PHYSICAL REVIEW

VOLUME 186, NUMBER §

Eikonal Approximation in Quantum Field Theory*

MavurICE LEvy{ AND JOSEPH SUCHERTT

Center for Theoretical Physics, Department of Physics and Astronomy, University of Maryland,
College Park, Maryland 20742

(Received 5 June 1969)

The eikonal approximation for high-energy collisions, long familiar in the theory of potential scattering,
is considered from the viewpoint of relativistic quantum field theory. We study, in particular, the Feynman
amplitude M (s,f) describing the scattering of two spin-0 particles, ¢ and b, interacting by the exchange of
spin-0 mesons. We show that if M,(s,?), the contribution to M (s,¢) arising from all nth-order Feynman
diagrams in which exactly #» mesons are exchanged between ¢ and b, is written in an appropriately sym-
metrized way, and if the terms in any @ or b particle propagator which are quadratic in the internal momenta
are then dropped, the resulting expression, M ,*i(s,f), may be evaluated in closed form, and the sum over %,
which defines Meik(s)t), may be carried out. The representation of M¢ik(s,?) found in this way involves the
exponential of a function x of a relative space-time variable x= (2,x) and the external momenta; x is a
relativistic generalization of the eikonal X0t familiar from the theory of high-energy potential scattering.
Meik(s)) is both crossing-symmetric and time-reversal-invariant. In the static limit (ms— «), x tends
to Xpot for the appropriate Yukawa potential and felk=—M¢ik/8x+/s has a limiting form fyet°, which
we also derive directly from the theory of potential scattering; for small scattering angles, fpotei* coincides
with the standard result. The amplitude for particle-antiparticle scattering is studied in the same model.
It is shown that the eikonal Xz (x) associated with the contribution of all annihilation-type diagrams has a
logarithmic singularity at x=0 whose coefficient is proportional to «(f)+1, where (#) is the Regge-trajectory
function obtained from the asymptotic behavior of the ladder-type diagrams alone. Another connection
with Regge behavior is made by showing that the summation of a certain infinite class of radiative correc-
tions to the lowest-order y-e Compton amplitude gives rise, in our eikonal approximation, to an eikonal
x (%) which has a similar logarithmic singularity with strength 148 (#); here 8 () is the trajectory function,
introduced less directly in earlier work, which reproduces the major part of the spectrum of positronium on
setting B(f) =/=n—1. A generalization of a simple algebraic identity used in the derivation of the above
results, in the form of an integral representation, permits their extension to the case where one or more
particles are off the mass shell. This is illustrated by a computation of an eikonal-type approximation to the
Green’s function for a relativistic particle moving in an external scalar field and by the summation of an
infinite class of contributions to the vertex function in the model referred to above. The possibility of
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applying an off-shell eikonal approximation to the analysis of production processes is emphasized.

I. INTRODUCTION

N recent years, there has been great interest in

high-energy approximations to scattering ampli-
tudes which exhibit an exponential dependence on some
of the kinematical variables, especially in connection
with the revival of Regge theory. Simple approximations
of this type have been known for a long time in the
theory of nonrelativistic potential scattering: These
are the so-called eikonal type of approximations.—3
For example, for a spinless particle of mass m scattered
by an external potential V(x) the scattering amplitude
f(p',p) may be approximated, for large |p| and small
scattering angle and under suitable restrictions on V 4 as

f(p’,p)z—rzp—l, /de e b (eix®—1) - (1.1)
T
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where b is a 2-component vector orthogonal to p=p/|p|
and the “eikonal” X is defined by

x(b) =l—pn|f V(b-+Be)de. (1.2)

It seems worthwhile to ask to what extent analogous
approximations for a two-body scattering amplitude
may be obtained in quantum field theory. In the present
paper we show that there is indeed a natural relativistic
generalization of the eikonal approximation. The tech-
niques used are rather simple and may be useful for
deeper investigations of the asymptotic behavior of
scattering amplitudes.

The usual derivations of equations such as (1.1) are
based on calculations which start with expressions for
the scattering amplitude and the Schrédinger wave
function in position space. In Sec. II, we reconsider the
problem of nonrelativistic potential scattering in
momentum space, starting with an exact expression for
the nth-order term f, in the Born expansion of f. We
show that if in the energy denominators appearing in this
expression, terms of the form K2 are dropped relative
to terms of the form p-K, where K is a partial sum of
internal momenta, the resulting approximation to f»
may be evaluated in closed form, with the help of an
identity used in earlier, closely related work in quantum
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electrodynamics.® The sum over # may then be carried
out, yielding

J®',p) = foor*™(D',p) ,
where
m ei¥pot—1
foot®™(p',p)=— / dx ¢i P (x) , (1.3)
271" pot
with

Xoos(X) = / GV AP O+V (x—pOT. (14)
ID! 0

For small scattering angles, (1.3) and (1.4) reduce to
(1.1) and (1.2), respectively; as distinct from (1.1),
(1.3) is invariant under time reversal.

The advantage of an approach based on perturbation
expansions in p space is that it is relatively straight-
forward to extend it to quantum field theory, using
Feynman diagrams. In Sec. ITI, we consider the scat-
tering of two spinless particles ¢ and b interacting by
the exchange of a scalar meson. We study M ,, the con-
tribution to the Feynman amplitude M (s,f) arising
from all diagrams in which exactly #» mesons are ex-
changed between a and b, and show that if the particle
propagators are approximated by dropping terms
quadratic in the internal four-momenta, the resulting
amplitude M ,°*(s,f) may again be evaluated in closed
form and the sum over # carried out. This yields as an
approximation to the relativistic amplitude f(s,)
= —M /8m+/s, the result

ex—1

g
/ dt e reAp(a)
8m/s X

feik(s,t) = (1.5)

where Ar(x) is the meson propagator and X is a “rela-
tivistic eikonal,” defined by

ig?

4ma';ﬂ—l;
FAr(@tos Eatuy Eo) FAr(x—taba—us' £r)

+Ar(x—unotatusts)],

with q= Pa_Pal= —(Pb_Pbl>, uazfa/ma, ualzpa,/may
etc. In the static limit, e.g., m, — o, with f2=g2/dmm;
kept fixed, Egs. (1.5) and (1.6) reduce to (1.3) and
(1.4), respectively, with V(x) = — (f?/4x)e—+Ixl /| x| —the
Yukawa potential appropriate to the case at hand.
Hence these equations may be regarded as relativistic
generalizations of (1.3) and (1.4). In addition, (1.5)
also preserves time-reversal invariance, as well as
crossing symmetry.

After these developments, still in Sec. ITI, we consider
the special case of particle-antiparticle scattering, in
which annihilation type of diagrams enter in an im-
portant way, permitting a connection with Regge
behavior to be made. In Sec. IV, we consider further

X=

//dgadfb[AF(x+ua'£a—ub$b)
0o Jo

(1.6)

5 M. Lévy, Phys. Rev. 130, 791 (1963).
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extensions of these ideas to the propagator in an external
field and to the vertex function.' The main technical
tool here is a generalization of the identity referred to
above (proved in the Appendix) which permits the rele-
vant summations to be carried out in closed form even
when some of the external momenta are off the mass
shell. We also study an infinite class of radiative cor-
rections to the lowest-order Compton amplitude in
spinor electrodynamics and examine a connection pre-
viously drawn between Regge behavior and the spec-
trum of positronium. A concluding discussion is given
in Sec. V.

II. EIKONAL APPROXIMATION FOR
POTENTIAL SCATTERING

The purpose of this section is to consider an approxi-
mation to the scattering amplitude in nonrelativistic
potential scattering which leads to an eikonal type of
formula and which can be readily generalized to quan-
tum field theory.

Let p and p’ denote the initial and final momenta of
a spin-0 particle of mass # scattered by an external
potential V(x). The Born expansion for the scattering
amplitude f(p’,p) is given by

fo',p)= i:lo Sura(0',p), (2.1)
where
Jaa(@',p)= (—m/2x){p"| VGV -+ -GV |p), (2.2)

with % factors GoV, and Go=[E.+(V2/2m)+ie]?
with E,=p?/2m=p'?/2m. We note that f,,; may be
written in any of the #+-1 equivalent ways

Jurr=(=m/2m){pp "D V]gp 1 @),  (2.3)
where
W)= 1
[bri-00)= (G V)0 '),
and /=0, 1, - -+, #. On writing
vo-[ % e
N=| — ek 2.5
2y (2.5)
for each factor V in (2.4), we get
m\' !
by 0=() [ Tt 0
473 i=1 .
X V(k)eitrKorr
(2.6)
(~l)() (m n—l f[ dkj YK
bpri— r)= 471'3) i (27r)3gh(p’ i)

X V(k,)eitr=n>s,
g:l:(p’K) = [pz - (p_K) Ziiej_l ’

where

2.7)
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and where
—m/ m\* 1 =
K;=k1+k2+ e +ki, Kj’= kj+kj+1+ A +kn- f,,+leik(p',P)E_—<__> 1 Z dkl' .o
2w w3/ n+11=0

On use of (2.3), (2.6), and the relations 7*(k)= V(—k),
2-*(p,K)=g,.(p,K) we see that (2.3) assumes the form

—m/ m\"
Fun(0op) =—(*> / k- -
2m \4r3

[Pk P(k) TP (q—2k)XDi, (2.8)

where

n 4
Dl: H g+(p,7 _KJ',) H g+<p:Kﬂ) . (29)

J=l+1 i=1

Of course fny1 does not depend on the value of /.

The energy denominators in (2.9) all have the form
(—2p"-K—K2+1ie) ! or (2p-K—K2+1e)~1, where K is
a partial sum of k’s. The high-energy approximation
which allows us to compute the right-hand side of (2.8)
is essentially obtained by dropping the terms quadratic
in the internal momenta, i.e., by making the replacement

g0, —K)=(—=2p" K—-K?+ie) "' —
( —2pl N K+ ie);l )
g0, K)=(2p- K—K*+ie)™' — (2p-K+ie)~".

(2.10)

However, the resulting approximation to f,i1 then
depends, for g><0, on the choice of /. (See Sec. I1I for
elaboration ofgthis point. In the language of Feynman
diagrams, this choice corresponds to the choice of
vertex at which over-all momentum conservation is
imposed.) To avoid this we first replace D; in (2.8) by
its average over /, i.e., we write

L AN
fn+1(l3yp)=—2:<4—7;>/ 1

dk,[V(k,)- - V(k)IV(q=2k)D, (2.11)

where

We then make the replacement which defines our eikonal
approximation, .
D — Deik=—— 3 Dk,
n+11=0

(2.12)

in (2.11), where D;°'* denotes the result of making the
approximation (2.10) in D;. Thus

D= b, (b, bor)t - (bt bpat - b))t
X(a1+ast-- a7t (atas) et

where a;= 2p- k-+ie and b;= —2p’- ki+ie. Corresponding
to (2.12) we have

Fupr(p',p) = frir®™(0',p) ,

dk [V (ka)- - V(k)) ]V (q—Zk)Dyei.  (2.13)

To evaluate (2.13), we note that since the product of
the V’s is invariant under separate permutations of the
momenta ky, ---, k; and the momenta ki, -+, ki,
we can sum over all such permutations in the integrand,
provided we divide by their total number: /!(z—I)!.
Making use of the identity®

2 () ety (e e - He)

perm

(2.14)

=(cica+ )7t

where (c/,¢o/,- + +,¢2) is a permutation of a sequence of
numbers (c1,¢2,- * *,¢), we find

Jur1*™(p’,p)

—m/ 2 "o
=£_’"L_>(_"1) s ! /dkl...dk,,
n+1 w3/ 1=0ll(n—1)!

o Vk) o V(k;)
=1 2p-kitie =i+t —2p" - kj+ie

V(g—Yk). (2.15)

Recalling the definition (2.5), and substituting
V(q~2ki)=/dx ¢k X}/ (x)

into (2.15), we see that the dependence of the integrand
on the k; factorizes so that (2.15) may be rewritten in
the form

N ) (—m/27) nt1 1 -
18l ’, - 7q-X
A I l!(n—l)!/ x Ve
XLUp) LU (x; —p) ]!, (2.16)
where
2
U(x; p) =—m— /dk V(k)eiv*(2p-k+ie)~t. (2.17)
(2mr)?

The sum on / may now be carried out, giving, finally,

—m/2mw
fn+1eik(p',p)=£m—/—)/dx V(x)eiax
(n+1)!

XLUG; p+UK; —p) ] (2.18)
In correspondence with (2.1), we define
Joot®™(0',p) =2 fur1®™(p’,p). (2.19)
n=0

On reversing the order of summation in (2.19) and inte-

6 See Eq. (20) of Ref. 5. A proof is given in the Appendix.
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gration in (2.18), we get

—m eix.pot_l
= [dxewen’——, (.20)
27!'1. Xp(:t
where Xyt is defined by
Xpot=—1[ U(x;p)+ U(x; _P/)]- (2.21)

Equations (2.20) and (2.21), which coincide with
(1.3) and (1.4), are the principal results of this section.
To see the identity of (2.21) with (1.4), note that the
representation (we suppress a convergence factor e~¢)

00

(i t=—i / & eivt (2.22)

Jo

may be used to write U(x; p) and U(x; —p’) in the form

e ,,);_]%”. / a Vx—p8),
pi o (2.23)

—im [ ~
U(x; —P')=_|T/ de V(x+p'8),
p 0

with p=p/|p|, p'=p'/|pl.

Our eikonal function Xpot=Xpot(X; p’,p) is clearly
invariant under the time-reversal transformation
p——p and p’ ——p and hence 50 is foo® (p’,p). The
invariance of fei* under space inversion: p——p,
p'——p’ holds if V(x)=V(—x), ie, if V has this
invariance.

For sufficiently small scattering angles 6, we may let
p' — pin (2.23), giving

dEV(x+po),
Ip| J <

Xpot::

or, choosing $ as the 3 axis and writing x=b-+5z, we
have
Xpot=X(b),

defined by (1.2). We may then also approximate
exp(iq-x) by exp(igq-b) in (2.20) and, on writing
dx=d*bdz, we see that Eq. (2.20) for fye¢’® reduces to
(1.1).

III. RELATIVISTIC EIKONAL APPROXIMATION

In this section, we derive a relativistic form of the
eikonal approximation described in Sec. II. Properties of
the resulting formula are discussed and particle-
antiparticle scattering is considered in the remaining
parts of this section.

A. Derivation of Relativistic Eikonal Amplitude

1. Preliminaries

Consider two spinless particles, ¢ and b, with masses
m, and m, interacting via the exchange of neutral

IN
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scalar mesons of mass u with scalar coupling; if the
fields associated with these particles are denoted by
¢a, ¢5, and ¢, the interaction Lagrangian density takes
the form

L£r=—gp. ¢psp+H.c.

Let M (s,t) denote the invariant Feynman amplitude
for the scattering of @ and b where, as usual,

s=(patp5)? t=(pa—pd)%

and p. (p/) and py (ps’) are the initial (final) four-
momenta of ¢ and b, respectively.

Let M ,41(s,?) denote the contribution to M (s,f) arising
from all Feynman diagrams in which precisely n+1
mesons are exchanged between ¢ and b, and let &y, - - -,
knt1 denote the momenta of the exchanged mesons, in
the order of their emission along the world line of par-
ticle @. Then

n+1 d4kj
—iMpa=(=igr [ 11
7=1

21r)4ZF(kj)

XIX(r)o(—3 &), (1)

7=1

where Ap(k)=1i/(k?—u2+ie) is the meson propagator,
g=p1—pi’'= —(p2—p,’) is the four-vector momentum
transfer, and 7 is a sum of products of propagators
associated with the propagation of particles ¢ and b.
To write I as an explicit function of the external and
internal momenta, we imagine, for the moment, that
the & function in (3.1) is used to eliminate %, and desig-
nate the resulting form of I by 7,. Then

I,=1,@® Z Ir(b)(D) , (3_2)
D
where
I D=Ap"(po—Fk1) - - Ap*(pa—h1i—+ - —k,_1)
XAp*(pa+knr) - Ap*(pa’+hngat - Fkep),
3.3)

with Ape(p)=1i/(p*—m2+1ie), and I, (D) is a similar
product of & particle propagators, associated with a
diagram D contributing to M,i. Clearly, there are
precisely (n+1)! diagrams D to be considered, corre-
sponding to (z+41)! distinct orders in which the mo-
menta ki---knp1 may be absorbed along the world
line of .

It proves convenient to organize the sum over the
diagrams in the following way. Let E(s) denote the
subset of diagrams in which %, is absorbed at the sth
vertex along the world line of 4. For each DEE(s),
there will be, say, s; momenta from the set [ky, - - -, k1]
which are absorbed before k.. We denote these by
(k1 -+, k), listed, say, in the order of emission along
the world line of a, and abbreviate this set by (sy).
The remaining s,= s—s;—1 momenta absorbed before k.
necessarily come from the set [ky1, -+, knpi]; we
denote these momenta by (s2) = (ky 11, Korro, * - +5 Forpan)s
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\4 ' 4 Fre. 1. A typical exchange-
ks ~ type Feynman diagram included
7 Sotain in the definition of the eikonal
/K amplitude Meik(s,f) for the process
2 N a+b— a+b.
—— — P —
Pq | “pb

The corresponding 7,%(D) then has the form

IY(D)=Ar¥(pot-rki ) Arb(psthi/+k)- - -
Ap(pytki+ky - - kst VAR (P’ —knid) - -
AFb(Pbl—ks_H//—kH.z”—' .. _kn+1”) , (34)
where (ky,k',- - - k.t is a permutation of (k1ks,-- -,
Foppsy) (call it 7’) and (Boya” ksso”,+ - + Jknyt”’) is a permu-
tation of the remaining &’s, call it #”. Thus, we may
write

Ir':Ir(a) Z Z Z I'f‘b(D)° (3'5)

(s1)(s2) =" =’

From the viewpoint of the topology of the Feynman
graphs contributing to M .1, the sum over =’ and ="
includes all graphs in which the 7th meson emitted by
a is the sth meson absorbed by b and in which s, meson
lines, emitted after #, cross the line corresponding to the
rth meson to be absorbed before 7, whereas the r—1—s;
meson lines, emitted before 7, cross the 7 line to be
absorbed after 7. As an example of the notation, for the
diagram in Fig. 1, if we choose =3, then we have s=3,
s1i=1, s,=1, ky="Fs, ky=Fk4, etc. The sum over (s;) and
(s2) may be regarded as a sum over pairs (s1) and (sz)
with s;+s2=s—1, followed by a sum on s: s=0, 1, - - -,

n+1.
2. Propagator Approximation

We wish to make a high-p approximation in the inte-
grand of (3.1) which will simplify it sufficiently to permit
the evaluation of the integral in closed form. Basically,
we wish to use, in the propagator denominators, the
approximation

(pEK)?—m?=2p - K+ K~42p-K, (3.6)
where p is an external momentum and K is a partial
sum of internal momenta, thereby neglecting K?
relative to p- K; this is the covariant analog of (2.10),
used in potential scattering. However, the integrand of

M. LEVY AND J. SUCHER
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(3.1) has certain symmetry properties, which we wish
to preserve, but which are destroyed if such approxi-
mations are made in too naive a manner. The difficulty
stems from the fact that the #+1 internal momenta k;
are not independent, by virtue of the § function in (2.1),
and that if, say, &, is eliminated and then (3.6) is used,
the resulting integrand depends on the chosen value of
7. To make this quite clear, note that if &, is eliminated,
we must write, for the momentum of @ after the emis-
sion of 7, po = p/+kr1+ -+ -+ kuyp1, whereas, if b,y
is eliminated, we must write po"=p;—ky--- —£,. Of
course,

(pa—kl' . '_kr)2= (Pa’+kr+l+ cec +kn+1)2;

but, if we use (3.6), the left-hand side of (3.7) becomes,
on the mass shell, m?>—2p,- (ki+ - - -+k,), whereas the
right-hand side becomes m?42p, "« (Brpa1+ -+ - +&,11),
and these quantities are no longer equal except for ¢=0.

As in the treatment of potential scattering, to avoid
this feature we first write 7 in the form

(3.7)

1 nt1l
n+1r=1

where I, =1,(pd'ps’; papo; Rk, + ket rgay - - ki) Is
given by (3.5) as an explicit function of the external
momenta and the indicated internal momenta. Equation
(3.8) provides a definition of 7 as a function of the
external momenta and all #+1 internal momenta
ki, - -+, kay1 which reduces to that given on the hyper-
plane ky+kot---~+kar1=¢q, where, of course, each
term of (3.8) makes the same contribution. We note
further that > 7,%(D) is invariant under any permuta-
tion my of (ky,- - +,k—1) and w2 of (ry1,-*+,kny1). Since
the product of meson propagators in (3.1) is also invari-
ant under any such combined permutation, we may
replace 7, in (3.5) by

1 1
Ir;s’maz Z Ira, (39)
’ (7’—1)! (n—?’-’-l)!nﬂ
so that we consider, instead of (3.8),
1 n+1
Iym=—— > Ir;symaz Irb(D>~ (3.10)
n+1 r=1 D

Note that Eq. (3.1), with I replaced by Iym, is still
exact.

We now apply the propagator approximation (3.6) to
(3.10); then Igym — I°x, where

7+l

[ = 3 [, ik

(3.11)

%—l—l r=1
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and .
L;symeik=m Wéz [(e)Yarta2)™ - - (artast- - - +ar1)™]
X[(ang1 )M an' +a ) - (@i =+ Fard )] (WZM) W'Zw L) (b14ba)7t - - (brtbat- - - Fber) ]
KL@na ) Grpa +0a" )71 - - (g’ - Fbesa) 1], (3.12)

with the abbreviations a;= —2p,-k;+1e, a/ =2p, - kjtie, bj=2py ki +ie, by= —2py -k;/'+1ie. Then we use the
identity (3.12) to carry out the sum over the permutations y, m, 7/, and #”/, in (3.12), giving

Iy =" (r—1)(n—r4+1) 1T [a1as - - @r_1 ] [@rp1 Crpd* - - Qngd T

where  b;=2p;-kj+ie and b= —2py  kj+ie; here,
(Bsy1,R512," + * ky) is the complement of the set (ki,- - -,
ks_l) in the set (kl,kz,' . ',k,g_l,kr_,_],' . ',kn+1).

3. Definition and Evaluation of Me¥(s,t)

We define M .1, the eikonal approximation to
M 411, as the result obtained by substituting (3.11)
into (3.1). To carry out the integrations we write

Zp(k,)=/Ap(x)e_ik"”d4x, (3.14)

in computing the contribution of the rth term in the
sum (3.11) to (3.1), with k,=g—>_; 4 k;, on eliminating
the 4 function. The integrand then factorizes and each
of the remaining % integrations can be carried out. Let
us define

” Nmg / d*k Ap(R)eit= (3.15)
x; 2 = b .
PRIZE ]yt (“2p iy ket i)
and introduce the abbreviations
U= U(x: Parﬁb)a Us= U(x;Pm _Pb); (316)

Us= U<x; _Pal,Pb)a U= U(x: _Pali "'Pbl)-

For a given choice of (s;) and (sz), there will be, in
(3.12), s, factors of the type (—2pa-k)™* (+2ps k)7,
giving s; factors U; on integrations over the corre-
sponding &’s (i.e., a factor U;*?). Similarly, there will
be s, factors of the type (42p. - k)~! (2ps-k)~, giving
a factor Us;®2; (r—1) —s; factors of the type (—2p,-k)~!
(—2ps - k)™, giving a factor Uy™*¢; and (n—r-+1)—s
factors of the type (2p./-k)~1 (—2p4 k)L, giving a
factor U »—r+1=s2 It follows that the contribution of one
of the terms in the sum (3.12) will be proportional to
the integral over x, with a factor e~*¢2Ap(x), of the
function

1 1
(r—=1)! (n—r41)!

Thus each choice of (s;) and (s2) gives the same con-

U181U2T—1—81 Us® U{»——r+1—sz .

X X [biber - ber] [hosabsrar - -bul™, (3.13)

(s1) (s2)

tribution. Since the number of ways of choosing s;
momenta from r—1 is (r—1)!/s;!/(r—1—s1)!, and s
momenta from n—r+1is (—r+1)!/s2l(n—r+1—55) 1,
the sum over sets (s;) and (s,) with fixed values of s;
and s, gives, using binomial notation,

1 1 —1
/7’ >U131U28—1—r1

r—D! i—r+ 1)\ s
n—r—+41
X< >U332 U4n—r+1—sz .

S2

The sum over all s; and s» then gives
1
r=D! (n—r+1)!

The sum over r (r=1, 2, -+, n+1) of the last expres-
sion is

(U1+ Uz)r—l(U3+ U4)n——r+1 .

(1/n) (U Ut Us+Uy".

Collecting the constant factors, we get, finally,

2

—iM 10k = — | d*x e Ap(x)(iX)*, (3.17)
D r(x)( (
where
= — iU+ U+ Us+Uy). (3.18)
It follows that Meik(s,t), defined by
Mex(s,)=3 Mup1®, (3.19)

n=0

is given, on reversing the order of summation and inte-
gration, by

Mei*(s,1) =ig2/d4x et Ap(x) > (1X)"/(n+1)!
n=0

or

eix—1

Mei(s,) =g / d*x e Ap(x) (3.20)

This is the result stated in the Introduction, since the
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definition (3.18) of X is equivalent to (1.6), as we show
below.

B. Properties of Relativistic Eikonal Function x and
Eikonal Amplitude Meik

1. Alternative Forms of X and Symmetry Properties

It is interesting to examine the various forms of the
function X, which represents a relativistic generalization
of the eikonal function as defined in the study of non-
relativistic potential scattering. From (3.15), (3.16), and
(3.12), we have

AR
X= —1g-/ (21r)4el Ap(k)
Xd<k; pa,,Pa)d("‘k; pb,,Pb> )

d(k; p',p)=[d(2p"-k)+d_(2p-k)],

with d.(w)= (Fwt+ie)~.

It is convenient to introduce the four-velocities
U= Pa/May U = pa’[May U= ps/Ms, us'=ps’/ms and
to use (2.22) to write

(3.21)
where

(3.22)

A(k; 9 pa) = f 0f o0 T giverii)
0

2m,

with a similar representation for d(—#%; ps’,p»). We then
get, on substituting into (3.21),

X =7j2 / / d{adg_b[A F(x+ua,§‘a'—ub,§-b)
JOo [

FAp(atu Cotuslv) FAr(X—sala—us'¢o)
+AF<x*ua§‘a+ub§‘b)] bl

with f?=g2/4m.my; this coincides with (1.6). For small-
angle deflections, %, ~uq, %y ~up and (3.23) becomes
simply

X= if2 / / (l(adg“;,Ap(x—!—ua(a—{-ubg“b) y (3.24)

(3.23)

which is a covariant analog of (1.2), if V is a Yukawa
potential.

The symmetry properties of X=X(p.,pv’; papo; %)
are easily established, either from (3.21), using the
relations d(k; Pl,P)zd(k; —p, _P,)zd(—k; P)p,)a or
from (3.23), using Ar(n)=Ar(—n), together with ap-
propriate change of integration variables. Thus one
finds that X is crossing-symmetric,

X(pa'spv'5 Paspv; @) =X(—pa,pv’; —pd’, Pv; %)
=X(pd, —pv; Pay — 10’5 %),
that X is invariant under space inversion of « and the p’s,
X(pd' 00" Parpv; ¥)=X(Pa,Dv'; DasDs; T), (3.247)
with p=(p° —p) and &= (2%, —x), and that X is

(3.24)
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invariant under the interchange of initial and final
momenta,

X(pd s pv'5 Pasps’ %) =X(Payprv; pa P53 %). (3.24”)
Using (3.21) and (3.24")-(3.24""), we see that Meik
=Mek(s,t)=Me*(p,,py; pa,ps) 1s crossing-symmetric:

M(Pa/>17b’; Pmpb):M(_Pa; ﬁb/§ _Pal; pb)

=M (pd'—pv; pay —pv);  (3.252)
invariant under space inversion:
M(pd,p6';s paspr) =M (Pd',ps’; PayPv);  (3.25b)
and invariant under time reversal:
M(pd 055 Parts) =M (PaDo; Pa'sD) (3.25¢)

2. Static Limit

It is instructive to see how X reduces to the form ex-
pected from potential scattering in the static limit, i.e.,
when, say, mp—. To this end, it is necessary to
observe first, that for slowly moving particles ¢ and b,
the use of second-order perturbation theory with the
interaction (3.1) gives an interparticle potential V of
the Yukawa type,

2 e“l‘“ |
V()= L
dr |r|

, (3.26)

with f a reduced coupling constant,
P=g*/4m.m;. (3.27)

Thus, to make contact with potential scattering, we
keep f? fixed as mp — 0. Since both %" and #;, approach
(1,0,0,0) as my, — o, the first two and last two terms in
(3.23) can be combined by letting the {3 integration
run from —oo to oo:

X—>if2/ d?a/ Ao Ap(x* ¢ a—§5; X+ 04Ca)
0 —o0

FAr(" =2 a—$b; X—Uafa) ] (3.28)
On use of the relation
ol e‘M|X|
/ dx" Ap(a®; X) = —i——, (3.29)
—o0 471' I X I

the right-hand side of (3.28) is seen to be equal to
——/ dCV(xFulte)+V(x—ufa)], (3.30)
0

where V is defined by (3.26). Noting that m,—w
implies ¢°= —(p®—p+'®) — 0, which in turn implies
that |us'| = |ua|, we see, on putting {,= |u,|~'¢ and
dropping the subscript @, that (3.30) is just equal to
the expected Xpo¢. The same conclusion can be reached
by starting with (3.21) and using the fact that in the
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static limit the last factor in the integrand is propor-
tional to d, (k%)+d_(k°)= —2mwid(k°).

For completeness, we note that the scattering ampli-
tude in the relativistic eikonal approximation

feik=(—1/8w+/5s)Meik(s,1)

also assumes the expected form in the static limit. Using
(3.20) and (3.30), we have, for m, —,

(3.31)

) eiXpot_.l
Mexk,\,gZ/dlix e—iq-:uAF(x)____

pot

Since X, is independent of time, and ¢° — Ofor my — o,
we find, using (3.29) again, that
e‘i)(pot__ 1
Mok~ —i(dmamy) | dx e'*V (x)———.

pot

(3.32)

Since my/\/s— 1 as my— o, we have from (3.31) and
(3.32),

T foor*™(Da’,Pa) 5 (3.33)

where fpo:®* is defined by (2.20).

C. Particle-Antiparticle Amplitude

It is instructive to consider the particle-antiparticle
scattering amplitude M,z within the framework of our
model and eikonal approximation. In addition to the
amplitude obtained from diagrams of the type shown
in Fig. 1, we now also include the corresponding
annihilation-type diagrams, as typified by Fig. 2.
Let us denote the initial and final momenta by p,,
pa and p,/, ps, respectively. The contribution of the
annihilation-type diagrams can be obtained from the
exchange-type diagrams by the crisscrossing trans-
formation pz<>—p,. Thus, we define an eikonal
approximation to M,z by

M aoie= Mo M i, (3.34)

where M is just the amplitude defined by Eq.
(3.20), with 6=¢ and M,*'* is obtained from M by
crisscrossing:

Meik= —g“’/d“x Ap(x)eire(exr—1) /Xy, (3.35)
with ¢= po—ps" and X;=X(p.',p3’; pa,pa), and
Mosik= —gZ/d“x Ap(x)~iPo(ex2—1) /X,  (3.36)

with P=p,+pz and Xo=X(—pz, pa’; pay —pd’; ). In
terms of the function U(x; p,p’) defined by Eq. (3.15),
we have, using the definition (3.18) of X,

Xi=—iLU(%; pa,pa)+U(x; pa, —pa)+U(x; —pd,pa)
+U(w; —pd, —pa)] (3.37)
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Fre. 2. A typical annihi- P; f
lation-type Feynman diagram

included in the definition of !
Moeik(s,t), part of the eikonal |
amplitude for the process |
a+a— a+d. Its contribution |
is obtainable from Fig. 1 with |
b=a by the criss-crossing trans- |
mation po’ <> — pa. Pg*

and

Xo= —i[U(&; pa, —pd )+ U(x; pa, —pa),
+U(x; pa, —pd)+U(x; pa, —pa)]. (3.38)

It is particularly interesting to investigate the high-
energy behavior of M,eik since it is known that A7, ladder,
the sum of all ladder-type annihilation diagrams, ex-
hibits an asymptotic behavior of the Regge type.” We
note that for s=P%—c, major contributions to the
integral over x in (3.36) will come from small values of
x, because of the oscillations in e'#® for large P and
because X, has a logarithmic singularity at x=0. In
particular, it can be shown that? if in U(x; p,p’) we set
x-p=ux-p'=0, then X, assumes the form

Xe=1[@(t)+ &(u)] In|a?|, (3.39)
where = (p.—pd)?, u= (po—p.))?, and
2 1 d
a(Aa?) =—g—— — d (3.40)

4n2 Jo apr—a2(1—¢2)

The existence of this singularity may be tonnected to
a Regge-like behavior (another example of this mecha-
nism is given in Sec. IV C in our discussion of Compton
scattering). The precise asymptotic behavior of 3 ,eik
will be discussed elsewhere. Here, we remark only that
a(t)= —14a(t) coincides with the trajectory function
obtained by summing the asymptotic parts of all ladder
diagrams contributing to the annihilation amplitude.?

IV. EXTENSIONS TO OFF-SHELL PROCESSES
AND APPLICATIONS

In this section, we show how our method can be
extended to off-shell processes by calculating, with the
same approximation, the propagator of a scalar particle
in an external field and a class of radiative corrections
to the vertex function. In another application, we dis-
cuss a class of radiative corrections to the Compton
scattering amplitude.

A. Propagator of a Scalar Particle in an External Field

Let us consider the Green’s function K4(x,x") of a
scalar particle of mass m in a time-dependent external
field A(x), whose Fourier transform we denote by

7 See, e.g., R. J. Eden, High Energy Collisions of Elementary
Particles (Cambridge University Press, Cambridge, 1967), p. 140,

and references quoted there.
8 See the Appendix of Ref. 5.
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A(p). In momentum space, this can be written as

KA(p,p)= (2m)*Rr(p)5(p' —p) .
+Ar(p)MA(p,p)Ar(p),
where M4(p’,p) is a generalized scattering amplitude

which can be expanded in a power series of the Fourier
components of the external field (we call g=p—p'):

(4.1)

1
MA(Y,p)= %0 (—i)"“?—r Ak
XEp(p'+pu)A (kuer) - Bp(p'+lat - -+ i)
XA(q—Zk)Kp(p—tr—- - - —R)A(RD)- -

Rp(p—k)A (k) d*ky- - - A, (4.2)
In a way similar to that of the previous sections, we
approximate the Ap functions by neglecting terms of
order k2. But this time, we take into account the fact
that $ and p’ are off shell. Calling p>—m?=2msz and
p'2—m?=2mz and averaging over the choices of /,

as before, we define

1 n+1
M (p,p)= > —— Z M A(#,p), (4.3)
n=0 n-+1
where
o) 1 / A(k,)
nt1,0° (PP —(2‘"_)4" Zmz'-l—ZP"kn“*’ié
A(krir)
2mz'+2p" - (knt- - - Fkrya) e
. /I(kt)
X A(g—2%) .
2mz—2p- (kat- - - +ki)+ie
/I(kl)
Ak - d*kn. (4.4)

Dmz—2p- bytie

We now use the general identity proved in the Appendix
[Eq. (A2)] to permute separately the momenta k;- - - &;
on the one hand, and the momenta kiyi-+ -k, on the
other. M,y1,4(p,p) is then given, with u=p/m,
=P!/ma by
Moyt (PI;P)
1 1 —23 ® e
= / / eiﬁzﬂﬁ'z'dﬁ dB’
@2m)* 2m)» l(n—1)!
n A(k)[1—e ks ] -
x[ 1 _
it (2 ki/2mtie)
L Ak 0R]

11 @*;.
=1 (—2p-ki/2m+1e) i=1

A(q—Zk:)

(4.5)
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Calling
Ak)
Ux; 8)= f ke[ —e Huwk ]k (4.6)
(2m)* —2p-k+1ie
and

1 Ak) ‘
U'x; 8")= /e’“” [1—e# v *]d*k, (4.7)
(2m)* 29" k+1ie

we obtain, in the same way as before,

—zz © r®
[ [
Nn—=D1Jo Jo

Mo 40, p) =

X / LU (x; B) AU (x; B) Jerr=d*x, (4.8)
so that, putting
X(x; B,8)=—i(U+U'), (4.9)

we obtain for M 4(p',p)

/ / eiBztiB 'dﬁ dﬁ
ex—1
X / A (x)eiq"'< ~—->d4x. (4.10)
X

The phase X can be transformed as before, using the
integral representation of the 8, function. For example,
we have :

e1kA (P ,P

U=_———/ ds/A(/e)e Tur ks(l_ —iBu- k)e k- zd4k

" / ds [A (e+us) — A (v+us+ug) ],
2m Jo
or

; B
U= _t / A(x+us)ds. (4.11)
2m 0

We have a similar expression for U’, so that altogether

ir 8 8
X= ————I:/ A(x—i—us)ds-f—/ A(x—u’s)ds]. (4.12)
Zm 0 0

The on-shell limit of Eq. (4.10), that is, the limit when
z and 2’ tend to zero, is obtained by replacing X(x; 3,8")
with X(x; 4+, +©)=X, and by doing the 8 and §’
integrations, which supply a factor (—zz’)~% This
gives, of course, the relativistic external field analog of
Eq. (2.20):

ero—1

Mo (p',p) = —i/A (x)eiq”f<—

>d4x. (4.13)

0

Our expression for the propagator in the eikonal ap-
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proximation is, using (4.10),

Kt ffp',p) =(2m)*Ar(p)o(p—p")

e’l/x_
/ f egiBat+if’2 dﬂ dﬁ /A (x>ezq :c(
4m-

In the limit where z and 2’ become infinite (extreme
off-shell behavior), the phase X tends to X(x; 0,0)=0, so
that the second term of the right-hand side of (4.14)
tends to zero like (22")~!. The propagator then tends
to its free limit, as one would expect.

>d4x.

(4.14)

B. Radiative Corrections to the Vertex Function

We now use the techniques of Sec. IIT to sum, in
closed form, a certain class of diagrams contributing to
the amplitude I'(p’,p) for emission of a virtual meson by
particle @ or b, in the framework of our propagator
approximation.

Thus, let D denote a vertex diagram of order 2n-1
with the property that if one follows the world line of
the particle, there are # successive emissions of mesons,
followed by the emission of the ‘“vertex” meson,
followed by the absorption of the #z mesons. (See Fig. 3.)
Let Tz.11(pdyps) denote the sum of the contributions
T2ny1(D) from the diagrams with the prescribed
topology. Then

FQnTl{lpa,;Pa) =g(—lg)2n

Ak d%a
X/ s IT Ap(k:) XT, (4.15)
(2m)t (2m)t =
where
1
J=—5 Ar(p—k)Ar(p—h! ~R) -
nl o
-Sh‘“(?-k1l—k2'— e _kn')
XZ AFG(P,—klll)AFa(P,—kIH"—kZ,,) e
Ape(p'—ky' —k" —-- - —k,)), (4.16)
and (k,-- - ,k,) and (k,’,- - -,ks’) are permutations =’

and 7”7 of (ky,- - -,ka).

4

Pa
F16. 3. Typical diagram contribut-
ing to T'(pa,pa)—a part of the vertex
function. The mesons emitted before I\
the “vertex” meson are required to be /I X ———
absorbed after it, along the world line ) ’
of the particle. /
Pa
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Let us consider first the on-mass-shell case: p?=p'?
=m,2. The propagator approximation (3.6) followed
by use of the identity (2.14) then gives J — Jeik, where

Jeik= (320 /p \[(—2p 4+ k1ti€)™
X (—=2pa-kot-ie) ™ - - (=2par kutie)™]

X[(=2p)  k1tie)(—2pq-kotie)~te - -
(_2Pal'kn+i€)—1]. (4‘17)
Correspondingly,
r2n+l(Pa/7Pa) 4 F2n+leik(Pa/7Pa) y
where
Tonpr®=(g/n YK (pd',pa) I (4.18)
Here K(p./,pa) is just an abbreviation for U(0; pa,—pa")
[Eq. (3.15)], i.e.,
d*k )
K(pd,pa) =g / Rp(k)(—2pd - k+ie)™!
(2m)*
X(—2pa-k+ie)"t. (4.19)
Thus T',¢', defined by
T %(p) ,pa)= 2 Tanp1*™(pd,pa),  (4.20)
n=0
is given by
Dk pa) = gei® ou' 0. (a21)

To obtain an extension of this result to the case where
a is not on the mass shell, we use again the generaliza-
tion of (2.14), since there is then a constant additive
term p,2—m,? or p/2—m,? in the denominators in J.
Thus, on making the propagator approximation in
Eq. (4.16), we get J— Je*, where now

JEiksz(Pa)"]a; k17k27' : ':kn)

XL(Pa,;nu,; ky,ko,- -+ ,kn) , (422)
with
na=—i(pa’—ma?), nd=—i(p*~md), (423)
and
( k=% !
L(p,n; kika,- - - ka I
o g a1+na1+a2+n
1
. (4.24)

a’+ad+- - Fad+

with a;=4(2p-k;)+e and (a/,- - +,a’) a permutation =
of (ay,*--,a,). Using, for variety, Eq. (3) of the Ap-
pendix to rewrite L, we get, on substitution into (4.15),

d
Ton1®* (pd’,pa) =— / ag’ / o g-ﬁ'n’e—ﬂn____
48 98’

XK (pd,pa; 88) 1",  (4.25)
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4 ’
where i p . q p’
K( ,; 7B’>B)=_Z 2./ 5 (k) /
PP g (2m)t F

1 — B (=20 k—ie) | — piB(—2p-k+ie)

(4.26)
—2p" k+ie  —2p-ktie
Using (4.15) in Eq. (4.20), we now find that
T (pd’,pa) =g/ ap’ / ap
0 0
9 0
Xe_ﬂlﬂ’e—ﬂﬂ— __eiK(Pa’.T’aGﬂ’B) . (4.27)
B’ 983

Since K(p',p; ©,0)=K(p',p), it is clear that (4.27)
reduces to (4.21) on the mass shell, n'=79=0.

It must be noted that we have been rather cavalier
in the above discussion—the integrals (4.19) and (4.26)
are actually logarithmically divergent. This could be
remedied, for example, by modifying the denominators
as described in Ref. 14. The combinatorics remain
the same.

C. Class of Radiative Corrections to
Compton Scattering Amplitude

Another application of our techniques consists in
summing a series of radiative corrections to the Comp-
ton scattering amplitude, represented in Figs. 4(a) and
4(b). If we call p and p’ the initial and final electron
momenta, ¢ and ¢’ the photon momenta, then P=p+¢q
=p+¢, Q=p—g, P'=s, Q*=u, (p—p)’=1. The
amplitude corresponding to the exchange of # virtual
photons and represented in Fig. 4(a) can be written

- —ia\"® 1
M, = = Z N v
T perm{ki’, pi’) p kl m

1 1

X'sz  Yun
P —ki—ko—m P —Zki—m
1
XMO(Q)(P_Zki)'Yun"M'Yun_x‘ T
p—Ek,'—m
1 d4ki
Y e H (4-28)

ﬂ—kl'—m % ki2—)\2.

In Eq. (4.28), the polarizations uy'- - -u,” and the mo-
menta k,’---k,/ are an arbitrary permutation of
M1+ in and ky- - - &y, respectively. We have introduced
a small mass X\ for the photon. M@ (P) is the lowest-
order Compton scattering amplitude corresponding to
Fig. 4(a) without radiative corrections. The amplitude
corresponding to Fig. 4(b) can be obtained from Eq.
(4.28) by replacing M@ (P —Zk,) with M,®(Q—2k,).
Since M, is to be calculated between Dirac spinors,

P
(a) (b)

F1c. 4. Typical diagrams included in the study of radiative

corrections to Compton scattering. In type (a), the virtual pho-

tons emitted before the absorption of the initial photon are re-

quired to be absorbed after the emission of the final photon. Type
(b) is obtained from (a) by crossing.

we can get rid of the v, matrices as follows: We first
write the first factor of the integrand, in Eq. (4.28),

(¥ —hi—m) (p'—m)

I A £ (4.29)

k12—2P"k1+16 “Zp,'kl"'le
where the approximation consists in neglecting %, in the
numerator and k;% in the denominator. If we apply the
first factor of Eq. (4.28) on #(p’) on the left and make
use of the Dirac equation, the complete factor becomes
simply 2p,,/(—2p"-k1+1ie)~'. We then use the same
method for the second factor, and so on. Similarly, we
replace the first factor on the right, in the last line
of Eq. (4.28), by 2p,,/(—2p-ki/+1ie)™", etc. Correspond-
ingly, we define

. 2 ’ ’
Mn;eik(a) =<_£> Z / puz zp‘m -
43/ verm S =2p'k, —2p" (ki+ky
2P 2pu
pl‘ M()(a)(P-Zki)*—ﬁ—‘ .o
—2p" - (bat- - - k) —2p-k
zpﬂn' d4ki

I . (4.30)
_Zp.(kl’_l_..._l_kn’) i B2—N\2

The same technique which has been used previously
enables us to write then that

1 -
Mn;eik(a) = /Mo(“’(x)eip"”[U(x)]"d“x, (431)
n!

where

_ —ia
U(x)=— /e‘"’“'-t
478
4p-p’ d*k
X

(—2p- ki) (—2p" ktie) B2—\"

(4.32)
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and
dé

Mo(a)(x) = /Mo(a) (P)e—iP-x(

(4.33)

™

In order to preserve gauge invariance, it is necessary®
to replace U(x) by U(x) defined as

e d*k
Ulx)y=— /e‘i’"”
8 k2—\2

2pu ?
X( > . (4.34)
—2p- ke

This amounts to including an appropriate set of radia-
tive corrections where the virtual photons are emitted
and absorbed by the “same” electron. The sum over »
of the modified M .0 @ is then

204
—2p" tie

Meik(u):/Mo(a)(x)eU(x)eiP~xd4x. (435)

Here again, in the spirit of the discussion of Sec. IT C,
we are interested in the behavior of U(x) when x — 0.
It is readily found that when x-p=x-p'=0 and
x*— 0 we have

Ux)~—3y(t) In(M2[«2]), (4.36)
where
at 1 (143z9)dz
=/ — 4.37
"0 W/()4m2—¢(1—z2) 3D

is precisely the function which is connected with the
positronium spectrum.’® Putting ()= —14++v()=!
=n—1 reproduces the major part of the positronium
spectrum. This is not surprising, since the diagrams of
Figs. 4(a) and 4(b) enter importantly, in the crossed
channel, in any description of the annihilation into two
photons of a bound electron-positron system.

If only (4.36) is used in (4.35), the corresponding con-
tribution to M° is proportional to s#®). However,
even if a Regge-like behavior were found to occur in the
region 0<t<4m?, this would not, it should be noted,
mean that the amplitude which we have calculated is
the dominant one in the physical region.!!

V. DISCUSSION

In Sec. VA, we summarize and comment on the
results of the preceding sections. In Sec. V B, we con-
clude with remarks on possible generalizations and lines
for further work.
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A. Summary and Commentary
1. Potential Scaltering

We have seen, in Sec. II, that the simple approxima-
tion (2.10), when applied to a suitably symmetrized
form of f,, the nth-order term in the Born expansion
of f, permits its evaluation in closed form; the sum over
n then leads to the eikonal-type formula (2.20), with
the eikonal function X, given by (2.21). The integral
for Xpot may be written in the form

—m 0
Xpor(X) =— / EVIxbs®1, G
Ip] Jow

where s(£)=p0(—£)E+P'0(E)E. Thus, Xpor(x) is ob-
tained by integrating along a path consisting of two
half-lines, one from infinity to X, in the direction of the
initial momentum p, the other from x to infinity, in the
direction of the final momentum p’. Equation (5.1)
may be compared with a time-reversal-invariant
modification of (1.2) suggested by Glauber,"* obtained
by replacing $ by K= (p+p’)/|p+p’|. This is equiva-
lent to replacing s(£) by K¢ in (5.1), i.e., to integrating
along the straight line through x, in the average direc-
tion K. It would seem that the form (5.1) is closer to
what one would expect on the basis of a wave-packet
picture of the scattering process. Of course, for very
small angles, the difference disappears.

The eikonal (5.1) also occurs in the work of Schiff,?
in his approximation to f for the case of large-angle
potential scattering, viz.,

m
f(p,yp) :—é— /dx eiq'xV(x)eiXpot .
™

(5.2)

The same result would have been obtained in our
approach if, instead of averaging over the n+1 alterna-
tive forms of f,11 [Eq. (2.3)], we had simply summed
over them, i.e., if we had not divided by #+41 in Eq.
(2.11). The basis of Schiff’s arguments leading to (5.2)
is a physical picture in which the large-angle scattering
of order n+1 takes place primarily by a single scatter-
ing through a large angle, accompanied by % scatterings
through small angles.

It would seem to be a worthwhile task to carry out
some numerical calculations for, e.g., Yukawa poten-
tials. This would enable us to make a comparison of the
relative and absolute accuracy of all these eikonal-type
approximations, at least in simple cases, and to delineate
the regions of validity of (1.3).

2. Relativistic Eikonal Approximation

In Sec. ITI, we found a natural extension to quantum
field theory of the results for potential scattering. Use
of the propagator approximation (3.6), analogous to
(2.10), leads to Eq. (3.10) for Mei(s,f), as an approxima-

12 See Ref. 2, p. 345.
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tion to the sum of all contributions from spin-0 meson
exchanges between spin-O0 particles ¢ and b. The
quantity X(x) occurring in (3.20) is a relativistic gener-
alization of Xpoi(x), reducing to it in the static limit!?
(mg or my—»). A form of X(x), alternative to those
already given [(3.21), (3.13)] with perhaps greater
heuristic value, may be obtained as follows. We regard
the quantity gd(k; ps’,ps), appearing in (3.21), as the
Fourier transform with respect to % of a transition
current {py'| j(x)| p»), which we abbreviate as Jj(x).
This current serves as the source of a field 4;(x)
= [ Ap(x—2a')To(x")d*%*’ with which the transition
current J,(x) interacts to produce the eikonal X, via

X(x) = —i f 2y 7o) Ao(ab).

Thus, we see that X(0) is the space-time integral of an
effective interaction density Ja.(y)4s(y) and hence may
be regarded as an “action,” or as a relevant piece of the
action, defined as the space-time integral of the
Lagrangian density. Yet another point of view, more
symmetric between @ and b, is to regard X(x) as a
field, satisfying

CHm)X(x)= —Jar(a)

where the source current Jos(x) is defined by

Jap(®) == [ dby Jao(y—5%)Ts(y+3x).

We should note that the crossing symmetry ex-
hibited by X and M¢* is simply a consequence of the
fact that the crossing operation, say, for b, is equivalent
to reversing the order of absorption of mesons along
the world line of b, and that all permutations of these
orders have been kept. It is amusing to note that our
approximation would #ot have led to a simple result if
we had confined ourselves to ladder-type diagrams,
since then the identity (2.14), which leads to a factorized
integrand, does not come into play.

In Sec. ITI C, the particle-antiparticle amplitude M .5
was studied and an eikonal approximation M .z°

13Tt may strike the reader as curious that although Xt was
defined within the framework of potential scattering, using non-
relativistic kinematics throughout, nevertheless the equality and
proportionality, respectively, of X with Xyt and of Meik with
ootk in the static limit arose without any nonrelativistic approxi-
mation, such as Ep= (p>+m?)1/2~m, being made for particle a.
The explanation for this lies in the simple connection between
the solutions of the external-field Klein-Gordon equation,
[O4m*+-2mV (x) W (x) =0, and the corresponding Schrédinger
equation, [—:3,—(V?2/2m)+V(x) ¢ (x)=0, in the case where
V(x) = V(x), a time-independent potential. For then, to each
stationary-state solution ¥, (%) =yp(x) exp(—:p%/2m) of the latter
equation there corresponds an exact solution v¥,(x)=yp(x)
Xexp(—iEpt) of the former equation. An equivalent way to
look at this is to note that the Green’s operators ([O-+m?*)~! and
(—2imd,—yH~* characteristic of the two cases become identical
if the only time dependence is that which enters from the corre-
sponding free-particle wave functions.
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=M+M, was defined [Eqs. (3.34)—(3.36)] with M,
and M, arising, respectively, from the exchange-type
and annihilation-type diagrams, shown in Figs. 2 and 3.

Some contact with Regge theory was made by show-
ing that, with x- p;=0, the eikonal X, has a logarithmic
singularity at #2=0, with strength equal to &(t)+a(u);
here &(t), defined by (3.4), is such that a(f)= —1+a(?)
coincides with the trajectory found from the ladder-
diagram contributions.

3. Extensions

Further insight into the relation of our eikonal ap-
proximation with Regge theory was obtained in Sec. IV,
where it was shown that a certain class of radiative
corrections to the lowest-order Compton amplitude
when treated in the eikonal approximation leads to an
eikonal with a logarithmic singularity of strength
14-8(f). Here B(f) is just the function, introduced
previously by a less direct approach,’® which reproduces
the spectrum of positronium on setting B(f)=I=n—1.

In addition, a generalization of the algebraic identity
(2.14) to the integral representation derived in the
Appendix, which takes into account an additive con-
stant in the denominator, was shown to permit an ex-
tension of the eikonal approximation to a variety of
processes in which one or more particles are off the
mass shell. As an example, such an approximation was
derived for the Green’s function K4 for a particle
moving in an external time-dependent scalar field 4 (x)
[Eq. (4.14)] and, en passant, for the generalized scatter-
ing amplitude M (p’,p) describing the scattering in such
a field [Eq. (4.13)]. This latter formula generalizes
the corresponding formula (2.20) for nonrelativistic
scattering in a time-independent potential V(x). It
should be noted that the generalization to relativistic
kinematics is trivial if 4 (x) is time-independent because
of the simple connection between the Schrodinger and
Klein-Gordon equations for that case.’® As another
example, an eikonal approximation I'.* was derived
for T'y(#',p), the contributions of an infinite class of
diagrams, typified by Fig. 3, to the vertex function
I'(¢,p), in both the on-shell and off-shell cases [Eqs.
(4.21) and (4.22)].

B. Concluding Remarks

Some generalization of the results obtained in this
paper can be had very easily. To include mesonic ex-
changes with different masses one simply replaces
¢®Ap(%) by g2Ap(x; ;) in the definition of X and M ek,
Radiative corrections to the meson propagators can ob-
viously be included by replacing Ap(x) by the full
propagator Ay'(x). Vertex corrections can be included
without any more labor, only to the extent that
Tu(pi,pi-1) the proper vertex for emission of a meson
of momentum % at the ith vertex can be approximated
by a function of p, and % only. Generalizations to in-
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clude spin do not seem very hard to come by, as the
example of the Compton effect indicates.!

One of the most interesting aspects of the results ob-
tained is the technique for including off-shell effects
within the framework of eikonal-type approximations.
It would seem, for example, that in the analysis of
high-energy production processes of the type a+b—
¢+d'+¢, where important contributions come from the
two-step process a+b— c+d, d— d'+¢, with d
virtual, an approach based on the off-shell eikonal
approximation for M g;p-crq might form a useful first
step. Although we have not written it down explicitly
for the scattering amplitude, it is obvious from the ex-
amples of the propagator and vertex function in Sec. IV
that analogous expressions can be given for this case
also: Each off-shell external particle leads to an integra-
tion over an additional parameter.

It is clear that much further work remains to be done
to assess the validity of relativistic eikonal-type ap-
proximations within a given model and to test their
relevance to actual physical problems.

We note finally that, after completing our work, we
came across a paper of Erickson and Fried,! who use
functional derivative techniques to study similar
mathematical problems in a quite different context.
Such techniques could be used to provide alternative
derivations of eikonal-type approximations, which
might provide additional insight into their meaning.!6
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(1;65% W. Erickson and H. M. Fried, J. Math. Phys. 6, 414
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APPENDIX: SOME USEFUL IDENTITIES

Consider the function

1 1
Fuls) =% ——
™ a1’ +x a’ +a’+x

1
X
a'+a+- - O R "

where the sum is over all permutations = of the sequence
(ay,- - - ,a») with ¢/ =a, . Each of the denominators in
(A1) is assumed to have a positive real part. Using the

representation
1 00
—-= / e *da,
2 0

valid whenever Rez> 0, we may write

1 0 00 0
~Fn(x)=2/ dozo/ doq---/ dawy,
X mJo 0 0

X e ozgmar(ar’+2) . . . gman(ar'+as/+ - +an'+a) |

,» (A1)

Introducing new variables B3, 8, - -
.3=010+011+ . ‘+01na

we have

1
P =% /ff 088y - -dB.

B>B1> -+ >Bn>0

*, Bn via

Bi=ait - Fan:,Br=an,

Xe—ﬁﬂve—ﬂlal’ v e“ﬁﬂan' .

On putting 8’ =g with k=="1(k) (k=1,2, ---, n) in
the term corresponding to the permutation = and noting
that

eg—B1a1’g—B2a2 . . . p—Bnan’ = g—B1'a1p—B2 s, . . e—ﬁn’an’
we get
1
~F.(x)=X . dBdBy - -
X T

B>Bx (1) >+ >Br(n)’ >0
dﬁn’e-ﬂxe~61'tn. .« g Bnlan

On dropping the primes, and noting that for fixed g8
the union of the domains

B2Bry2Br > 2Brmy>0
is just the hypercube 8> B:>0, we see that

1 o0 8 8
—F ,(x) =/ dp e F= / dpr- - / dBne P81 . . g—Bnan
X 0 0 0

On integrating over the 8x, we get

Fo(s) =2 /0 e ] (l—i>

=1 a;

(A2)
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which is the result used in Sec. IV. Equation (2) may be i n 1—gfai)f= 1
recast, on integration by parts, into the form S S

’ 0 9 n 1l—ghai
Fn(x) =/ dﬁ e B H -
0 B =1 a;

(A3)  a result used in Secs. II and IIL. Using mathematical

induction, it is easy to provide a purely algebraic proof

From Eq. (3) we have immediately, as a simple check, of (4). We leave this task to the interested reader.

PHYSICAL REVIEW VOLUME 186, NUMBER 5 25 OCTOBER 1969

Renormalization of Regge Trajectories and Singularity Structure in
Kikkawa-Sakita-Virasoro-Type Theories*
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An investigation is made of theories which satisfy the duality principle using the Veneziano amplitude
as a Born term. In constructing the theory, it is found necessary to average over different ways of assigning
the loop momenta to the points of the duality diagram. The Regge-pole terms in the asymptotic behavior
are identified, and transcendental equations which express the full renormalization of the leading trajectory
are recorded. (It is necessary to assume that the integrals can be so defined that this asymptotic behavior,
found in the limit Res — — <o, continues to be the dominant behavior as Res — +.) The amplitude
is shown to have the Landau-Cutkosky singularity structure corresponding to poles lying on the renor-
malized leading trajectory. In particular, if low-lying particles on this trajectory are the only stable particles
in the theory, the real singularity structure required by unitarity is correctly obtained. It is then possible
that the failure in a finite theory of exact factorization for all daughters would not spoil the theory.

I. INTRODUCTION

ECENTLY Kikkawa, Sakita, and Virasoro (KSV)!
have proposed a way of constructing a new form
of perturbation theory, consistent with duality, in
which the Veneziano amplitude? plays the role of a
Born term. Such a series appears likely to be formally
unitary and to correct the most glaring deficiency of the
Veneziano model itself. However, KSV in a note added
in proof, and also Bardakci, Halpern, and Shapiro
(BHS)? have pointed out that in order to obtain full
factorization of even the single-loop KSV expression
in a way which is consistent with Veneziano-type
functions associated with tree diagrams,* the integrand
in the KSV integral must contain an infinite product
which leads to an exponential divergence.
This disastrous conclusion is enforced by the require-
ment that factorization, and consequent unitarity-like

* Work performed under the auspices of the U. S. Atomic
Energy Commission. .

1 On leave of absence from the Department of Applied Mathe-
matics and Theoretical Physics, University of Cambridge,
England.
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discontinuity formulas around normal threshold sin-
gularities, is required for all poles contained in the
Veneziano amplitude whatever their level in the
daughter sequence. While this would be an agreeable
property if it were obtainable, it is not clear that its
failure robs the KSV approach of all its utility. Two
lines of thought suggest that this is not necessarily
the case. One is that the daughter properties of a
Veneziano amplitude can be modified by the addition
of nonleading terms. Bardakci and Mandelstam® have
conjectured that these nonleading additions cannot be
used in a way which leads to a simpler, and so probably
less divergent, daughter sequence, but a proof has not,
at present, been given that this is so. Secondly, the
effect of unitarizing the theory will be to destroy the
narrow-resonance approximation of the Veneziano
amplitude. Resonance poles should move onto un-
physical sheets, leaving only the stable-particle poles
renormalized to locations which are still real. For
simplicity, we shall always consider the model in which
the only stable particle is the spin-0 member of the
leading trajectory. If that leading trajectory factorizes
properly, then the real normal thresholds corresponding
to stable particles will have Cutkosky discontinuity
formulas which correspond to physical unitarity. This
will not be true for singularities involving daughter-
trajectory particles, if the latter do not factorize

& K. Bardakci and S. Mandelstam, Phys. Rev. 184, 1640 (1969).



