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which is the result used in Sec. IV. Equation (2) may be i n 1—gfai)f= 1
recast, on integration by parts, into the form S S

’ 0 9 n 1l—ghai
Fn(x) =/ dﬁ e B H -
0 B =1 a;

(A3)  a result used in Secs. II and IIL. Using mathematical

induction, it is easy to provide a purely algebraic proof

From Eq. (3) we have immediately, as a simple check, of (4). We leave this task to the interested reader.
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An investigation is made of theories which satisfy the duality principle using the Veneziano amplitude
as a Born term. In constructing the theory, it is found necessary to average over different ways of assigning
the loop momenta to the points of the duality diagram. The Regge-pole terms in the asymptotic behavior
are identified, and transcendental equations which express the full renormalization of the leading trajectory
are recorded. (It is necessary to assume that the integrals can be so defined that this asymptotic behavior,
found in the limit Res — — <o, continues to be the dominant behavior as Res — +.) The amplitude
is shown to have the Landau-Cutkosky singularity structure corresponding to poles lying on the renor-
malized leading trajectory. In particular, if low-lying particles on this trajectory are the only stable particles
in the theory, the real singularity structure required by unitarity is correctly obtained. It is then possible
that the failure in a finite theory of exact factorization for all daughters would not spoil the theory.

I. INTRODUCTION

ECENTLY Kikkawa, Sakita, and Virasoro (KSV)!
have proposed a way of constructing a new form
of perturbation theory, consistent with duality, in
which the Veneziano amplitude? plays the role of a
Born term. Such a series appears likely to be formally
unitary and to correct the most glaring deficiency of the
Veneziano model itself. However, KSV in a note added
in proof, and also Bardakci, Halpern, and Shapiro
(BHS)? have pointed out that in order to obtain full
factorization of even the single-loop KSV expression
in a way which is consistent with Veneziano-type
functions associated with tree diagrams,* the integrand
in the KSV integral must contain an infinite product
which leads to an exponential divergence.
This disastrous conclusion is enforced by the require-
ment that factorization, and consequent unitarity-like
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discontinuity formulas around normal threshold sin-
gularities, is required for all poles contained in the
Veneziano amplitude whatever their level in the
daughter sequence. While this would be an agreeable
property if it were obtainable, it is not clear that its
failure robs the KSV approach of all its utility. Two
lines of thought suggest that this is not necessarily
the case. One is that the daughter properties of a
Veneziano amplitude can be modified by the addition
of nonleading terms. Bardakci and Mandelstam® have
conjectured that these nonleading additions cannot be
used in a way which leads to a simpler, and so probably
less divergent, daughter sequence, but a proof has not,
at present, been given that this is so. Secondly, the
effect of unitarizing the theory will be to destroy the
narrow-resonance approximation of the Veneziano
amplitude. Resonance poles should move onto un-
physical sheets, leaving only the stable-particle poles
renormalized to locations which are still real. For
simplicity, we shall always consider the model in which
the only stable particle is the spin-0 member of the
leading trajectory. If that leading trajectory factorizes
properly, then the real normal thresholds corresponding
to stable particles will have Cutkosky discontinuity
formulas which correspond to physical unitarity. This
will not be true for singularities involving daughter-
trajectory particles, if the latter do not factorize

& K. Bardakci and S. Mandelstam, Phys. Rev. 184, 1640 (1969).
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properly, but if these singularities are translated onto
unphysical sheets they may not spoil the physical
unitarity of the theory. We return to a fuller discussion
of this point in the conclusion.

The aim of this paper is to discuss some of the
effects of imposing unitarity on the Veneziano formula
by means of a KSV approach. We restrict ourselves to
planar diagrams and, consequently, construct a theory
which has only s and ¢ channels. In particular, in such
a theory we study how this renormalizes the particle
and resonance poles. This renormalization manifests
itself in two distinct ways. The first is by the displace-
ment of Landau singularities and in particular the
direct-channel poles. The second is through a modifica-
tion of the asymptotic behavior of the amplitude
corresponding to a renormalized Regge trajectory. KSV
have already given a leading-order approximation
discussion of the latter. In this paper, we give a complete
calculation, using techniques developed to give a
similarly complete calculation of the asymptotic
behavior of ladder diagrams in conventional perturba-
tion theory.®” Of course, one requires that the two
effects give the same answer, that is that the displaced
direct-channel poles lie on the displaced trajectory.
We show that the factorization conditions involved are
always the same in the two cases, whatever daughter
is considered, and that when these are satisfied the
consistency condition is an identity.

Furthermore, for the case of the leading trajectory,
these factorization conditions are shown to hold for
virtually any expression constructed according to the
general ideas of KSV, whether or not it contains terms
corresponding to circling lines in duality diagrams.
Presumably the factorization conditions for daughter
trajectories will require increasing numbers of these
lines, and if they are to hold for all daughters, one would
expect to arrive by a somewhat different route at the
disaster found by KSV and BHS. However, as we have
argued above, it may be that a useful theory may be
obtained without going to that limit.

Equations (5.13)-(5.17) give the transcendental
equations which incorporate the unitarity corrections
to the leading trajectory of the Veneziano model.
Although these equations are in the form of series in
the expansion parameter, even the lowest approxima-
tion corresponds to a partial infinite summation and
incorporates important nonperturbative features. For
example, it reproduces the Gribov-Pomeranchuk con-
densation of poles at Re/= —3% at the first elastic thresh-
old.”® However, the threshold is still at its unrenormal-
ized position.

6 J. C. Polkinghorne, J. Math. Phys. 5, 431 (1964).

7R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polking-
horne, The Analytic S-Matrix (Cambridge University Press,
Cambridge, England, 1966) Secs. 3-6.
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Fic. 1. Dual diagram showing the
variables used.

II. MODEL

The integral associated with #-loop planar diagrams
can be written in the form

L= ]

=1

1 1 ol
dxi/ dy, H deZj_O‘O(t)_l
0 0

=1/,

sexp(I1 5 (95— dn (63,50)0 (03,5) . (2.1)

J=1

The variables x, y, and z are associated with lines
of the dual diagram shown in Fig. 1; s= (pa+ps)%,
t=(p1+p2)?; g* is the expansion parameter; ao is the
linear trajectory of the original Veneziano amplitude.
The exponent in the integrand is constructed according
to the rules given by KSV. Its detailed form will
depend on how many further lines are to be represented
in the dual diagram Fig. 1. The variables associated
with these lines are all functions of %, y, and z deter-
mined by the repeated application of the quadrilateral
conditions, Egs. (3.2) and (3.3) of KSV. We discuss
the choice of these further variables in the next para-
graph. At present we only indicate in (2.1) that what-
ever the choice, the coefficient of s in (2.1) will vanish
when any one of the z; vanishes. This was shown by
KSV. The function g, is the product of two terms. One
is the (detd,)™ factor arising from performing the
symmetric integration over the #-loop momenta. The
other is whatever else is required, including a Jacobian
factor. We leave the precise form unsettled, but will
impose a simple requirement as the argument develops.

Figure 1 is the dual diagram associated with Fig.
2(a). In Fig. 2(b) we show some of the many diagrams

(a)

T
0T IT

F16. 2. (a) The dia-
gram of which Fig. 1 is
the dual diagram; (b)
other diagrams related
to (a) by duality.
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Fi1c. 3. Lines needed for the two-loop diagram.

related to Fig. 2(a) by duality in the way explained by
KSV. The minimum set of further variables which
must go into the construction of (2.1) is that which
corresponds to all the lines needed for the dual dia-
grams of the set Fig. 2(b). When one attempts to
construct such a set for diagrams with more than one
loop, one immediately encounters a difficulty. It
proves impossible to choose a set in such a way that
each desired dual diagram is obtained once and once
only. This is because the internal points of the dual
diagram represent loop momenta and there is not a
natural ordering of these loop momenta which holds
universally for all the diagrams of Fig. 2. In fact one
must be content with a sum over all the possible
assignments of points to loop momenta so that every
dual diagram is generated in %! ways. For example,
Fig. 3 shows some of the variables required for the two
loop diagram. (Omitted from Fig. 3 are variables
needed to correspond to diagrams with self-energy

Fr1c. 4. A dual diagram con-
tained in Fig. 3. The primed
variables differ from those of
Fig. 1.
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insertions in the external lines. These variables in fact
require a special discussion which is given in Sec. V1
when wave-function renormalization is dealt with.) The
dual diagram corresponding to Fig. 2(a) can be con-
structed in two ways, one corresponding to Fig. 1, the
other to Fig. 4.

We are interested in the singularity structure of the
integral (2.1), which will be discussed in later sections.
We shall find that it has singularities occuring on the
expected Landau curves and that these arise from points
in the region of integration when the variables cor-
responding to the lines in the appropriate dual diagram
vanish. Since there are n! ways of constructing any
given dual diagram, there are »! distinct points in the
region of integration which contribute to the given
singularity. Each point, because of the symmetrical
way of constructing /,, yields the same contribution and
if they were all added together we should find Cutkosky
discontinuity formulas which differed from those re-
quired for unitarity by a factor of »!. It is therefore
necessary that g, should contain a factor (n!)~L It is
clearly equivalent and much more convenient merely
to evaluate the contribution at one of the points only
and forget about the (#!)~1. This we shall do in all that
follows, as a calculational convenience, both for sin-
gularity structure and also for asymptotic behavior, to
which we now turn our attention.

III. ASYMPTOTIC BEHAVIOR

In order to investigate the asymptotic behavior of
(2.1), we take its Mellin transform®-’ with respect to
(—s). If the Mellin-transform variable is /, this yields

n 1 1 nd-1 1
w.0=r(ne % [ an [ oL [
=1/, 0 =1 Jo
Xz (f,) gae~ . (3.1)
The expression (3.1) has poles when I=ao—m (m=0,
1, 2, --+) due to the divergence of the z; integrations

at z;=0. These can be explicitly exhibited in the stan-
dard way by integrating by parts to yield

Mn<z>=r<—1><g2>n+11jl dx: / dy:

n+1 1 Zjl—ﬂ(H-m
XII | dz ( )
=1 Jo ’ (l—ao) ce (l —a0+m)
gmtl
X(=)m+ [fulgne==]. (3.2)
aij+1

If we put /=ao—m everywhere in (3.2) other than in
the vanishing denominator factors, we obtain the
leading-order approximation already discussed in the
case m=0 by KSV. Summed over #, it yields a Regge
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pole. However, we wish to do better than that and sum
up all contributions, not just the leading ones. Only
then shall we get the correct trajectory. The technique
is the exact analog of that employed in perturbation
theory.®” One expands each factor

> (Inz;)"i (1 —ao+m)™i

rj=0

zjl——ao+m =

, (3.3)

rj!

and collects terms according to the resulting net
powers of (l—ap+m)~! displayed. Any term with an

=0 is such that the corresponding z; integration can
be performed explicitly. This replaces 9™*/dz;7! by
0™/dz;™ evaluated at the limits z;=1, 0. At z;=1,
variables dual to z; become zero and their logarithms,
which appear in the exponent, become infinite. There
is then a vanishing contribution from z;=1, and one is
left with the contribution from z;=0. Symbolically, we
can represent the effect of integrating these terms with
7;=0 by the substitution

am+1 qm

1
[ i s |
0 sz"”'l 02" 4:—0

Zj=

(34)

The summation of multiple poles in (3.2) to give dis-
placed poles corresponding to Regge poles depends upon
factorization properties of these derivatives evaluated
with z;=0. We shall give a detailed discussion of the
case m=0 in Sec. V. We do not attempt a general
discussion of m3£0. Even in conventional perturbation
theory, only special cases have been solved.® Our
purpose in developing the general argument thus far is
to be able to make a comparison with a different but
related discussion in Sec. IV.

A word of caution must finally be sounded on the
results of the discussion presented here. The Mellin-
transform method is only able to handle the limit
—s— o, and it correctly obtains the behavior in that
case. In the case of conventional perturbation theory,
analyticity and the fact that one can obtain bounds on
the integrals which show that they cannot exceed
power-law behavior for |s| — « in any direction,
together, then, assure that the result holds for limits
taken in any direction in the complex plane. In the case
we are now discussing the second of these conditions
can not be shown in general and so we can not generally
exclude the presence of entire functions which would
have exponentially vanishing behavior as Res — — o,
but bad behavior as Res— + . In fact, it is an im-
portant constraint to be satisfied on the detailed form
of (2.1) that it is free from this undesirable behavior.
We are at present unable to make a useful contribution
towards determining how to do this and must proceed
under the tacit assumption that it can be done. The
Regge-pole properties that we obtain will then be

? A. R. Swift, J. Math. Phys. 6, 1472 (1964); I. G. Halliday and
P.V. Landshoﬁ Nuovo Cimento 56A, 983 (1968)
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those iwhich hold in any sensible theory that can be
constructed. It seems wholly reasonable to suppose that
such a theory can be found.

IV. DIRECT-CHANNEL POLES

The amplitude (2.1) has multiple poles in ¢ cor-
responding to the divergencies of the z; integrations at

=0. Graphically these correspond to the multiple
poles in diagrams like Fig. 2(a) and the first diagram of
Fig. 2(b). When these are summed over #, we expect
them to turn into displaced simple poles as in con-
ventional renormalization theory. This is now
investigated.

In order to exhibit the angular momentum content
of the poles, we first expand the part of the exponent
in (2.1) which depends on s:

0 fnpsp
efns=73" (4.1)
=0 p!
Integration by parts then exhibits the poles
© (gZ)n-Hsp n
[-—Z** /dxl/ dy;
p=0 =1
]—o:o+m+ P a m+1
X H
=1 (0[()"?) v (ao—])_m) azi’"ﬂ
X[ furgne=®]. (4.2)

The leading-pole behavior is given by putting
ao=p+m everywhere in (4.2) except in the denomi-
nators which vanish. If one wants to do better than a
leading-order approximation, one must expand the
zi~@tmtP factors in powers of Ing;, and integrate when
possible, exactly as described in the analogous mani-
pulations of Sec. III. It is clear that the factorization
conditions required in this case are exactly the same as
those required in Sec. III with / taken equal to the
integer p.

Thus we see that there is complete consistency
between the Regge poles obtained by an investigation
of high-energy behavior and the direct-channel poles
obtained by renormalization. The factorization con-
ditions required are equivalent and the direct-channel
poles are indeed the poles lying on the Regge tra-
jectories.® In particular, the sequence of poles with
m=0, p=0, 1, 2, , lie on the leading trajectory.

While the equivalence is to be expected on the basis
of using the Sommerfeld-Watson transform in a well-
behaved theory, it has seemed worthwhile to check it
explicitly in this case. For the leading trajectory we
shall also be able to show that it holds for all Landau

llen compa.rmg (3.2) and (4.2) recall that I'(—I)= (sinwl
-T(+1)
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singularities, not just the direct-channel poles; this
will require a generalization of the method used above.

V. FACTORIZATION AND LEADING TRAJECTORY

While the factorization conditions needed in the
arguments of Secs. IIT and IV are difficult to discuss
in general, it is possible to establish them rather easily
for the case of the leading trajectory. This we now
proceed to do.

We require that when z;=0, the expression

falge™@ (5.1)

factorizes into a product of two terms, one of which
depends only on variables associated with lines in the
dual diagram lying to the left of the line corresponding
to z;, the other depending only on variables to the right.
For the term e~¢ this factorization is immediate. It
follows from the fact that when we have z;=0, duality
forces the variables corresponding to lines crossing the
z; line to go to 1. Their Jogarithms, which appear in
the exponent, then vanish and the terms which remain
in d correspond to lines in two subdiagrams joined
together only by the z; line. Then ¢~ factors into the
product of the two e~¢ factors corresponding to these
subdiagrams. Similarly, the factorization of the (det4)™?
factor in g is immediate for the same reason. The only
condition that we impose on the Jacobian or other
extra factors in g, is that they also should factorize.

The only term in (5.1) which requires a more detailed
discussion is f,. The central result we need is the
following:

Lemma. A variable corresponding to a line which
crosses once the line corresponding to z; has the form

1—4 1A22j+0(27'2) , (5.2)

when A; is a function of variables lying to the left of
the z; line and is determined only by the topological
structure of the part of the line which lies to the left of
the z; line* and A, is similarly a function of right-hand
variables and determined by the topological structure
of the right-hand part of the line.

Thus, the two lines in Fig. 5 have the same 4,
factors but different 4, factors. We establish the result
by first considering two lines having the same left

I
l
I
I
_____ 4
i
!
I
I

F16. 5. Two lines having the same 4, factor but
different A4, factors.

1 We will call this left structure; right structure is similarly
defined.
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structure and differing in their right structure in the
way shown in Fig. 6; that is, one of them carries on
to the next point in the dual diagram, but in all other
respects its right structure is the same. Application of
the formulas (3.2) and (3.3) of KSV to the quadrilateral
shown in the figure yields

(1 —xgagal) (1 —x2a3a1xX')

B (1 "‘0626!30{190) (1 —x2a3a1X’)

Xo0i3001

Xol301 X
=1+< - )(1—X’>
1 —X20301X 1 — Xo0i301

+O((1=X")%), (5.3)

where | —a)(1— X
= () (1 —ass , (5.4)

(1 —OI1X/) (1 —alxg)
B (l—ag) (1 —agxgx) (55)

ty=—,
(1 —asxs) (1 —asx)

Fi1c. 6. A quadrilateral to be considered. Variables associated with
the lines are indicated.

We suppose that we already know that X’ has the form
X'= 1—A1AQZ]'+O(Z]'2) y (56)

because, as z;— 0, X’ — 1 and, in (5.6), x; is not, in
general, equal to 1, we must also have a;— 1. The
value of as determined from (5.5) clearly depends only
on right-hand variables. Thus (5.3) shows that

X=1'—A1A212j+0(212) , (57)

where A4 is the same 41 as in (5.6) but 4,’ is different.

It is quite straightforward to show by similar argu-
ments that the line having the desired left structure and
ending at the first point to the right of the z; line has
the form (5.6). The lemma then follows from a re-
peated application of the result (5.7).

We now use the lemma to show the desired factoriza-
tion of f,, which has the form explained by KSV:

TI2X fu=—Fo/detA,,. (5.8)
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The factorization of detd, is immediate, and we con-
centrate attention on F,. According to KSV, it has the
form of a sum of products of logarithms of sets of
variables. These correspond to lines which fulfill the
conditions that they are a maximal set forming a
closed loop with p, and p; (or equivalently p; and ps),
and no other closed loops are present in the dual
diagram. A term in F,, therefore, has the structure

H lnXkXH lnYl, (59)

where the X}, are the variables corresponding to the
lines forming the closed loop and the V; are the rest.
The X lines cross every one of the z lines, and their
logarithms in (5.9) provide the 2 factors displayed on
the left of (5.8). Thus, in evaluating f with 2;=0, we can
put z;=01n all the InY factors in (5.9). This means that
no lines crossing the z; lines contribute to the In¥
product, which therefore can be written as a product
of a left- and a right-hand factor. The InX product can
be similarly decomposed except that it contains one X
whose line crosses the z; line. We need only the terms
in F which are linear in z;, and since a variable whose
line crosses the z; line # times has a logarithm which
vanishes like 2,7 only X’s corresponding to crossing
that line once need be considered. The lemma then
applies, and gives

InX = —A:14:2+0@z3). (5.10)

Factors of z can be removed from 4; and 4, cor-
responding to the other z lines crossed, and also from
the remaining InX factors. The fact that 4; and 4,
are determined solely by the topological structure of
the left- and right-hand parts of the line to which they
refer, taken together with the other properties dis-
cussed in this paragraph, means that each term in f,
can be written in the form

LR+0(z), (5.11)

where L (R) depends only on the left-hand (right-hand)
variables and is determined by the left-hand (right-
hand) topological structure of the lines corresponding
to the KSV prescription for this particular term. Sum-
ming over all possible terms corresponds to summing
over all possible left- and right-hand structures and
gives a factored form for fn:

fn! 2j=0== L) R). (5.12)

This is the factorization condition we desired to
establish. It readily extends to the case where several
2; are set equal to zero.

We denote by f,/, g/, and d,’ the factors which cor-
respond to # (>0) nonzero z; between two vanishing
z;, and by f.”, g.”, and d,” the similar factors cor-
responding to # nonzero z; before the first or after the
last vanishing ;. Diagrammatically these correspond to
Fig. 7 and all the diagrams related to Fig. 7 by duality.
Then the summation of (3.2) with m=0 is performed

REGGE TRAJECTORIES

T oo

(a)

vz 2] >

(b)

Fi1c. 7. Diagrams correspond-
ing to (a) f’, ¢, and &’; (b) f”,
g"”,and d".

in exactly the same way that it is for ladder diagrams’in
conventional perturbation theory.5:” The answer is

S CNNCDI[C)

S ML= 00 (5.43)
n=0 I—ay—5(l,0)
where
FeH=2 F.(0), (5.14)
n=0
n41 1 1
F'n(l,l)=g2"+2H/ dxi/ dy;
=1 Jo 0
R
X gl ———— | ——
=1l /o ! l—ay 6zj
X falgn'e®"], (5.15)
9(1,1)=Z gn(l;t)) (5-16)
=0
n4+1 1 1 n 1
800 =g 11 / d / a1l [ dz
=1 f, o =1/,
Zjl'"a"—l 9 ,
N
l—'ao az,-

The vanishing of the denominator in (5.13) gives the
Regge-pole trajectory.

As noted in the introduction, even the approximation
which retains only Fo in (5.14) incorporates important
nonperturbative features. If circling lines are omitted,
Fy is given by the expression (4.30) of KSV with the
exponent ay;3(¢) replaced by /. Higher terms in (5.16)
involve nonvanishing 2’s and are more complicated.

VI. SINGULARITY STRUCTURE AND UNITARITY

We have used the form (2.1) for the KSV model in
which the loop integrations have been performed. When
one considers singularity structure it is often more
convenient to retain these momentum integrations.
Singularities from the x, y, and 2 integrations then give
poles corresponding to lines in Fig. 2, and integrating
over the loop momenta then gives singularities of the
integral located on the Landau curves associated with
Fig. 2. The implicit 7¢ prescriptions required to enable
symmetric integration to be performed mean that in the
physical region these singularities only occur on posi-
tive a arcs of the Landau curves.
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Fi1c. 8. Singularities being considered. The barred lines
indicate pole terms.

These statements are true for any term of the form
(2.1) but they need modification for the infinite sum
of such terms. This is because the renormalization
effects discussed in Sec. IV shift the location of poles,
and the Landau singularities must be similarly dis-
placed. This will be the case if the discussion of Sec. IV
can be extended to poles which are not just direct-
channel poles but lie within more complicated diagrams.
In conventional renormalization theory this extension
is trivial because subdiagrams behave in a way in-
dependent of their relation to the rest of the diagram.
This is not the case for KSV theory, and so the exten-
sion generally is a very complicated matter. Once again
we only attempt to discuss the leading trajectory.

It will be sufficient to consider the two-particle
normal threshold. More complicated singularities are
dealt with by an obvious extension of the same method.
We first look at the set of singularities corresponding
to Fig. 8. This is one of many relevant singularity
configurations. The others are obtained by considering
all the other ways in which self-energy loops can be
assigned to the upper or lower line. The different con-
tributions obtained in this way correspond to singular-
ities at different points of the integration region in (2.1)
and are additive. Returning to the configuration under
discussion, the integrals over all the loop momenta of
the self-energy parts can be performed leaving only %
still to be integrated. The contributions associated with
the upper and lower lines are now both very similar
to that discussed in Sec. IV. The essential difference is
the presence of terms corresponding to variables which
are not present in the direct-channel pole case. Ex-
amples of these variables are shown by the dotted lines
in Fig. 9. We shall call them extra variables.

F16. 9. The dual diagram of Fig. 8. The z’ and 2’ variables
correspond to the dashed lines. Dotted lines represent extra
variables discussed in the text.
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I'16. 10. The resultant singularity
structure.

One now integrates by parts with respect to the 2’
and 2" variables to exhibit the multiple bare poles.
Factorization occurs when any 2; (z;”/) is set equal to
zero. At the same time, any extra variable line cutting
this 2’ (2”) line becomes unity by duality and the
variable disappears from the expression.

Alternatively, one might first perform all the integra-
tions over loop momenta. Then the coefficient of s in
the resulting exponential is of the form

Silnx Inx’+ ([124) fot+ ({T2") f5-

Expanding the exponential with respect to the last
two terms of (6.1) and then integrating by parts to
exhibit the poles due to the 2z’ and 2" integrations
gives the contribution of the desired form.

When a sum is taken over all numbers of loops and
over all assignments of self-energy loops to the top and
bottom lines, the resulting singularity structure cor-
responds to Fig. 10. The thick lines correspond to
renormalized poles located at the positions determined
by the leading trajectory. The shaded blobs represent
complete KSV-type scattering-amplitude expressions,
except that there are modifications,

(6.1)

gra—1 9
z/ p—ao—l

—_, (6.2)

P—Olo dz’
which prevent bare-particle poles from occuring in the
squared momenta corresponding to the thick lines. In
fact, exactly similar terms with p=0 must occur in the
external lines also. This is because our external particles
are supposed to be the stable spin-0 member of the lead-
ing trajectory. Before a sensible scattering amplitude is
obtained, the poles in the external momenta, corres-
ponding to Fig. 11, must be removed and external
wave-function renormalization performed. Thus modi-
fications like (6.1) must be understood throughout to
be associated with these external momenta lines.

The shaded blobs themselves contain the t-channel
normal threshold. Exactly as in conventional perturba-
tion theory, this leads to a total discontinuity round
the normal threshold which is exactly in the form re-
quired by unitarity. In a similar way, Cutkosky dis-
continuity formulas consistent with unitarity can be
established for any Landau singularity.

Fre. 11. Singularities gen-
erating poles associated with
external wave function re-
normalization.
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Finally, one might examine the singularity structure
of terms in the sum (5.14) defining the function &
which gives the correct Regge trajectory. It is easy to
see that individual terms have singularities at the bare
normal thresholds.”? When the sum is performed, they
must be translated to the renormalized normal thresh-
olds. However, an explicit verification of this seems
complicated and we do not attempt it. That it must be
true follows for the leading trajectory from the unitarity
properties already established.

VII. CONCLUSION

Our investigation has essentially been concerned with
renormalization effects in a KSV-type theory. The
bare leading trajectory of the Veneziano model is
renormalized into a new nonlinear trajectory which
becomes complex at the first normal threshold. We have
verified that the complete amplitude obtained by
infinite summation has the correct Landau-Cutkosky
singularity structure corresponding to the particles
lying on this renormalized leading trajectory. In
particular, this is true for the singularities correspond-
ing to the lowest stable member of this trajectory.
Then singularities are real and are those required by
unitarity in the physical region. Note that these
results follow from simple duality requirements of the
KSV type. It is only necessary to invoke the existence
of encircling lines in dual diagrams in order to obtain
daughter-trajectory factorization.

As far as its leading trajectory is concerned, there is
only one major requirement of a sensible theory which
remains unestablished. This is that it is possible to
define the detailed form of (2.1) so that the Regge
pole found in the limit s — — « remains the dominant
asymptotic contribution as s— 4. It seems very
likely that this is possible, but it would clearly be of
great interest to prove that this is so. We are unable at
present to do this.

While the theory treats the leading trajectory poles
satisfactorily and, in particular, has the real singularity
structure required by unitarity, it seems that if similar
properties were required for all the daughter trajectories,
one would again find the encircling lines which lead to
the difficulties noticed by KSV and BHS. There are
three possible ways out of the problem.

12 Only the lowest such threshold was noted by KSV in the
discussion of their approximation, but it is easy to see that all

are present. A straightforward way to do this is to reintroduce loop
momenta into the expression (5.15).
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One is that the infinities encountered by KSV and
BHS are a property of the type of expansion used and
are not present in the correctly summed theory. It
appears that the infinities are connected with the rapidly
increasing degeneracy of daughters, which is found in
the Veneziano model. This degeneracy is broken in a
KSV theory as the daughters move off to different
points on unphysical sheets. In order to investigate
the effect of this, it would be desirable to develop an
analog to renormalized perturbation theory for the
KSV model, which at present is formulated in terms of
bare particles.

An alternative possibility depends upon what really
happens to the daughter trajectories if full factoriza-
tion is not imposed. It seems natural to suppose that
their effects are removed from the real axis onto un-
physical sheets. Without full factorization they cannot
become simply a displaced pole. A reasonable conjecture
is that each becomes a sequence of displaced poles. If
these sequences had points of the boundary of the phys-
ical region as limit points, care would be needed that
unitarity was not upset in the neighborhood of these
points. The relationship between unitarity and the
real Landau-Cutkosky singularity structure depends
upon being able to make analytic continuations in the
neighborhood of the physical region. Near such points,
this would not be possible. Examples of such behavior
consistent with unitarity have been discussed by Martin
in a rather different context.!®

Finally, there is the possibility that satellite
Veneziano terms might modify the theory in a way that
removed some of the daughter difficulties.

Obviously none of these possibilities is more than a
pious hope in our present state of knowledge. However,
the beautiful way in which the KSV model produces a
consistent structure associated with the renormalized
leading trajectory gives ground for thinking that this
approach has value and that the little understood
daughter phenomena may not prove fatal to its ultimate
utility.
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