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The eikonal approximation for high-energy collisions, long familiar in the theory of potential scattering,
is considered from the viewpoint of relativistic quantum 6eld theory. We study, in particular, the Feynman
amplitude M(s, t) describing the scattering of two spin-0 particles, a and h, interacting by the exchange of
spin-0 mesons. We show that if M„(s,t), the contribution to M(s, t) arising from all nth-order Feynman
diagrams in which exactly n mesons are exchanged between a and b, is written in an appropriately sym-
metrized way, and if the terms in any a or b particle propagator which are quadratic in the internal momenta
are then dropped, the resulting expression, M„" (s,t), may be evaluated in closed form, and the sum over n,
which defines M"R(s,t), may be carried out. The representation of M"R(s, t) found in this way involves the
exponential of a function x of a relative space-time variable n= (a', x) and the external momenta; x is a
relativistic generalization of the eikonal Xp,& familiar from the theory of high-energy potential scattering.
M" (s, t) is both crossing-symmetric and time-reversal-invariant. In the static limit (ms ~ oo), x tends
to xo,z for the appropriate Yukawa potential and f''"= —M""/Szrgs has a limiting form fo,zez", which
we also derive directly from the theory of potential scattering; for small scattering angles, fp & coincides
with the standard result. The amplitude for particle-antiparticle scattering is studied in the same model.
It is shown that the eikonal X2(x) associated with the contribution of all annihilation-type diagrams has a
logarithmic singularity at x=0 whose coefficient is proportional to zs(t) +1,where zs(t) is the Regge-trajectory
function obtained from the asymptotic behavior of the ladder-type diagrams alone. Another connection
with Regge behavior is made by showing that the summation of a certain infinite class of radiative correc-
tions to the lowest-order y-e Compton amplitude gives rise, in our eikonal approximation, to an eikonal

x(x) which has a similar logarithmic singularity with strength 1+p (t); here p (t) is the trajectory function,
introduced less directly in earlier work, which reproduces the major part of the spectrum of positronium on
setting P(t) =l=n —1. A generalization of a simple algebraic identity used in the derivation of the above
results, in the form of an integral representation, permits their extension to the case where one or more
particles are o6 the mass shell. This is illustrated by a computation of an eikonal-type approximation to the
Green's function for a relativistic particle moving in an external scalar 6eld and by the summation of an
infinite class of contributions to the vertex function in the model referred to above. The possibility of
applying an o6-shell eikonal approximation to the analysis of production processes is emphasized.

I. INTRODUCTION

'N recent years, there has been great interest in
i - high-energy approximations to scattering ampli-
tudes which exhibit an exponential dependence on some
of the kinematical variables, especially in connection
with the revival of Regge theory. Simple approximations
of this type have been known for a long time in the
theory of nonrelativistic potential scattering: These
are the so-called eikonal type of approximations. '-'
For example, for a spinless particle of mass nz scattered

by an external potential V(x) the scattering amplitude

f(y', y) may be approximated, for large l pl and small

scattering angle and under suitable restrictions on V, ' as

f(y' y)
— d&$ ec(P—P') &(e'x(&) 1)
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where b is a 2-component vector orthogonal to p = y/ l y l

and the "eikonal" X is defined by

x(b) =
lyf

v(by j«)d». (1.2)

It seems worthwhile to ask to what extent analogous
approximations for a two-body scattering amplitude
may be obtained in quantum field theory. In the present
paper we show that there is indeed a natural relativistic
generalization of the eikonal approximation. The tech-
niques used are rather simple and may be useful for
deeper investigations of the asymptotic behavior of
scattering amplitudes.

The usual derivations of equations such as (1.1) are
based on calculations which start with expressions for
the scattering amplitude and the Schrodinger wave
function in position space. In Sec. II, we reconsider the
problem of nonrelativistic potential scattering in
momentum space, starting with an exact expression for
the nth-order term f„ in the Born expansion of f. We
show that if in the energy denominators appearing in this
expression, terms of the form K' are dropped relative
to terms of the form y K, where K is a partial sum of
internal Inomenta, the resulting approximation to f„
may be evaluated in closed form, with the help of an
identity used in earlier, closely related work in quantum
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for eac ach i ctor V in (2.4), we get

f m)'
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(2.6)
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ev. Uo, 791 {1963).5 M. Levy, Phys. Rev. a+(p, K) = Lp' —(y —K)'wi )-', (2.7)
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—m m n

f +i(y y) = 4o dki

dk„[V(k„) U(ki)7U(q —Zk, )XDi, (2.8)

K;=ki+k, + .+k;, K = k, +k,„,+ +k„.
On use of (2.3), (2.6), and the relations U~(k) = V(—k),
g *(p,K)=g+(p, K) we see that (2.3) assumes the form

where
—m(m " 1

f +-i""(p',p) =—
I

—g dki".
2~ 4~& v+1 i=o

dk„fV(k.) V(ki) 7 V(q —Zk, )D i"" (2.13)

To evaluate (2.13), we note that since the product of
the V's is invariant under separate permutations of the
momenta ki, ~ ~, ki and the momenta ki~i, ~ ~, k~,
we can sum over all such permutations in the integrand,
provided we divide by their total number: $!(n—l)!.
Making use of the identity'

D = II g, (y, -K, ) IIg, (y, K.) (2.9) 2 (ci') '(ci +c2 ) ' (ci'+co'+ +c.') '
perm

—m mq"
f.+i(p', p) =

2ir 4m'

~ ~ ~

dk„[U(k„) U(ki) 7 V(q —&k')D, (2 11)

Of course f„+i does not depend on the value of /.

The energy denominators in (2.9) all have the form

(—2y' K—K'+io) ' or (2y K—K'+io) ', where K is
a partial sum of k's. The high-energy approximation
which allows us to compute the right-hand side of (2.8)
is essentially obtained by dropping the terms quadratic
in the internal momenta, i.e., by making the replacement

g(p', —K) = (—2p' K—K'+ io)
—' ~
(—2y' K+ie)—', (2.10)

g(p, K) = (2p ~ K—K +~io) ' —+ —
(2y K+io)

However the resulting approximation to f +i then

depends, for q&0, on the choice of /. (See Sec. III for
elaboration ofjthis point. In the language of Feynman

diagrams, this choice corresponds to the choice of

vertex at which over-all momentum conservation is
imposed. ) To avoid this we first replace Di in (2.8) by
its average over /, i.e., we write

(—m/2~)) m " - 1

ii+ 1 (4ir' i=o l!(n —i)!
dk) .dk

V(k;) ~ V(k, )
XII — . II, . U(q —Zk*) (2.»)

'=i 2p k;+io ~=i+i 2p' k—;+io.

Recalling the definition (2.5), and substituting

V(q —Zk, ) = dx e'io —»'i'V(x)

into (2.15), we see that the dependence of the integrand
on the k; factorizes so that (2.15) may be rewritten in
the form

(—m/2ir) +i 1
f.+i""(y',p) =

ii+1 i=o l!(e—l)!
dx U(x)e'&'

= (cic2 c„)—', (2.14)

where (ci',ci', ,c ') is a permutation of a sequence of
numbers (ci,ci, ,c„),we find

f + "'(p', p)

where
1 n

Q Di.
m+1 i=o

where
XfU(x;p)7'I U(x. —p')7"—' (2.16)

U(x; y) = - dk U(k)e '&'*(2y k+jo) '. (2.17)
(2m-)'

Ke then make the replacement which defines our eikonal

approximation,
The sum on l may now be carried out, giving, finally,

n

D De;g P Deik
n+1 i=o

(2 12) (—m/2ir)f„""(y',p) =— dx V(x)e'q'"
(n+1)!

in (2.11), where Di"" denotes the result of making the

approximation (2.10) in Di. Thus

D, "=b„—'(b.„+b,)—' (b„+b i+ +bi+i) '

X (ai+ a2+ +«)—' (ai+ a,)-'a

where a;= 2p k+io and b, = 2p' k;+io C—orres.pondin. g
—,to (2.12) we have

f.+i(y', p) f-+i""(y'»»

XfU(x; p)+U(x; —y')7". (2.18)

In correspondence with (2.1), we define

f" "(p',p) =2 f.+i"'(p', p).
n=o

(2.19)

On reversing the order of summation in (2.19) and inte

See Eq. (20) of Ref. 5. A proof is given in the Appendix.
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gration in (2.18), we get

eik(p& p)
27rj

eixppt

dx e'&'*V(x)—,(2.20)
Xpot

scalar mesons of mass p with scalar coupling; if the
fields associated with these particles are denoted by
g„pb, and p, the interaction Lagrangian density takes
the form

Zr = gy—atyby+H. c.

07 't6 = —Z d& e'"& (2 22)

may be used to write U(x; p) and U(x; —p') in the form

—'lm

U(x; p)=— d$ V(x —p$),

(2.23)

where X„,t, is defined by

x~„,= —i[U(x;p)+ U(x; —p') $. (2.21)

Equations (2.20) and (2.21), which coincide with

(1.3) and (1.4), are the principal results of this section.
To see the identity of (2.21) with (1.4), note that the
representation (we suppress a convergence factor e '&)

i M„~i ———(—ig) '"+'
&+& d4k,

&F(»)—
~=i (2~)4

Let M(s, t) denote the invariant Feynman amplitude
for the scattering of a and b where, as usual,

s= (p +p )', t= (p.—p, ')';

and P, (P,') and Pb (Pb') are the initial (final) four-
momenta of a and b, respectively.

Let M „~i(s,t) denote the contribution to M(s, I) arising
from all Feynman diagrams in which precisely n+1
mesons are exchanged between a and b, and let k~,

k„+i denote the momenta of the exchanged mesons, in
the order of their emission along the world line of par-
ticle u. Then

U(x; —p') =— d$ V(x+p'$),
XIX(2s.)'8(q —P k,), (3.1)

with P=p/Ipl, p'=p'/lpl.
Our eikonal function X,.b=X„.&(x; p', p) is clearly

invariant under the time-reversal transformation

p ~—p' and p' —+—p and hence so is f~,&"k(p', p). The
invariance of f"k under space inversion: p ~—p,
p' —+ —p' holds if V(x)= V(—x), i.e., if V has this
invariance.

For sufficiently small scattering angles 0, we may let
P —+ P in (2.23), giving

Xpot

lpl
d$ V(x+p$),

III. RELATIVISTIC EIKONAL APPROXIMATION

In this section, we derive a relativistic form of the
eikonal approximation described in Sec. II. Properties of
the resulting formula are discussed and particle-
antiparticle scattering is considered in the remaining
parts of this section.

A. Derivation of Relativistic Eikonal Amplitude

l. I'reliminaries

Consider two spinless particles, a and b, with masses
:m and mq interacting via the exchange of neutral

or, choosing p as the s axis and writing x=b+ps, we
have

x...=x(b),
defined by (1.2). We may then also approximate
exp(jq x) by exp(iq b) in (2.20) and, on writing
dx=d 'bds, we see that '-Eq. (2.20) for f~,&"k reduces to
(1 1).

where Dr(k) =i/(k' —Ii'+is) is the meson propagator,
g= pi —pi'= —(p~ —p2') is the four-vector momentum
transfer, and I is a sum of products of propagators
associated with the propagation of particles e and b.
To write I as an explicit function of the external and
internal momenta, we imagine, for the moment, that
the 8 function in (3.1) is used to eliminate k, and desig-
nate the resulting form of I by I„.Then

I,=I„~'Q I„&"(D),
D

(3.2)

I„"=Sr'(p —ki) 2 F (p, k, —k„,)——
X~ '(P'+k-+) ~ (P-'+k- + +k, ),

(3.3)

with hr (p) =i/(p' m. '+is), and—I„&b&(D) is a similar
product of b particle propagators, associated with a
diagram D contributing to SI„+i. Clearly, there are
precisely (n+1)! diagrams D to be considered, corre-
sponding to (n+1). distinct orders in which the mo-
menta k~ ~ .k„+~ may be absorbed along the world
line of b.

It proves convenient to organize the sum over the
diagrams in the following way. Let E(s) denote the
subset of diagrams in which k„ is absorbed at the sth
vertex along the world line of b For each D.QE(s),
there will be, say, si momenta from the set Lki, ~, k„ ij
which are absorbed before k„. We denote these by
(k.. . k„), listed, say, in the order of emission along
the world line of a, and abbreviate this set by (si).
The remaining s2= s—si —1 momenta absorbed before k„
necessarily come from the set Lk„+i, ., k„+i); we
denote these momenta by (s,)= (k,„+,, k„+,, , k„+„).
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FIG. 1. A typical exchange-
type Feynman diagram included
in the definition of the eikonal
amplitude 3f""(s,t) for the process
u+b -+ u+b.

(3.1) has certain symmetry properties, which ice n'ish
to preserve, but which are destroyed if such approxi-
mations are made in too naive a manner. The difhculty
stems from the fact that the n+1 internal momenta k;
are not independent, by virtue of the 8 function in (2.1),
and that if, say, k„ is eliminated and then (3.6) is used,
the resulting integrand depends on the chosen value of
r. To make this quite clear, note that if k„ is elirnin. ated,
we must write, for the momentum of a after the emis-
sion of r, p " = p~'+k +r1+ +k„+1, whereas, il kr+1
is eliminated, we must write P,&"&=Pi—ki —k„., Of
course,

The corresponding I,'(D) then has the form

I'(D) = Ab b(pb+kt')Db b(pb+ki'+k2')
+F (pb+kl +k2 ' ' ' ks-1 )~F (p2 kn+1 ) ' ' '

62 '(p b' k,+," —k,„," — —k—„~i"), (3.4)

where (ki', k2', ,k, 1') is a permutation of (ki, k2,

k„~„) (call it 2r') and (k,+1",k,~2", ,k„+1")is a permu-
tation of the remaining k's, call it x". Thus, we may
write

Z E I.'(D).
(ai) (82)

(3.5)

From the viewpoint of the topology of the Feynman
graphs contributing to 3f„~1, the sum over ~' and x"
includes all graphs in which the rth meson emitted by
a is the sth meson absorbed by b and in which s2 meson
lines, emitted after r, cross the line corresponding to the
rth meson to be absorbed before r, whereas the r—1—sl
meson lines, emitted before r, cross the r line to be
absorbed after r. As an example of the notation, for the
diagram in Fig. 1, if we choose r=3, then we have s=3,
$1 1 $2 1) 1ct ki k2 k4 etc. The sum over (si) and

($2) may be regarded as a sum over pairs (si) and (s2)
with si+s2= s—1, followed b'y a sum on s: s= 0, 1,
n 1.

n+1
I= —P I„, —

22+1 r=i
(3.8)

where I,=I,(p 'pb', p,pb, ki, k2, ~,k„ i,k,+i, ,k„+1) is.
given by (3.5) as an explicit function of the external
momenta and the indicated internal momenta. Equation
(3.8) provides a definition of I as a function of the
external momenta and all n+1 internal nioinenta
k&, . ~, k„+1 which reduces to that given on the hyper-
plane ki+k2+ ~ +k„+1——

q, where, of course, each
term of (3.8) makes the same contribution. AVe note
further that QI„b(D) is invariant under any permuta, -
tion 2rt of (ki, ,k, 1) and 2r2 of (kit, .,k„+1). Since
the product of meson propagators in (3.1) is also inva. ri-
ant under any such combined permutation, v,

.e nzay
replace I„ in (3.5) by

(p. k"--k,)'= (p.'+k,++ "+k.+,) :(3.7-)

but, if we use (3.6), the left-hand side of (3.7) becomes,
on the mass shell, m2 —2p, (ki+ .+k„), whereas the
right-hand side becomes 2122+2p '

(k„+,+ —,
' k„+,),

and these quantities are no longer equal except for q=0.
As in the treatment of potential scattering, te avoid.

this feature we first write I in the form

Z. Propagator A pproximation

We wish to make a high-p approximation in the inte-
grand of (3.1) which will simplify it sufFiciently to permit
the evaluation of the integral in closed form. Basically,
we wish to use, in the propagator denominators, the
approximation

(p&E)2 —rr42= &2p E+E' &2p E(3.6)— '

Ir; sym P I„,
(r 1)!(22 ——r+1)!rlr2

(3 9)

so that we consider, instead of (3.8),

(3.10)
n+I

I., = Q I..., Q—I„'(D). -

22+1 r=i

where p is an external momentum and E is a partial
sum of internal momenta, thereby neglecting E'
relative to P E; this is the covariant analog of (2.10),
used in potential scattering. However, the integrand of

Note that Eq. (3.1), with I repla, ced by I,r, i: still
exact.

We now apply the propagator approximation (3.6) to
(3.10); then I,~ —& I"~, where

Ieik (3.11)
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and
Z2

I, .,y„,"'—— 2 L(ai) '(ai+a1) '. (ai+a2+ . +a, i) ']
(r —1)!(n —r+1)!

)&t (a„+1') '(a ~1'+a ') ~ (a +1'+ +a„+1') '] Q P $(bi) '(bi+b2) ' ~ (bi+b2+ ~ +b, 1) ']
(s1) (s2) x', m"

&&L(b-+1') '(b-+1'+b-') '. (b"+1'+ +b.+1') '], (3 12)

with the abbreviations a;= 2P.—k;+ie, a =2P.' k+ie, b, =2Pb k, +ie, b, = —2Pb'. k,"+ie. Then we use the
identity (3.12) to carry out the sum over the permutations iri, v.2, ir', and ir", in (3.12), giving

Ir;sym =1 I (r 1).(n r+1) ] fala2' ' 'ar 1] $8—r~i ar+2 ' 'an+1 ]
X 2 [bib2 b. i] 'P.4.1b;+2 b.] '& (3 13)

(s1) (s2)

where b;=2Pb k, +ie and b, = 2Pb' —k,+ie; here,
(k,+i,k,~2, ,k ) is the complement of the set (ki,
k —1) in the set (ki,k2 ' ' ' k —1 k,+1, ' ' ',k.4-1) ~

3. Defbnition and Evaluation of M""(s,t)

tribution. Since the number of ways of choosing s&

momenta from r 1 —is (r—1)!/si!(r—1—si)!, and s1
momenta from n r+1 is —(n r+1)!/—s2!(n—r+1 —s2)!,
the sum over sets (si) and (s2) with Gxed values of si
and s2 gives, using binomial notation,

~e define M~~1', the eikonal approximation to 1 1 t'r Iq
M„+,, as the result obtained by substituting (3.11) —

~

~U1"U1' ' "'
into (3.1).To carry out the integrations we write (r 1) t (n r+1).k si )

(n —r+1
xi U "U" "+' '-'

4 ~

s2(3.14)Ar(x)e b"'*d4x,Zp(k„) =

The sum over all s~ and s2 then gives
in computing the contribution of the rth term in the
sum (3.11) to (3.1), with k,=q —g;~, k;, on eliminating
the b function. The integrand then factorizes and each
of the remaining k integrations can be carried out. Let
us define

(Ui+U2)" '(Ub+U4)" "+'
(r —1)!(n —r+1)!

U(x; p,p') =g'

The sum over r (r= 1, 2, , n+1) of the last expres-
sion is

(21r)4 ( 2P k+—ie)(2P' k+ie).
(3.15) (1/n!) (Ui+ U2+ Ub+ U4) ".

and introduce the abbreviations

Ui= U(x; p„pb), U2= U(x; p„—pb'),
3.16

Ub= U(x; p, ',pb), U4= —U(x; —p, ', —pb').

For a given choice of (si) and (s2), there will be, in
(3.12), si factors of the type (—2P, k) ' (+2Pb k) ',
giving s~ factors U~ on integrations over the corre-
sponding k's (i.e., a factor Ui"). Similarly, there will

be s2 factors of the type (+2p, ' k)
—' (2pb k) ', giving

a factor Ub",' (r—1)—si factors of the type (—2p, k) '
(-2Pb' k) ', giving afactor U2" ' ', and (n r+1)—s1-
factors of the type (2P,' k) ' (—2Pb' k) ', giving a
factor U4" "+' ".It follows that the contribution of one
of the terms in the sum (3.12) will be proportional to
the integral over x, with a factor e '&'~Dr(x), of the
function

X—= —&(Ui+ U2+ Ub+ U4) .

It follows that M"~(s,t), defined by

(3.18)

M"'(s, t)=—Q M
n=o

(3.19)

is given, on reversing the order of summation and inte-
gration, by

Mrii (s t) =ig2 d'x e
—44 *gp(x) P (jg)~/(n+1)!

n=o

or

Collecting the constant factors, we get, finally,

g2—bM.~1""= — d4x e '&'*Ay(x)(ix)" (3.17)
(ny1)!

where

1 2 3 4
— U s1U r—1—s1U s2U n—r+1—s2

(r —1)!(n —r+1)!
M"'(s t) =g'

g&X —]
d'x e *'*Ap(x) . (3.20)

x

Thus ea.ch choice of (si) and (s2) gives the same con- This is the result stated in the Introduction, since the
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definition (3.18) of X is equivalent to (1.6), as we show
below.

3. Properties of Relativistic Eikonal Function g and
Eikonal Amplitude M""

1. Alternative Forms of X and Symmetry ProPerties

It is interesting to examine the various forms of the
function X, which represents a relativistic generalization
of the eikoiial function as defined in the study of non-
relativistic potential scattering. From (3.15), (3.16), and
(3.12), ive have M(P' P

"P.,P )=M(P', P '; 7i.,7i ); (3.25b)

invariant under the interchange of initial and final
momenta,

X(P-' Pb' P. Pb' *)=X(P.,Pb P-', Pb'; *) (3.24"')

Using (3.21) and (3.24')—(3.24"'), we see that M"k
=M"k(s, t) =M""(P,',P b', P„Pb) is crossing-symmetric:

M(P' Pb' P. Pb) =M( P-, —Pb'; P-',—Pb)

=M(p, ' p—b, p.,
—pb'); (3.25a)

invariant under space inversion:

X = —ig

where

d4k
eik +t'ai (k)

(2m.)4

)&d(k; P.',P.)d( k; Pb', Pb)—, (3.21)

and invariant under time reversal:

M(P-'Pb' P. Pb)=MV. P»1' Pb')

Z. Static Limit

(3.25c)

d(k; p ',p.)=
2ma 0

(ei(ua'k)ra+ e isa kr—cr)

with a similar representation for d( —k; pb', pb) We the.n
get, on. substituting into (3.21),

X =zf
0

df Odf b[dr(x+u0, f g ub fb)

+~p(x+ua f a+ubfb)+~p( xuafu ub f b)

+dr(x u f.+ubgb))—, (3.23)

d(k; P', P)= [d (2P' k)+d (2P k)g, (3.22)

wltll d~(M) = (&(0+zb)
It is convenient to introduce the four-velocities

u. =P„/zn„, u.'=P.'/nz. , ub Pb/r——nb, ub'=Pb'/mb and
to use (2.22) to write

V(r) =—
4~ trt

(3.26)

with f a reduced coupling constant,

f'= g'/4m. nzb (3.27)

Thus, to make contact with potential scattering, we
keep f' fixed as nzb ~~ . Since both ub' and uk approach
(1,0,0,0) as nzb —+~, the first two and last two terms in
(3.23) can be combined by letting the fb integration
run from —~ to ~:

It is instructive to see how X reduces to the form ex-
pected from potential scattering in the static limit, i.e.,
when, say, m~ —+~. To this end, it is necessary .to
observe first, that for slowly moving particles a and b,
the use of second-order perturbation theory with the
interaction (3.1) gives an interparticle potential V of
the Yukawa type,

2 g
—@fr/

with f'= g'/4zn„mb, this coincides with (1.6). For small-
angle deflections, u, '=u„ub'=ub and (3.23) becomes
simply

dk, dfbDr(x+u, f,+ubt b), (3.24)

X~ if' df'b[Dr(x'+u, '"t, f b, x+u—,'f, )

+AF(x' —zi.'|.—t b; x —u.f.)]. (3.28)

which is a covariant analog of (1.2) &
if V is a, Yukawa

potential.
The symmetry properties of X=X(P.', Pb', P.,P„*)

are easily established, either from (3.21), using the
relations d(k; p', p) = d(k; p, —p') = d( —k; —p,p'), or
from (3.23), using AF(it) =Dr( —zt), together with ap-
propriate change of integration variables. Thus one
finds that X is crossing-symmetric,

X(P-'Pb' P.,Pb'*)=X(-P-Pb' P' Pb x)-
=x(P' Pb P. Pb' x), —(3 24')—

that X is invariant under space inversion of x and the P's,

x(P'Pb'P-Pb x)=x(1i-',1 b';P. ,7b;*), (324")

with f~= (P', —P) and x= (x', —x), and that X is

On use of the relation

e—P, fx(

dx" Ap(x'; x) = z—
4~/xf

(3.29)

the right-ha. nd side of (3.28) is seen to be equal to

di, [V(x+u, 'f )+V(x —u,f,)$, (3.30)

where V is defined by (3.26). Noting that mb~~
implies q"= —(pb' —pb'o) ~ 0, which in turn implies
that ~u.'( = ~u. t, we see, on putting t.= ~u.

~
'$, and

dropping the subscript a, that (3.30) is just equal to
the expected X„,~. The same conclusion can be reached
by starting with (3.21) and using the fact that in the
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static limit the last factor in the integrand is propor-
tional to d+(k')+d (t'2') = —22rib(k').

For completeness, we note that the scattering ampli-
tude in the relativistic eikonal approximation

f""=( 1/8—2r+S)Me("(S,t) (3.31)

also assumes the expected form in the static limit. Using
(3.20) and (3.30), we have, for mb —+ec,

Fio. 2. A typical annihi-
lation-type Peynman diagram
included in the definition of
3f2""(s,t), part of the eikonal
amplitude for the process
a+a —+ a+a. Its contribution
is obtainable from I"ig. 1 with
b= a by the criss-crossing trans-
mation p

' ~ —p .

p,
'

Ji lip',-

p

e

))p

sheik~ g2

g&Xpot

d4* e-"'A, (x)
~pot

x2= —i[U(x; P., P')+—U(x; P., P='),—
+U(» p , p-'-)+—U(x p., —p.-'-)3 (3.38)

Since X~,t is independent of time, and q' —+ 0 for m~ ~~,
we find, using (3.29) again, that

g&Xpot

M" i(4—m, mb) dx e""U(x) . (3.32)

Since mk/Qs —& 1 as mk —e~, we have from (3.31) and
(3.32),

(3.33)

where f~,ee'k is defined by (2.20).

eik —iIII eik+tIII eik (3.34)

where 3f&"k is just the amplitude defined by Eq.
(3.20), with b=a and M2"" is obtained from cMi by
cl isscrosslng:

~ eik g2 d'x 6F(x)e "*(e'"' 1)/Xi/ (3.35)—

with q=P, —P,' and X,=X(P,',P.-'; P„P;), and

M2"k= —
g d x tI2(x) *' "'(e'"'—1)/X2, (3.36)

with I'=P,+P; and X,=X(—P;, P-,'; P., —P,'; x). In
terms of the function U(x; p,p') defined by Eq. (3.15),
we have, using the definition (3.18) of X,

X,= '[U(x; P.,P.)+U(*—; P., —P-.')+ U-(x; —P.',P.-)
+U(* p-' —p-')3 (3 3&)—

C. Particle-Antiparticle Amplitude

It is instructive to consider the particle-antiparticle
scattering amplitude 3f,—within the framework of our
model and eikonal approximation. In addition to the
amplitude obtained from diagrams of the type shown
in Fig. 1, we now also include the corresponding
annihilation-type diagrams, as typified by Fig. 2.
Let us denote the initial and final momenta by p„
p,-and p, ', p, respectively. The contribution of the
annihilation-type diagrams can be obtained from the
exchange-type diagrams by the crisscrossing trans-
formation p,-~—p, '. Thus, we define an eikonal
approximation to 3f; by

It is particularly interesting to investigate the high-
energy behavior of 3f2"",since it is known that M.""d",
the sum of all ladder-type annihilation diagrams, ex-
hibits an asymptotic behavior of the Regge type. " %e
note that for s=I"—& ~, major contributions to the
integral over x in (3.36) will come from smail values of
x, because of the oscillations in e' ' for large P and
because X2 has a, logarithmic singularity at x=0. In
particular, it can be shown tha, t' if in U(x; p, p') we set
x P= x P'= 0, then x2 assumes the form

X,= i[n(t)+ n(u)] ln
I
x

where t= (P.—P.')', 24= (P.—P.')', and

(3.39)

1

42(A2) =
4x' 4p2 +2(1 t.2)

(3.40)

The existence of this singularity may be connected to
a Regge-like behavior (another example of this mecha, -

nism is given in Sec. IV C in our discussion of Compton
scattering). The precise asymptotic behavior of cVI,ei"

will be discussed elsewhere. Here, we remark only that
n(t) = —I+n(t) coincides with the trajectory function
obtained by summing the asymptotic parts of aH ladder
diagrams contributing to the annihilation amplitude. ~

IV. EXTENSIONS TO OFF-SHELL PROCESSES
AND APPLICATIONS

In this section, we show how our method can be
extended to oB-shell processes by calculating, with the
same approximation, the propagator of a scala, r particle
in an external field and a class of radiative corrections
to the vertex function. In another application, we dis-
cuss a class of radiative corrections to the Cornpton
scattering amplitude.

A. Propagator of a Scalar Particle in an External Field

Let us consider the Green's function Ik~(x, x') of a
scalar particle of mass m in a time-dependent external
field A(x), whose Fourier transform we denote by

' See, e.g. , R. J. Eden, High Energy Collisions of Elementary
Particles (Cambridge University Press, Cambridge, 1967), p. 140,
and references quoted there.

See the Appendix of Ref. 5.
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um s ace this can be w tritten asA(p). In momentum space, Calling A(k);
e»)dzk (4.6)—i&.&-p(x, P)=,

2p k+ze(2ir ''(P'P)=( )' (P) (P'-
+5p(p')M p, »

eralized scattering amp
'

litude
er series of the I'ourierwhich can be expan e ower series o

t of the externa ecoDlponen s

and

1 —e'e'"")d'k, (4.7)~
—i' x

2p' k+ie

—i'"+' —A (k„)~'(P', P)=Z (—4"
~ o (

X~» (p'+p -i . ' k +)A (k i) .&» (p'+k. . ki+i

—ki — —ki)A(ki)XA(q —Zk, )&,(p —k, —

&F —ki)A(ki)d'ki. d'k .

a as before,n the same waywe obtain, in

.( —).
A zp)

00 00

ire*e'+'e"'dp dp

ieio zd4x (4 8)X LU'(x; '))" 'A (x)LV(x; P)) e*'

sections, weo that of the previous sect

p he p o y
t'k"nt

t an 1. Calling p —m-d p' e off he .
d averaging over t e c"—)n-'=2m'' an av

as before, we define
3II i,"(p' p) = isa' ezez+zlvz'dp dpz

so that, putting

~(x; ~,~') = -i(~+ U'),

)we obtain for M„i, (p,p

(4.9)

where

—Z ~-+i, i (P,P,' ) (4 3)-&-~'(P', P =

A(k.)
~ ~ ~

27r) 4" 2ma'+2P' k„+ze

3(ki+i)

e"—1le'" —fd'x. 4.X

as before, using theTh hase X can e transforme as e, e
in e . tation of the 8+ unc

'
f ction. For exampintegral representation o

we have

2ms'+ 2 ' (k.+ .+ki+i)+ze

A(k&)
X.-i(q —Zk;)

2mz —2p

A (ki)

2ms —2p ki+ie

2m (2')4
ds A(k)e '"'"' 1—e

'

A (x+us) ds.

ds PA (x+us) —A (x+us u

(4.11)
't roved in the Appendixeneral identity prov

'
A endix

l h
d dth t k, ,

o "(p' p) is t en gi, ' u= m,other. .V„~g,)
z»'= p'/m, by

~nyi, i (p zp

00 00

/eiez+ze'z'dp dp
(27r)' (2m)" 1!(n—l)!

A —Zk
'=+' (P' '/ + )

i A(k;)[1—e
—*'~'"*)

(—2 k,/2m+i ) =

A (x+us) ds+ A(x —u's)ds . (4.12)
25$ p

limit wheno - ' ' ofE . (4.10), thatis, thehmi
db 1 i (;

eo-
is obtaine y resan s

and y 0
tions which supply a

h l tivistic externagives, of couriv, se t crea

l
Eq. (2.20): —1

M .i,"(p' p) = i A (x)e'o * ——~d4x. (4.13)

tor in the eikonal ap-for the propagator inOur expression or

ex
' ' so that altogethere av ex ression for V, soKe have a similar exp

Pl
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proximation is, using (4.10),

&.--'(P', P) =(2 )'A (P)&(p —P')

(eix —I )e'&*+"'*'dp dp' A (x)e"*~ ~d4x.ix)
(4.14)

Let us consider first the on-mass-shell case: p'= p"
=m, '. The propagator approximation (3.6) followed

by use of the identity (2.14) then gives J—+ J"",where

Jeik=(jan/~i)L( 2p .ki+ jg)
—i

x( 2—P. k,+is) '— (—2P. k„+is) 'j
X[(—2p.' ki+ie) '(—2p. .k~+«) '. .

( 2—P,' k„.+ie) '5 .(4.17)
In the limit where s and s' become infinite (extreme

off-shell behavior), the phase X tends to X(x; 0,0) = 0, so
that the second term of the right-hand side of (4.14)
tends to zero like (sz') '. The propagator then tends
to its free limit, as one would expect.

Correspondingly,

r2n+1(pa gapa) ~ r2n+1 (pa ypc) I

where

I' -~i'*'= (el~ )hi&(p' P-)3". (4.18)

B. Radiative Corrections to the Vertex Function

5e now use the techniques of Sec. III to sum, in
closed form, a certain class of diagrams contributing to
the amplitude I'(p', p) for emission of a virtual meson by
particle a or b, in the framework of our propagator
approximation.

Thus, let D denote a vertex diagram of order 2n+1
with t]he property that if one follows the world line of
the particle, there are n successive emissions of mesons,
followed by the emission of the "vertex" meson,
followed by the absorption of the n mesons. (See Fig. 3.)
I.et I'i„~i(p,',p,) denote the sum of the contributions
I'2~~i (D) from the diagrams with the prescribed
topoj. ogy. Then

T -- 'P-', P.) =a( ig)'"—
d4kx d4k.

x ". QZ. (k)XJ, (4,15)
(2m) 4 (2ir) 4 '=i

J=—Q Ap (p —ki')Ap (p —ki' —ki')
gg t

3p'(p —ki' —ki' —. —k„')

XQ &» (P' —ki")Dp (P' —ki"—kg") . .

Here E(p, ',p,) is just an abbreviation for U(0; p„—p, ')
LEq. (3.15)j, i.e.,

&(P',P ) =8
d4k

Zp(k)( 2p, '—k+ie) '
(2~)4

X(—2P. k+i.e) '. (4.19)
Thus F,"~, defined by

I'.""(p.',p.)—= 2 I'i-+i"'(P' P.)
n=o

is given by

p eik(p I
p ) ~eiK(p paN)

(4.20)

(4.21)

iI = i(p.' —ns, '), —iI.'= —i(p,"—m, '), (4.23)

To obtain an extension of this result to the case where

a is not on the mass shell, we use again the generaliza-
tion of (2.14), since there is then a constant additive
term p '—m ' or p "—m ' in the denominators in J.
Thus, on making the propagator approximation in

Eq. (4.16), we get J—+ J"",where now

Jei~= gL(p„iI. ; ki, k~, ,k„)
XL(p.',g.'; ki, k2, ,k ), (4.22)

with

and
~"(p'—ki"—k2"—"—k."), (4.16) 1

L(p, ~; k„k„",k.) =p
iii +'g &i +alii + iI»d (ki', . ,k ')»d (ki", ,k ") are permutations ir'

and ~~" of (k„.,k„).

(4.24)
ai+ii~+ +& '+n

FH:. 3. Typical diagram contribut-
ing to I',.:C,

'p ',p,}—a part of the vertex
function. The mesons emitted before
the "vertex" meson are required to be
absorbed after it, along the world line
of the particle.

&a

g
I'~-+i""(p-',p.) =-

et
dp'

00

dp e-i'~'e —»——
gp gp/

xenix(P. ',p. ; p'p)]", (4.25)

with a;= i(2p k;)+c and (ai', ,a„') a permutation vr

of (ai, . ,a„). Using, for variety, Eq. (3) of the Ap-
pendix to rewrite L, we get, on substitution into (4.15),
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where

&(p', p; ~',~) =- g'
d4k

-~p(k)
(2') 4

giP'( —~p'& —ie) ] ei&8(—& p &+ie)

X
2p—k+ie

Using (4.15) in Eq. (4.20), we now find that

(4.26)

I" ""(P',P-) =c &i'' &fP

Xe e'&'e e& —e'~ &&~' &~'e'e'. (4.27)
BP' BP

Since E(p', p; ~, eo) =E(p', p), it is clear that (4.27)
reduces to (4.21) on the mass shell, ti'=if=0.

It must be noted that we have been rather cavalier
in the above discussion —the integrals (4.19) and (4.26)
are actually logarithmically divergent. This could be
remedied, for example, by modifying the denominators
as described in Ref. 14. The combinatorics remain
the same.

C. Class of Radiative Corrections to
Compton Scattering Amplitude

Another application of our techniques consists in
summing a series of radiative corrections to the Comp-
ton scattering amplitude, represented in Figs. 4(a) and
4(b). If we call p and p' the initial and final electron
momenta, q and q' the photon momenta, then P =p+ q=p'+q', Q= p —q', P'= s, Q'=u, (p —p')'= f. The
amplitude corresponding to the exchange of n virtual
photons and represented in Fig. 4(a) can be written

we can get rid of the y„matrices as follows: Oe first
write the first factor of the integra, nd, in Eq. (4.28),

(p' —kt —m)
YPl V Pl

ki' —2p'. k i+is

(p' —m)
(4.29)—2p'. kt+se

where the approximation consists in neglecting ky ln the
numerator and k~' in the denominator. If we apply the
first factor of Eq. (4.28) on q(p') on the left and make
use of the Dirac equation, the complete factor becomes
simply 2p„,'( —2p' k,+is) '. We then use the same
method for the second factor, and so on. Similarly, we
replace the first factor on the right, in the last line
of Eq. (4.28), by 2p„,.(—2p ki'+is) ', etc. Correspond-
ingly, we define

(b)

FIG. 4. Typical diagrams included in the study of radiative
corrections to Compton scattering. In type (a), the virtual pho-
tons emitted before the absorption of the initial photon are re-
quired to be absorbed after the emission of the Gnal photon. Type
(b) is obtained from (a) by crossing.

M &'=
%Pl

p' —ki' —m

2

in) 2ps2 2pps
0 I ~

47r I perm —2p'k, —2p' (ki+k '

2

Xy~2 ~ 0 ~ t}(
p' —kt —ks —m p' —Zk, —m

XMo"(P—&k,)y„„.—
p —Zk —m

3fs&~'(P —Zk;)—2p' (ki+ +k,) —2p ki'

2psa d4ki

—2p (ki'+ +k.') ~ k ' —X'
(4.30)

The same technique which has been used previously
enables us to write then that

p —pr' —m

In Eq. (4.28), the polarizations p, '. p„' and the mo-
menta k&' ~ k„' are an arbitrary permutation of
p& . p„and k& ~ k, respectively. We have introduced
a small mass ) for the photon. 3Eo& ~(P) is the lowest-
order Compton scattering amplitude corresponding to
Fig. 4(a) without radiative corrections. The amplitude
corresponding to Fig. 4(b) can be obtained from Eq.
(4.28) by replacing 3Ii&'&(P —Zk;) with 3Is&'&(Q —Zk;).
Since M„( & is to be calculated between Dirac spinors,

where

U(x) =
4m'

4P P' d4k
X (4.32)

( 2p k+ie)( 2p' —k+ie) k' —iX-'—

1
3f,.;i,&'=— cVs&'(x)e'~ "LU(x) j"d4x (4.31)

et



186 EIKONAL APPROXIMATION IN QUANTUM FIELD THEORY 1667

and

Mo&'&(x) = Mo& &(P)e ' '* . (4.33)
(2ir) 4

U(x) =
8''

e
—iI&; x

d4k

In order to preserve gauge invariance, it is necessary
to replace U(x) by U(x) defined as

A. Summary and Commentary

1. Potential Scattering

We have seen, in Sec. II, that the simple approxima-
tion (2.10), when applied to a suitably symmetrized
form of f„, the nth-order term in the Born expansion
of f, permits its evaluation in closed form; the sum over
n then leads to the eikonal-type formula (2.20), with
the eikonal function X„,given by (2.21). The integral
for Xp,& may be written in the form

(
2pp 2pp

X —— . (4.34)—2p k+ie —2p' k+ie
X~„(x)= d$ VLx+s($)), (5.1)

This amounts to including an appropriate set of radia-
tive corrections where the virtual photons are emitted
and absorbed by the "same" electron. The sum over n
of the modified M„,.„~' ' is then

M &,
&~&= Mo& '(x)e &*&e'""d'x. (4.35)

Here again, in the spirit of the discussion of Sec. II C,
we are interested in the behavior of U(x) when x ~ 0.
It is readily found that when x p= x p'= 0 and
x'~ 0 we have

where

U(*)=—-', ~(t) lnPa~x2~),

n t ' (1+s')ds
v(t) =-

, 4m' —t(1—z')

(4.36)

(4.37)

V. DISCUSSION

In Sec. VA, we summarize and comment on the
results of the preceding sections. In Sec. UB, we con-
clude with remarks on possible generalizations and lines
for further work.

D. R.. lennie, S. C. I"rautschi, and H. Suura, Ann, Phys.
(N. Y.) 13, 3791 (1961)."M. Levy, Phys. Rev. Letters 9, 235 (1962)."H. Ching and T. T. Wu, Phys. Rey. Letters 22, 666 (1969).

is precisely the function which is connected with the
positronium spectrum. " Putting P(t)= 1+y(t) =t-—
=n —1 reproduces the major part of the positronium
spectrum. This is not surprising, since the diagrams of
Figs. 4(a) and 4(b) enter importantly, in the crossed
channel, in any description of the annihilation into two
photons of a bound electron-positron system.

If only (4.36) is used in (4.35), the corresponding con-
tribution to 350" is proportional to st"". However,
even if a Regge-like behavior were found to occur in the
region 0&t&4m', this would not, it should be noted,
mean that the amplitude which we have calculated is
the dominant one in the physical region. "

f(p', I&) =
2'

dx e"*V(x)e'x~". (5 2)

The same result would have been obtained in our

approach if, instead of m, eraging over the n+1 alterna-
tive forms of f„+, LEq. (2.3)), we had simply summed

over them, i.e., if we had not divided by n+1 in Eq.
(2.11).The basis of Schiff's arguments leading to (5.2)
is a physical picture in which the large-angle scattering
of order n+1 takes place primarily by a single scatter-
ing through a large angle, accompanied by n scatterings
through small angles.

It would seem to be a worthwhile task to carry out
some numerical calculations for, e.g., Yukawa poten-
tials. This would enable us to make a comparison of the
relative and absolute accuracy of all these eikonal-type
approximations, at least in simple cases, and to delineate
the regions of validity of (1.3).

Z. Relativistic Eikona/ Approximation

In Sec. III, we found a natural extension to quantum
field theory of the results for potential scattering. Use
of the propagator approximation (3.6), analogous to
(2.10), leads to Eq. (3.10) for M""(s,t), as an approxima-

See Reg 2, p 345

where s($) =pe( $)$+—p'8($) $ Thu. s, Xi,.&(x) is ob-
tained by integrating along a path consisting of two
half-lines, one from inhnity to x, in the direction of the
initial momentum y, the other from x to infinity, in the
direction of the final momentum p'. Equation (5.1)
may be compared with a time-reversal-invariant
modi6cation of (1.2) suggested by Glauber, i2 obtained

by replacing p by K= (I&+I&')/~ y+y'~. This is equiva-
lent to replacing s($) by E$ in (5.1), i.e., to integrating
along the straight line through x, in the average direc-
tion X. It would seem that the form (5.1) is closer to
what one would expect on the basis of a wave-packet
picture of the scattering process. Of course, for very
small angles, the difference disappears.

The eikonal (5.1) also occurs in the work of Schiff, '
in his approximation to f for the case of large-angle

potential scattering, viz. ,
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tion to the sum of all contributions from spin-0 meson
exchanges between spin-0 particles u and b. The
quantity X(x) occurring in (3.20) is a relativistic gener-
alization of X„„(x),reducing to it in the static limit"
(m, or ms~~). A form of X(x), alternative to those
already given L(3.21), (3.13)g with perhaps greater
heuristic value, may be obtained as follows. We regard
the quantity gd(k; p&', p&), appearing in (3.21), as the
Fourier transform with respect to k of a transition
current (p&'

~ j(x) ~ p&), which we abbreviate as Js(x).
This current serves as the source of a field As(x)
= J'As (x—x')Js(x') d'x' with which the transition
current J,(x) interacts to produce the eikonal X, via

&(x) = ~jd yJ'. (y')A, (x+y).

Thus, we see that X(0) is the space-time integral of an
effective interaction density J,(y)As(y) and hence may
be regarded as an "action, "or as a relevant piece of the
action, defined as the space-time integral of the
Lagrangian density. Yet another point of view, more
synunetric between a and fi, is to regard X(x) as a
6eld, satisfying

where the source current J,s(x) is defined bv

We should note that the crossing symmetry ex-
hibited by X and 3f"" is simply a consequence of the
fact that the crossing operation, say, for 6, is equivalent
to reversing the order of absorption of mesons along
the world line of b, and that all permutations of these
orders have been kept. It is amusing to note that our
approximation would not have led to a simple result if
we had con6ned ourselves to ladder-type diagrams,
since then the identity (2.14), which leads to a factorized
integrand, does not come into play.

In Sec. III C, the particle-antiparticle amplitude M„-
was studied and an eikonal approximation

"It may strike the reader as curious that although x~,& was
de6ned within the framework of potential scattering using non-
relativistic kinematics throughout, nevertheless the equality and
proportionality, respectively, of x with xp,& and of M"" with
fp,g"" in the static limit arose without any nonrelativistic approxi-
mation, such as E&=(p'+m')»'=m, being made for particle a.
The explanation for this lies in the simple connection between
the solutions of the external-Geld Klein-Gordon equation,
pCI+ms+2raV(x)gf(x) =0, and the corresponding Schrodinger
equation, P—is& —(W'/2m)+ V(x)gg(x) =0, in the case where
U(x) -+ V(x), a time-independent potential. For then, to each
stationary-state solution g„(x)=P&(x) exp( —ip't/2m) of the latter
equation there corresponds an exact solution P„(x)=iI &(x)
Xexp( —iE~t) of the former equation. An equivalent way to
look at this is to note that the Green's operators (Q+m') ' and
{—2im8g —&') ' characteristic of the two cases become identical
if the only time dependence is that which enters from the corre-
sponding free-particle wave functions.

=cVi+Ms was defined t Eqs. (3.34)—(3.36)7 with ~i
and M& arising, respectively, from the exchange-type
and annihilation-type diagrams, shown in Figs. 2 and 3.

Some contact with Regge theory was made by show-

ing that, with x P;= 0, the eikonal X, has a logarithmic

singularity at x'= 0, with strength equal to a(t)+n(N);
here cr(f), defined by (3.4), is such that n(t) = —1+rr(t)
coincides with the trajectory found from the ladder-

diagram contributions.

3. Extensions

Further insight into the relation of our eikonal ap-
proximation with Regge theory was obtained in Sec. IV,
where it was shown that a certain class of radiative
corrections to the lowest-order Compton amplitude
when treated in the eikonal approximation leads to an

eikonal with a logarithmic singularity of strength

1+P(t). Here P(t) is just the function, introduced

previously by a less direct approach, "which reproduces
the spectrum of positronium on setting p(f) =f=n —1.

In addition, a generalization of the algebraic identity
(2.14) to the integral representation derived in the

Appendix, which takes into account an additive con-

stant in the denominator, was shown to permit an ex-

tension of the eikonal approximation to a variety of

processes in which one or more particles are off the
mass shell. As an example, such an approximation was

derived for the Green's function E~ for a particle
moving in an external time-dependent scalar field A(x)

t Eq. (4.14)j and, en passant, for the generalized scatter-

ing amplitude 3II(p', p) describing the scattering in such

a field (Eq. (4.13)7. This latter formula generalizes

the corresponding formula (2.20) for nonrelativistic

scattering in a time-iridependent potential V(x). It
should be noted that the generalization to relativistic
kinematics is trivial if A (x) is time-independent because

of the simple connection between the Schrodinger and
Klein-Gordon equations for that case." As another

example, an eikonal approximation F,""was derived
for I', (p', p), the contributions of an infinite class of

diagrams, typified by Fig. 3, to the vertex function
I'(p', p), in both the on-shell and off-shell cases t Eqs.
(4.21) and (4.22)j.

B. Concluding Remarks

Some generalization of the results obtained in this

paper can be had very easily. To include mesonic ex-

changes with different masses one simply replaces
gsA p(x) by Zg, sd p(x; p, ,) in the definition of X and 3f"".
Radiative corrections to the meson propagators can ob-

viously be included by replacing i),&(x) by the full

propagator i) s'(x). Vertex corrections can be included

without any more labor, only to the extent that
I' (p;,p; i) the proper vertex for emission of a meson
of momentum k at the ith vertex can be approximated

by a function of p and k only. Generalizations to in-
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which is the result used in Sec. IV. Equation (2) may be
recast, on integration by parts, into the form F.(o) =II

i=1

~
—t~' P=~ 1

Q~ p=o Q]82' ' ' g&
(A4)

F.(x) =
n ] —g

—Pat

dp e e*—-II
BP'=i a;

(A3)

From Eq. (3) we have immediately, as a simple check,

a result used in Secs. II and III. Using mathematical
induction, it is easy to provide a purely algebraic proof
of (4). We leave this task to the interested reader.
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An jnvestjgatjon is made of theories which satisfy the duality principle using the Veneziano amplitude
as a Born term. In constructing the theory, it is found necessary to average over different ways of assigning
the loop momenta to the points of the duality diagram. The Regge-pole terms in the asymptotic behavior
are identifie, and transcendental equations which express the full renormalization of the leading trajectory
are recorded. (It is necessary to assume that the integrals can be so defined that this asymptotic behavior,
found in the limit Res ~ —~, continues to be the dominant behavior as Res —+ +~.) The amplitude
js shown to have the Landau-Cutkosky singularity structure corresponding to poles lying on the renor-
maljzed leading trajectory. In particular, if low-lying particles on this trajectory are the only stable particles
jn the theory, the real singularity structure required by unitarity is correctly obtained. It is then possible
that the failure in a 6njte theory of exact factorization for all daughters would not spoil the theory.

I. INTRODUCTION

ECENTLY Kikkawa, Sakita, and Virasoro (KSV)'
have proposed a way of constructing a new form

of perturbation theory, consistent with duality, in
which the Veneziano amplitude' plays the role of a
Born term. Such a series appears likely to be formally
unitary and to correct the most glaring deficiency of the
Veneziano model itself. However, KSV in a note added
in proof, and also Bardakci, Halpern, and Shapiro
(BHS)' have pointed out that in order to obtain full
factorization of even the single-loop KSV expression
in a way which is consistent with Veneziano-type
functions associated with tree diagrams, ' the integrand
in the KSV integral must contain an infinite product
which leads to an exponential divergence.

This disastrous conclusion is enforced by the require-
ment that factorization, and consequent unitarity-like

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t On leave of absence from the Department of Applied Mathe-
matics and Theoretical Physics, University of Cambridge,
England.
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discontinuity formulas around normal threshold sin-
gularities, is required for all poles contained in the
Veneziano amplitude whatever their level in the
daughter sequence. While this would be an agreeable
property if it were obtainable, it is not clear that its
failure robs the KSV approach of all its utility. Two
lines of thought suggest that this is not necessarily
the case. One is that the daughter properties of a
Veneziano amplitude can be modified by the addition
of nonleading terms. Bardakci and Mandelstam' have
conjectured that these nonleading additions cannot be
used in a way which leads to a simpler, and so probably
less divergent, daughter sequence, but a proof has not,
at present, been given that this is so. Secondly, the
effect of unitarizing the theory will be to destroy the
narrow-resonance approximation of the Veneziano
amplitude. Resonance poles should move onto un-
physical sheets, leaving only the stable-particle poles
renormalized to locations which are still real. For
simplicity, we shall always consider the model in which
the only stable particle is the spin-0 member of the
leading trajectory. If that leading trajectory factorizes
properly, then the real normal thresholds corresponding
to stable particles will have Cutkosky discontinuity
formulas which correspond to physical unitarity. This
will not be true for singularities involving daughter-
trajectory particles, if the latter do not factorize

' K. Bardakci and S. Mandelstam, Phys. Rev. 184, 1640 (1969).


