of
the 1V/D equations is developed which can include an

arbitrary finite section of the left-hand cut. The
amplitude is given explicitly as a function of the distant-
pole parameters so that the residues can be chosen u

priori to make the output satisfy the matching condi-
tions. In Sec. III, the method is applied to Yukawa
scattering where we are basically interested in two
questions:

(1) When part of the cut is kept, do the matching
ambiguities disappear?

(2) Does the matching procedure really provide an

effective method of parametrizing the contributions
from the distant singularities?

u=O

( t=-4vj
t=O

t=4

r / t-channel;
integral for - h„; I',

Irn Ai

4tu

I"ro. 1. Contributions of the t channel to the near left-hand cut.

P —Pp

X(v) =A (vp)+
IrnlV (v') dr'

P —P P —Pp

(v —vs)
" dv"p(v")X(v")

D(v) =1-
7l p P —P P —Pp

where

(9)

Substituting (g) into (9) gives

a part of the left-hand cut explicitly. The treatment is
made in the spirit of Pagels's method, "but the accuracy
is improved by the fact that we will need our approxi-
mations only on a finite interval.

We assume that E(v) and D(v) satisfy once-sub-
tracted dispersion relations with a common subtraction
point vs so that" D(ve)=1, X(ve)=A(vs). D(v) is
assumed to have the right-hand cut of A(v) and N(v)
to have a segment of the left-hand cut I plus poles at
P= —a,' as shown in Fig. 2. The equations for E and D
are then'

For 1&0, the answer seems to be yes to both of these
questions. For /=0, the straightforward method breaks
down, and some alternative procedures are discussed
which gives better results. In Sec. IV, our summary and
final conclusions are given.

(v —vp)

D(v) =1— A (pp)

dv"p(v")

P —P P —Pp

dvI/ ( II)

II. APPROXIMATE SOLUTIONS INCLUDING
PART OF LEFT-HAND CUT

Here we give an approximate treatment of the 1V/D
equations which has a closed-form solutions and retains
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vr J vs+a p (v"—v)(v"+a,s)

(v —ve) ImÃ(v')dv' 1 " dv"p(v")
(11)

v' —vp ~ p (r" v)(v" —v')—
Imv

Lp

FIG. 2. Analytic structure of A &(v).

"H. Pagels, Phys. Rev. 140, B1599 (1965).
"In this section, the subscript l will be omitted throughout.
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The integrals in v" can be carried out to give"

D(v) = 1—A (vp)LiG(v) —IG('vp)]+ (v —vo)

n;LiG(v) —iG( —a,o)]
XP — —(v —vo)

Vp 8& P 8&'

1 ImlV(v') LiG(v) i—G(v')]dv'
X—

P —P P —Vp

where
AG(v) = iG(v) —iG(v),

N&'= 0!&' Vp

In (g), we have ImlV(v)=D(v) ImA(v), and using
(16) for D with AG= 0 on the cut gives

(12)
IV(v) =A (vp)+(v —vo) t 1+A (vo)~G(vo)]Io(v)

p(v) —1
s.iG(v) =p(v) ln

c(v)+1
for p& —1,

= —p(v)Ls. —2 arctanp(v)] for —1(v(0,

where G(v) is the function having only the right-hand
cut of p(v). Explicit forms for real v are

where

P.JV( -)I-( )

1—Z n~ —+~G(—aF)I~(v) I, (19)
v+ a/

f 1 —~(v)
=p()~1~ ~~ ) for )0,

1+p(v)
(13) Io(v) =—

ImA (v') dv'

V —P V —Pp

(20)

where p(v) = f—v/(v+1)]'", and the &is refer to the
top and bottom, respectively, of the cut for P~&0. In
the first term of the integral in (12), iG(v) can be taken
outside and the expression evaluated by using (8):

D(v) =1—iG(v)1V(v)+iG(vo)A (vp) —(v —vp)

ImA (v')dv'
I (v)=-

z. v v v v&

1 ImA (v')dv'
I, (v) =-

a- z, (v' —v)(v'+a;o)

(21)

n,iG( a,') —(v —vp)

XQ +
(v+a/) (vo+a/) 7r

iG(v') ImX(v')dv'

P —Pp P —P
(14)

The constants JV(v„) can be determined by setting
v= v„ in (19), and then E(v) and D(v) are given ex-

plicitly in terms of the pole parameters a,' and n, . The
functions Ip, I„, and I, can be evaluated numerically
for any given ImA(v), or, in most cases, determined
analytically by means of the formula

P —V P —Pp

p IV(v ) iGn( —aP)+2 +2 —, , (1~)
- (v —v')(vo —v. ) ' (v+aP)(vo+aP)

and finally,

D(v)=1 iV(v)h (G)+vA(vo)&G(vo)—+(v —vo)

P„JV(v. ) n AG( —a')
XQ —(v —vo) Q

Pp —P P —P„ v+a, '

"J, Dilley, J. Math. Phys. 8, 2022 (1967).

(16)

This expression for D(v) is exact. We note further
that the integral in (14) could be evaluated exactly if
G(v) were meromorphic in v instead of having the cut
0(v& ~. The approximation then consists of replacing
the known function G(v) by a meromorphic function
G(v) such that G(v) =G{v) on I. Since the approxima-
tion need hold only on a segment, this is easy to arrange
as discussed in the Appendix. Let the poles of G(v) be
at v= v„and the corresponding residues of iG(v„) be
P„. Then a contour integral about the cut gives

1 iG(v') ImJV(v')dv' iG(v)1V(v) iG(vp)JV—(vp)

s—zp)
d,f(s) =P res~ f(s) ln-

s—si)
(23)

which is valid whenever f(s) is meromorphic in s and

f(s) ~ 0 ( ~

z
~

~ ~ ); the sum is over the residues of
the poles of f(s) lnL(s —s&)/(s —s~)].

As can be seen in (16), D(v) also carries the left-
hand cut of IV(v). The discontinuity, however, is
proportional to AG(v) which can be made quite small
for reasonable cut segments. Some examples are dis-
cussed in the Appendix.

III. YUKAWA SCATTERING

Yukawa scattering, with contributions on the entire
left-hand cut calculated from Born terms, has been
previously discussed by other authors. ""Our method.
of course, treats the distant parts of the cut in an
entirelp different way, and it is of interest to see how
well the method works in this rather well understood
situation. We review here only the results necessary

1~ M. Luming, Phys. Rev. 136, 81120 (1964)."P. D. B. Collins and R. C. Johnson, Phys. Rev. 169, 1222
(1968).
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for our purpose. The potential is

V(v) = ge —"/r— (24)

jmv

and has the analytic structure shown in Fig. 3 (v is the
squal e oI t.lip Illo]HcIltu]11, with units Ig = 2m = I; th e
potential has been taken with unit range). The left-
hand cuts are generated by successive Born terms so
that the cut is given exactly by the first Born approxi-
mation ImAir for —1(v~& —4, by ImAi'+ImAP' for—9/4&v&~ —1, etc. On the other hand, all orders of
Born approximation contribute to the amplitude in the
gap —4& v&.0. For reference, we list here the first and
second approximations:

A i'(v) = (a/2v)Qi(1+ p v),

ImA P(v) = (erg/4v)Ei(1+-',v) (v ~& —-', ),
g' "dt Qi(1+t/2v)

Ai" (v) =
4 V (—) Lt(t —to)J'"

(25)

(26)

(27)

7l g
ImA P(v) =

8vg( —v) 4

where

4" Ct Pi(1+t/2v)

[t(t—tp)]' '

(v & -1), (28)

tp ——4(1+-,' v) . (29)

The E/D equations, including some segment I of the
left-hand cut (see Fig. 3), can be treated as in Sec. II
except that no subtraction is made for E, and G(v) is
replaced by Qv. For convenience, the subtraction point
~p of D is taken at the beginning of the cut pp= —4,
and G(vp) chosen such that G(vp) = Qvp, so that
dG(vp)=0. The choice of G(v) and the resulting ac-
curacy of the solutions is discussed in the Appendix.

The basic idea, as indicated in the Introduction, is to
try to make the 1V/D output reproduce the amplitude,
in this case given by the Born terms, as closely as pos-
sible in the region —0.25&v&0. Our procedure is to
use two poles with the residues chosen so that the
E/D output agrees with Ai(v) at two points, v= —0.2
and 0. The pole positions are then varied so as to
optimize the agreement throughout the region, with
the restriction that the first pole must be somewhere
near the point I.~ which is the end of the cut being
explicitly treated. "

l/0
The cases with l/0 are all characterized by the fact

that the first Born term A g' gives a reasonable approxi-
mation to the actual amplitude. The threshold be-
havior is correct, Air(v) ~ v' (v~0), and the first
Born term also dominates near the left-hand cut, so
that it gives at least a qualitatively correct picture

» This procedure divers somewhat from that proposed by
Balizs who gave an a priori prescription for determining the pole
positions from the kernel of the integral equation for N.

I

.
E

FIG. 3. Analytic structure for Yukawa scattering.

throughout the gap. The behavior of the first two Born
approximations are indicated in Table I for the cases
g=1 and g=3, It=I. For g=1, even the contribution
of the second Born term is very small and the ampli-
tude is very close to the correct one. For g=3, the
relative importance of higher-order terms is consider-
ably larger, and the accuracy of the amplitudes A &' or
A i'+A i" correspondingly less.

The best fits to the amplitudes are given in Table I for
three cases: (a) no cut (two poles only), (b) a cut
—0.5 ~& v &~—0.25 (the cut is included to where

ImAP(v) changes sign), plus two poles, and (c) a cut
—1 &~v &~—0.25 (the cut is taken to the point where the
second Born term starts to contribute), plus two poles.

As expected, the pure pole solutions are unable to
reproduce the amplitudes with any great accuracy,
particularly in the region near the left-hand cut, In
this situation, of course, what constitutes a "best fit"
becomes somewhat a matter of taste, and we can only
say that the ones given seem as good as any. This type
of ambiguity is the one referred to in the introduction.

The solutions with cuts do much better, and give good
fits to the amplitude in all cases except g=3 in first
Born approximation. Here, it is seen that there is a
small discrepancy with the cut solution —0.5 &~ v

&~—0.25 (the discrepancy is real and cannot be re-
moved by adjusting the pole positions). Furthermore,
the discrepancy increases with the length of the in-
cluded cut. This phenomena seems very strange at
first sight, but it must be remembered that the first
Born cut and unitarity are not equivalent to the first
Born amplitude! for example, the entire first Born cut
plus unitarity implies A i(0) &0, whereas A i (v) vanishes
at threshold). The correct statement is that all of the
Born cuts plus unitarity is equivalent to the sum of the
Born amplitudes in regions where the Born series
converges. "Thus, for cases like g=3 where there are
noticeable corrections from higher-order Born terms to
the amplitude, the left-hand cut and unitarity can
become inconsistent with the approximate amplitude
being used. In this situation, as more of the left-hand
cut is retained, the poles have to generate ficticious
forces in such a way as to cancel eRectively some of the
cut contribution, and if too much of the cut is used, the
poles may be unable to bring about agreement. In

'6 For the case g= 3, there is an s-wave bound state, and the
Born series actually does not converge above the bound-state
energy. However, for l&0, the 6rst few Born terms still give an
approximate description of the actual amplitude.
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TAazE I. Amplitude matching for l =1.

1I (v)

a Pure pole solution;
poles at v= —0.28, —1.5

b Cut —0.5«. —0.25;
poles at v= —0.6, —1.7

c Cut -1~& v&&—0.25;
poles at v= —1.5, —5.2

A1 (v) +A11I(V)

a Pure pole solution;
poles at v= —0.28, —1.7

b Cut —0.5« v ~& —0.25;
poles at v= —0.6, -2.2

c Cut —1« v& —0.25;
poles at v= —1.5, —5.2

g=1, l=i
—0.2499 -0.23 -0.2 -0.175 —0.15 —0.125 -0.1 —0.075 -0.05 -0.025 0
—5,8326 —1.0489 —0.5177 —0.3371 —0.2300 —0.1589 -0.1083 —0.0705 —0.0415 —0.0185 0

—1.7829 0.9734 -0.5177 —0.3391 -0.2308 —0.1587 -0.1076 -0.0698 -0.0408 —0.0182 0

—5.8326 —1.0489 —O.S177 —0.3371 —0.2300 —0.1589 -0.1083 —0.0706 -0.0415 —0.0185 0

—5.8325 —1.0488 —0.5177 —0.3371 —0.2301 —0.1590 —0.1084 —0.0707 -0.0416 —0.0186 ' 0

—5.8389 —1.0546 —0.5227 —0.3414 —0.2338 —0.1620 -0.1108 -0.0724 -0.0428 —0.0192 0

—1.7901 —0.9795 —0.5227 —0.3433 —0.2343 —0.1615 —0.1097 —0.0713 —0.0418 —0.0186 0

—5.8388 —1.0546 —0.5227 —0.3414 —0.2337 —0.1620 —0.1107 -0.0724 -0.0427 —0.0191 0

—5.8390 —1.0547 —0.5227 —0.3414 —0.2337 —0.1620 -0.1107 —0.0724 -0.0427 —0.0192 0

g=3, l=i

A 1&(v)

—0.2499 ' —0.23
—17.4979 —3.1467

-0.2
—1.5531

—0.175
—1.0112

—0.15
-0.6901

—0.125
—0.4766

—0, 1
—0.3248

—0.075
—0.2116

—0.05
-0.1244

—0.025 0
—0 0555 0

a Pure pole solution;
poles at v= —0.28, —1.3

b Cut —0.5 &&v ~&—0.25;
poles at, v= —0.6, —1.25

c Cut —1« v& —0.25
poles at v= —1.5, —2.5

A 11(v) +A 1~1(v)

a Pure pole solution;
poles at v= —0.28, —2

b Cut —0.5 « v &&—0.25;
poles at v= —0.6, —2.4

. c Cut -1 ~& v& —0.25;
poles at v = —1.25, —2.5

—5.3610 —2.9238 —1.5531 —1.0168 —0.6918 —0.4757 —0.3227 —0.2095 -0.1229 —0.0548 0

—17.4998 —3.1475 —1.5531 —1.0109 -0.6897 —0.4765 —0.3248 —0.2118 -0.1248 —0.0559 0

—17.4964 —3.1458 -1.5531 —1.0119 —0.6912 —0.4782 -0.3265 —0.2133 -0.1259 —0.0565 0

—17.5543 -3.1985 -1.5980 —1.0505 —0.7238 —0.5049 -0.3475 —0.2288 —0.1361 —0.0615 0

—5.4043 -2.9719 —1.5980 -1.0565 —0.7258 -0.5038 -0.3449 —0.2260 -0.1338 —0.0602 0

—17.5545 —3.1985 —1.5980 —1.0505 —0.7238 —0.5049 -0.3476 —0.2289 —0.1362 —0.0616 0

—17.5551 —3.1988 —1.5980 —1.0504 —0.7236 —0.5047 —0.3474 —0.2288 —0.1361 —0.0616 0

40—

30

6Q

u 20

10

0
0

FrG. 4. Effective-range plots g =1, l = 1, and 6rst Born inputs; the
labels correspond to those of Table I.

the present instance, the addition of the second Born
contribution makes it possible for both cut solutions to
be brought into agreement with the amplitude.

The outputs to the various calculations are shown
in Figs. 4-7 where they are compared with the solu-
tion of the Schrodinger equation. For the case g= 1, the
cut solutions are clearly better than the pure pole
solution, with the longer cut —1~&v~& —0.25 giving
the best results. For the case g=3, the situation is a
bit more confused because of the comparative poorness
of the amplitude being matched. The pure pole solu-
tions are surprisingly good, but the signi6cance of this
is diminished by the ambiguity of choosing a best 6t.
In both cases, the results improve when the amplitude
used for matching is improved by the addition of the
second Born contribution, a situation indicating that the
use of the amplitude in this way to parametrize the
contributions of the distant singularities has some
validity.

Except for the case g= 3 in first Born approximation,
the cut solutions can reproduce the amplitude being

used with remarkable accuracy. The pure pole solu-

tions, on the other hand, always have an ambiguity
associated with the way in which the "best fit" is

chosen. One way to measure this ambiguity is to
recalculate the amplitude with a "local Qt" by re-

quiring the E/D output match A&(v) and (d/dv)A z(v)
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Tssr,z II. Amplitude matching for /=0.

Aoi (v)

g=i, l=0
—0.2499 —0.249 —0.245 —0.24

7.8272 5.5436 3.9919 3.3530
—0.23

2.7454
—0.22

2.4094
—0.2

2.0118
—0.15

1.5272

—0.1
1.2771

—0.05
1.1157

a~ Cut -0.5 &&v&~ -0.25;
poles at v= —0.65, —1.1

b, Cut -1& v& -0.25;
poles at v=1.25, —2

Ao (v)+Ao (v}

aqua Cut -0.5&&v~& —0.25;
poles at v= —0.6, —1.2

bqq Cut —1 « v &~ —0.25;
poles at v ~ —1.25, -2

7.8272

7.8272

8.0949

8.0949

8.0949

5.5436

5.5436

5.8115

5.-8115

5.8115

3.9919

3.9918

4.2605

4.2605

4.2605

3.3530

3.3530

3.6226

3.6226

3.6225

g=3, )=0

2.7455

2.7454

3.0169

3.0169

3.0169.

2.4099

2.4097

2.6831

2.6832

2.6831

2.0136

2.0131

2.2904

2.2908

2.2908

1.5364

1.5345

1.8202

1.8250

1.8254

1.3021

1.2984

1.5912

1.6075

1.6084

1.1744

1.1679

1.4655

1.5107

1.5123

Ao& (v)

—0.2499 —0.249 —0.245 —0.24
23.4815 16.6309 11.9756 10.0590

—0.23
8.2361

—0.22
7.2282

—0.2
6.035

—0.15
4.582

—0.1

3.381
—0.05

3.347

a~ Cut —0.5 ~& v ~&-0.25;
poles at v= —0.65, —3

bg Cut -1&&v&~ —0.25;
poles at v= —1.25, —2

Ao1( }+A011()

aqua Cut —0.5 &~ v & —0.25;
poles at v= —0.6, -1.1

bii Cut —1 ~& v &&—0.25;
poles at v= —1.5, —4

bqq& Cut, —1 &v & —0.25;
poles at v= —1.1, —1.5

23.4815 16.6309 11.9755 10.0591 8.2376

25.8912 19.0421 14.3936 12.4868 10.6878

25.8912 19.0421 14.3932 12.4853 10.6824

25.8912 19.0421 14.3933 12.4856 10.6839

23.4815 16.6309 11.9753 10.0585 8.2359

25.8912 19.0421 14.3934 12.4853 10.6802

7.2327

7.2295

9.6911

9.7099

9.6984

9.7018

6.051

6.044

8.543

8.597

8.567

8.577

4.659

4.636

7.219

7.501

7.381

7.423

4.049

3.999

6.658

7.526

7.212

7.329

3.898

3.801

6.495

9.259

8.362

8.704

at some point i i, and then vary vi to see how the phase tion in Table I (g= 1 in first Born approximation),
shifts change. The results for the 6rst pure pole solu- where vi has been varied between —0.2 and —0.05,

are shown in Fig. 8, and indicate the typical matching
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FrG. 5. KRective-range plots g=1, L= j., and second Born inputs; - Fro. 6. ERective-range plots g=3, l= 1, and 6rst Born inputs; the
the labels correspond to those of Table I. labels correspond to those of Table I.
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Fro. 7. Effective-range plots g=3, l=1, and second Born inputs;
the labels correspond to those of Table I.

Fxo. 9. Pole stability of solutions, g =3, l = 1, second Born input.
The curves are (a) no cut, poles at v= —0.3, —0.85; (a') no cut,
poles at v= —0.28, —2; (b) cut —0.5~&v~& —0.25, poles at
v= —0.55, —2.24; (b') cut —0.5 ~& v& —0.25, poles at v= —0.6,—2;4.
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Fro. 8. Matching stability of pure pole solutions g= 1,
l=1, and erst Born input.

Fro. 10. Effective-range plots g=1, l =0; the labels
correspond to those of Table Il.
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1.0 a change of 0.05 for the cut solution has a much smaller
effect; a change of 0.25 for the cut solution —1~& v

~&
—0.25 (not shown) has a similar effect.
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Fre. 11.EG'ective-range plots g=3, 1=0; the labels
correspond to those of Table II.
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stability of the pole solutions. Except for the single
case referred to above, the matching stability of all
the cut solutions was completely negligible.

The cut solutions are also rather stable with respect
to changes of the pole positions. That is, if the posi-
tion of the fIrst (nearer) pole is changed slightly and
the other pole position then adjusted as before to give
a best fit to the amplitude, the output changes very
little. The results of such a variation are shown in
Fig. 9 for g= 3 (second Born input), the case where the
poles give their greatest contribution. A change of only
0.02 in the position of the first pole for the pure pole
solution causes a marked change in the results, whereas

For l =0, the situation changes drastically because of
large contributions from the higher-order Born terms
(see Table II). Even for g=1, the amplitude is in-
adequate, whereas its use for the g=3 case is obvious
nonsense because of the bound state.

Two different ways of circumventing this difficulty
were tried. The first method utilizes the fact that the
relative contribution of the higher-order terms de-
creases greatly on the peak of the amplitude near the
cut so that the amplitude may be accurate there even
if it is poor elsewhere. The method works rather well
for g=1; the matching of the solutions to the Born
amplitudes is shown in Table II, and the phase shifts
in Fig. 10. The procedure used was to Qx the residues
by matching the E/D solutions to the amplitude and
its first derivative very near the cut, then to adjust
the pole positions so as to follow the amplitude as far
down the peak as possible. This can be done down to
about v= —0.22 without any significant diS.culties or
ambiguities arising, and the second Born outputs give
quite good results. For g=3, however, the amplitudes
can be matched only in a very small region, and choosing
the best solution becomes more difficult. For example,
two different second Born solutions for the cut —1~& v

~&
—0.25 are given in Table III; it is very difficult to

choose between these solutions on the basis of their
behavior near the cut, yet the outputs are quite dif-
ferent (see Fig. 11). In addition to this ambiguity, it
can be seen that none of the solutions gives particularly
good results.

The alternative approach utilizes the idea that the
contributions from distant singularities should be nearly
independent of I."The cut discontinuities for g=1 are
shown in Fig. 12, and the curves for g=3 have a
similar form. It can be seen that though the behavior
of the 3=0 and l=1 cuts is quite diGerent near the
branch point, it is at least qualitatively the same far
to the left. The idea is then to use as much of the left-
hand cut as possible, to determine the pole residues
from an /= 1 calculation, and then to use the same resi-
dues for /=0. This must be done in a somewhat in-
direct manner, however, because of the difficulty of
matching even the 3=1 amplitudes when a very long
segment of the cut is kept. What we do, therefore, is
use the cut all the way to v= —2.25 (where the third
Born cut begins) and then fix the residues so as to
roughly reproduce the l=1 phase shifts as calculated
before from the cut —1~& v~& —0.25."Then, using the
same residues, we can calculate for /= 0. The results are

.(3rd Born)
-1.5 "1

(2nd Born)

Fre. 12. Cut discontinuities g=i.

-0,5 -0.25
(1st Born) » I..A. P. Balazs, Phys. Rev. 162, 1482 (1967}.» The actual procedure was to set A&(0) =0 and also require

the phase shifts to agree at v=2.
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shown in Figs. 10 and 11 (curve c) and are seen to be
quite satisfactory even for the very difficult case g=3.
Furthermore, these results are insensitive to the pole
positions; the curves shown are for poles at v = —3, —10,
but moving the poles to v= —2.5, —5 gives virtually
the same results.

IV. SUMMARY AND CONCLUSIONS

In actual practice, the use of the Balazs method has
been greatly restricted by numerical difficulties. When
part of the cut is retained to treat correctly the long-

range forces, the resulting integral equations make
the matching procedure extremely tedious and time-
consuming. If, on the other hand, the cut is discarded
and a pure pole approach used, important ambiguities in
the solutions can arise. In this paper, we have given a
closed-form solution of the E/D equations which

greatly simplifies the calculations and makes it possible
to use the more general approach in a systematic way.
The closed-form solutions are approximate, but can be
made very accurate without any difficulty if the cut
being used is not too long.

A study of Yukawa scattering indicates that the
straightforward Balazs method can be made reliable
for /@0 by keeping a part of the left-hand cut. Am-

biguities in the matching procedure decrease sub-

stantially, and the output agrees well with Schrodinger
equation solutions. The accuracy of the amplitude being
used for matching seems to play an important role in
the degree of success of the method. An improvement of
this amplitude not only leads to better output, but
also makes the matching procedure easier and allows

more of the left-hand cut to be included.
For /=0, the method becomes much harder to apply

because of the difficulty in calculating a sufficiently

good amplitude to reproduce. Two methods were

suggested for dealing with this problem. The first
method fits only the peak near the left-hand cut where
the accuracy of the amplitude is highest, and seems
to work well for weak coupling. The second method uses
the 3=1 results and the idea that the eGects of distant
singularities are independent of I. This method gave
good results even for the bound-state case, but re-
quires the knowledge of a fairly large segment of the
left-hand. cut.

APPENDIX

The accuracy of the method depends on AG= iG—iG
being small on the cut I. This condition is easy to

arrange as long as the cut segment is not too large. VVe

have made no effort to find an optimal method of
constructing the approximating function G, but merely
give two examples:

(I) iG(v) = iG(L2)+cg(v —L2)/(v —v„),

(II) iG(v) =c21 c3(v L2)/(v —vg)

The one-pole form (I) obviously agrees with iG(v)
at L2, and c& can be taken such that they agree at the
other endpoint L~. The pole position v„ is then varied
to minimize DG in the interior. In the second form (II)
the constants c2, c3, and c4 can be taken to make t

agree exactly with G at the end points of the cut and
the midpoint 2(L~+L~). The degree to which G is
approximated by these forms is given in Table III for
different cut segments.

In actual calculations, of course, it is always possible
to check the accuracy of the method by seeing how
well the solutions obtained satisfy the exact integral
equations. This was done for some of the Yukawa
scattering calculations, and it was found that the solu-
tions satisfied the integral equations very well. The most
critical situation here is the region —0.25 &~ v~& 0 where
the matching is being attempted to very high accuracy
and there is the danger of small systematic errors. In
particular, one wants to know that discrepancies such
as those observed for g=3, l= 1 in the first Born
approximation are real, and not the product of de-
ficiencies of the numerics. For this purpose, a high-
accuracy two-pole form

iG(L~) (v —L2) iG(L,) (v —L~)
iG(v) =

I j —L2 L2—Lg

(v —L2) (v —Lg) / by b2
+

L,—I., kv —vg v v,t—
was used. Here, G(v) agrees with G(v)=+v auto-
matically at v= L&, L» 6&, and b2 were chosen to give
agreement at two interior points, then v~ and v& ad-
justed to give the best over-all agreement. The agree-
ment obtained for the cut —1&~v~& —0.25 with this
form is shown in Table III. Substitution of the solu-
tions into the integral equations indicated that errors
in the amplitudes given in Table I are probably never
greater than one in the last decimal place.


