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In the region near ¢=0, we solve the O(4) projected NIV Bethe-Salpeter equation for the pion’s Regge
trajectory. We find that there are two Regge trajectories with the same quantum numbers as the pion
which lie above J=—1. At =0, the highest-lying trajectory has Toller quantum number M =1. The
other Regge trajectory lies somewhat further below and has the Toller quantum number M =0. In addition
to the intercepts, we also calculate the slopes of these trajectories.

I. INTRODUCTION

N the region near =0, there are currently two ap-
proaches followed in the fitting of experimental data
in the reactions yp— wtn, np— pn, =N — pA, and
their corresponding finite-energy sum rules. One ap-
proach proposes pion conspiracy while the other em-
ploys Regge cuts as well as poles. In this work we adopt
the former approach and hence implicitly assume that
the effects of the cuts are small.

With this assumption that the cuts can be neglected,
experimental and theoretical evidence seems to indicate
that there are two nearby Regge trajectories with the
same quantum numbers as the pion. The forward peaks
in pion photoproduction® and #p charge exchange? have
been interpreted as the exchange of a “pion” Regge tra-
jectory with Toller quantum number M =1. The for-
ward peaks in the reactions 7N — pA and =N — f°A
are explained by the exchange of a pion Regge trajec-
tory with M =0, as the polarizations of the p and f°
have been measured to be almost totally longitudinal.?+4
The result of finite-energy sum rule calculations have the
pion Regge trajectory being M =1 near ¢=0.5 However,
as has been noted many times previously, the physical
pion must lie on an M =0 trajectory.®’ Thus, the ex-
perimental and theoretical evidence points to the fact
that the exact nature of the pion’s Regge trajectory
near {=0 is quite complicated.

In a previous publication, we have developed the
formalism necessary to study the nature of the pion’s
Regge trajectory near t=0 in the context of the NN
Bethe-Salpeter (BS) equation.® In this paper we wish
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to report the results of the numerical solution of the
NN BS equation in the ladder approximation. We fol-
low the work of Scotti and Wong,? using the exchanges
of the o, m, 7, p, w, and ¢ mesons as the forces which bind
the nucleon-antinucleon system.’® We find that there
are two Regge trajectories with the same quantum
numbers as the pion which lie above J=—1. At {=0
the highest-lying trajectory has the Toller quantum
number M = 1. The other trajectory which lies quite far
below the M =1 trajectory has M =0. The on-shell con-
tribution of the M =1 trajectory to the 7NN vertex
corresponds to that of the parent of Freedman and
Wang!! (FW) type III, while the contribution of the
M =0 trajectory corresponds to that of the first daugh-
ter of FW type I1. The M =0 trajectory which would
contribute to the parent of FW type I is not present.

With an M =1 pion trajectory lying highest at =0,
trajectory-mixing models have been postulated in order
to obtain a physical pion.”-*> The qualitative nature of
the trajectory mixing for the two trajectories which we
find to be present has previously been examined.”*
Since the M =0 trajectory lies far below J=0, it must
have a very large slope if it is to produce the physical
pion. We find that the coupling of the 4/ =0 trajectory
to the NV system alone is insufficient to give such a
large slope.

In Sec. IT, we discuss the NV BS equation and briefly
review its O(4) projection. In Sec. III, we perform the
O(4) projection of the meson exchanges kernels which
we use to bind the NV system. The numerical results
for the two Regge trajectories are given in Sec. IV.

II. THE NN BS EQUATION

At zero-momentum transfer the scattering amplitude
is invariant under transformations of the symmetry
group O(3,1), and hence is diagonal in the representa-
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tion functions of the group. As a result, Regge trajec-
tories at t=0 are classified by the additional quantum
numbers # and M, the Casimir operators of the sym-
metry group. Away from {=0, Regge trajectories are,
in general, mixtures of representations with different
n’s and M’s. However, if one adopts an off-shell ap-
proach and expands the off-shell scattering amplitude
in a power series in /, then for a Regge trajectory with
a given # and M at t=0, the admixing of other repre-
sentations away from {=0 follows a regular pattern.'®
To a given power of {, only a finite number of represen-
tations are mixed in. It is possible, in this way, to study
the nature of Regge trajectory away from ¢=0. Al-
though the mixing of representations is of a general
nature, it is necessary to adopt a model in order to
obtain quantitative results. One such model for study-
ing the nature of the pion’s Regge trajectory is the NV
BS equation.

We make use of the fact that the nucleon-nucleon
BS equation can be used to obtain the results for the
nucleon-antinucleon system if the signs of the odd-G-
parity meson exchanges are changed.®? We therefore
consider nucleon-nucleon scattering in the ¢ channel
with the T matrix defined by

MN[S|NNg) = 1—13(2m) 464 (1 + po’ — p1— 1)
X[M2/(EY Ey E1E) 2 TN | T ANe).  (2.1)

The off-shell amplitude 4/ is obtained from the 7" matrix
by removing the Dirac spinors

NN T @, p,k) [ M)
= da (Fk+p', M)t (3R — ', \)
XMa’ﬁ’aﬂ(?,;P;k)”a(%k+P; )‘l)uﬁ(%k_ﬁ> )‘2) ) (22)
where k= (1/£,0,0,0) is the c.m. momentum and p’ and

p are the final and initial relative four-momenta. The
amplitude M then satisfies the BS equation

Mg ap(p',p,k)
7
(2m)*
XSy (3k+q)Ss5 (3k—q) By v as(q,0,%) ,

where 45 is the nucleon propagator and —4B is the sum
of the off-shell contributions of the one-particle-
exchange diagrams. It is more convenient for the pro-
jection of the BS equation into O(4) partial waves to
work with the amplitude R defined by

Rarg ap(p',p,k)
=M apys(t,0,5)Sva(3k+)Sss(Gk—p) .
In order to obtain a Euclidean metric, we perform a

Wick rotation of the contour of integration in Eq. (2.3)
and make the definitions £°=1&*% p°=ip* etc. The four-

=Bag as(p,p,0)+ / diq Mg s(p'yq,k)

(2.3)
2.4)
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momenta are now Euclidean four-vectors and the inte-
gration is over four-dimensional Euclidean space. The
BS equation is

Reorgrys(ps0,8)S™ 123 R+0)Sos(3k— 1)
=—Bapgas(t',p,k)

(27)* fd4q Ragyo(t,0,R)Bywas(g,p,k), (2.5)
™

where B= —B.

We may now project the BS equation into O(4) partial
waves using the representation functions developed in
Ref. 8 (henceforth denoted LS). We let T represent the
set of O(4) quantum numbers, T= {nM ImZwr}. The
quantum numbers # and M are the Casimir quantum
numbers of the group O(4), J and m are the usual O(3)
angular momenta quantum numbers, 2 is the additional
spin index necessary to specify the state, and w and « are
indices which are related to the transformation of the
O(4) NN state under parity and particle interchange.
The projected BS equation is

RYT(P',P(Y" | ST (3kA-p) S~ 3k —p) | T)
= —'BT’T(PI)P:D

+

o), 00 R (PLONBTQPY, (2.0

where P/, P, and Q are the magnitudes of the four-
momenta p’, p, and ¢. The matrix elements of the in-
verse propagator (T"/|S-1S—1|T) are calculated by LS.
We continue the equation in the angular momentum
plane holding #'—J=%’ and n—J=X integer.® The
Regge trajectories correspond to the solutions of the
homogeneous equation. The BS equation giving the
projected equations for the =0 and M =1 pion tra-
jectories has already been given in LS. In order to solve
these equations, we must still project the one-particle-
exchange diagrams into O(4) partial waves.

III. O(4) PROJECTION OF NN BS KERNEL
A. ¢ Exchange

The kernel of the BS equation consists of the sum of
the diagrams corresponding to the exchanges of the
o, m, 1, p, w, and ¢ mesons. The O(4) kernels correspond-
ing to the exchanges of the , 3, p, w, and ¢ mesons can
be related to the O(4) kernels of scalar (o) exchange by
noting that the kernel for a meson exchange can be
written as

Sargrap(B'sDoum) X1/ L =)+ 1m?],

where f is the product of the numerator of the propa-
gator and the appropriate vertex functions. In project-
ing a kernel of this type, we insert a complete set of
states between f and the scalar propagator, calculate
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the projection of f, and then sum over the intermediate
states. The kernels for o exchange have been calculated
by LS, but for the sake of clarity and completeness we
include them here also.

The Lagrangian for a ¢ meson of mass u, is

Lo=4m) 2 d 0. (3.1
The off-shell contribution to the kernel B is
B,=4rg AIQI/[(p' —p)*+u.2]. (3.2)

The kernel is independent of ¢ and hence diagonal in the
O(4) representation functions. The O(4) projection of
the kernel is therefore of the form

(1| B, | Ty =4mgo28ns nd 11r 487+ 7 0mrm

XEZ'w’x'.wa(n'M)(P,’P;ﬂd)~ (3'3)

In the dependence upon the indices of the O(4) state, it
was found in LS that the kernels B are diagonal in «
and depend only on the product of " and w. As a result,
we make the definition

BE/O)'K’.ENK(n"M)(P/ypjl"’U)=6K'K~B2’E,§'K(H,M) (P,7P7/J'v))

t=w'w. (3.4)
The kernels for scalar exchange are then
By @0 =By 0 =Byy D
=Bu,+—("’~1): [1/(n+1)]Fn(Z> ,
Bioo,+~(”'0)= [1/(n+1)JeF.(2),
B, - O =[1/nn+1)(n+2) Y n2s+2(n+1)
X+ (@@ —1D'" ]} Fa(),
Em,__(n,o)zB‘m'__(n,O)
={—1/(n+Dnmr+2)]"} (3.5)
X[+ @m+1) (=1 ] (),
Bue 00 =Buu 1 =0 =[1/n(n+2)]
X[(n+1Dz+ (=12 ]F.(2),
By, V=—By,_,*0=[1/n(n+2)]
X[z+m+1)(z*—1)"*1Fa(z)
where
Fo(®)=(2r2/P'P)[z+ (22— 1)1 ]1  (3.6)
and

5= (P"*+ P24-p,2) /2P'P.

A number of these kernels possess a fixed pole at =0
which is independent of the mass of the exchanged par-
ticle. These poles correspond to § function and deriva-
tive of §-function terms in the potential. To remove
these fixed poles, we replace the scalar propagator by'*

VL@ =) +ul1-1/L@ —p)*+A]. (3.7)

14 By removing these fixed poles, the connection between our
treatment and the usual perturbation theory becomes unclear.
We regard the BS equation obtained by subtracting these fixed
poles as a model in which we are able to calculate Regge trajec-
tories. We would expect that the trajectories calculated in this
way to be independent of our model.
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This cutoff not only removes the fixed poles, but makes
the kernel better behaved for large P, P’. Since the
kernels for the meson exchanges m, 7, p, w, and ¢ are
expressed in terms of the kernels for scalar exchange,
the fixed poles associated with ¢ meson exchange will
arise in all the meson-exchange kernels. Proceeding as
in the case of ¢ exchange, we replace the scalar propaga-
tor term in these exchanges by

/L@ =) +un*]=1/L("—p)*+An?],

where u., and A,, are the mass and cutoff mass of the
exchanged meson. In order to introduce as few param-
eters as possible into the problem, we set An2=C pun?,
where C, is a same constant for all the exchanges. The
o-meson-exchange kernels are now the difference of
kernels Eq. (3.5) corresponding to Eq. (3.8).

(3.8)

B. = Exchange
The w-meson Lagrangian is
L= (4m) g ysm- oatb.
The off-shell kernel corresponding to the Lagrangian is
B.=4ng21 vys®vs XIQI/L(p' —p)?Hua’].  (3.10)

With the insertion of a complete set of states, the pro-
jection of the v5®v;s numerator is

(' vs®@ys| 1) = ' bvyrr.
Summing over the intermediate states, we obtain

<T/ IBW l T>= 47rgﬂ2(6)1_36)0)6n’n5M’M5J’16m’m6x’xK
XBE'Z.R("'M)(P/,P#M) )

(3.9)

(3.11)

(3.12)

where we have expressed =;-t, in terms of the isotopic
spin projection operators @ of the two-nucleon state.
In changing from the NN to the NN system, we must
change the sign of the pion-exchange contribution and,
since we wish to solve for the pion’s Regge trajectory,
we must take the /=1 part of the exchange Eq. (3.12).
The pion contribution to the kernel of the NN BS equa-
tion for the pion is

(T/IBW l T>= "‘47rg7r26n’n6M’MBJ’Jam’max'KK

XBys,p ™M (P Pouy). (3.13)

C. n Exchange
The Lagrangian corresponding to n-meson exchange
is
£,= (47")1/2g1/\z7590n‘l/' (3.14)
The contribution to B is
B,=4ng2ys®vs XIQI/L(p'—p)*+uy*]. (3.15)

The kernels are identical to those of pion exchange
except that their sign does not change in going from NV
to VN scattering and no isotopic spin factors are pres-
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Fi1c. 1. Chew-Frautschi plot showing the Regge trajectories
(solid lines) calculated from the simple two-trajectory-mixing
model. The dashed lines are the trajectories in the absence of
mixing.

ent. The projected kernel is
(| Bﬂl T)=47g,20und 31’ 8.7 7OmrmOur

XB'zfz‘g-K("'M)(P,,P,,u,,). (316)
D. o Exchange
The Lagrangian is given by
£,= iwllz(gm—,_gpz)i/')’ﬂ' Y _
—m2(g0s/2M) (gt Wm0, (3.17)

where g,, and g, are the vector and tensor coupling con-
stants, ¢ and ¢’ the nucleon momenta, and M the nu-
cleon mass. The vector charge coupling contribution to
the off-shell kernel is

Epc': _T(gpl'i_gm)z"l *v2
X [7v® Y+ (l/ﬂp2) (p’ _p) ® (pl _p)]

XIQI/L(p —p)*+u]. (3.18)
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To obtain the projection of the numerator, we use
<T, l 7»@’)’", T”>= 67,/1,,”5114! M BJ’J”am’m"sm’w”O)

X [46,480r04.850005r70+2(— 1) Z0_80—], (3.19)
and
(T,lp®ll T")=—Pbunrnsdpar 30 Omrmre

X 52‘,’2" 6w’w"5k'—x”

<TI'I®plT">: _"wlpan’n"aM/M"aJ'J" (320)

X St 8573718 gt 11—t
(| pRp | 1)=&’ P25prprr .

Summing over the intermediate states, the contribution
of p vector charge exchange to the /=1 NN equation is

<T’ | Epc] T) = _W(gp1+gp2)25n’n5M’ MO 70mrm
X{4w32'05zo5;+5x+5MoEoo,++("’0)(P’;P,#p)
+20(—1)*"28, Byisp ®(P' Pou,)
+(1/u,)[(@P?+w' P™?)Bys,t, ™M (P!, P u,)
—2P'Pwbe Byrs 4 ™M (P Pou)]y. (3.21)

Because of the presence of extra momentum factors
in the numerator of the kernel, an additional cutoff will
need to be introduced. These momentum factors arise
from the off-shell part of the spin-1 propagator which
vanishes on the mass shell. We note that these terms
vanish when P’=P.15 We cut off these kernels by a
multiplicative factor exp[ —Cy(P'—P)%].

The tensor magnetic coupling contribution to the
off-shell kernel is

B oy =(8p/2M )51 wo{ (k+p'+p) - (k—p'—p)
+(1/u kA2 +p)- (' —p) k—p'—1)- (' — ) 1}
XIQI/[(p'—p)+u,]. (3.22)

The projection of B,,, into the I=1 0(4) NN state is

(1| Bope| T) = = (gps/ 2M)?6 57 18w n{ [14-2P2+ 2P >+ s>+ (1/ %) (P? = P2 [ b2 1 B3, 620 (P!, Pus)

At/ )[P2Bsrs, o™ M (P P ous){n' M'Z | cos®y | nME)+ P’ M'Z! | cos®y |nMZ")Bsrs o M) (P!, Poyu,)
L2P'P S (WM |cosp | MVE) B (PP ) 0 ME | cos | nMEYTY . (3.23)

n't M’

The matrix elements of cosy have been calculated in Ref. 16. The explicit evaluation of the kernels in which these
cosy matrix elements are present is carried out in Ref. 17. As in the projection of the p vector charge coupling ker-
nel, there are terms in Eq. (3.23) which arise from the off-shell part of the spin-1 propagator. We cut off these
terms with the factor exp[ —Cy (P’ —P)%]. Because of the momentum factors introduced by the magnetic coupling,
we associate with each magnetic coupling vertex the factor exp[ —C (P’ P)>].

The mixed charge-magnetic coupling of p exchange gives rise to the kernel

Bgoyr= —im(goy+802) (80a/2M )71+ no{ (R—p— P ) QI+I® (k+p+p")
+(/u Ak (p—p N (p—0)QI+IQ (p—1p"))
+(P2=PIR@D—p)—(p—p)®D I XISI/[(p'—p)*+u,t].

15 The mass shell corresponds to P'=P—iM (1—i/4M?)1/2,
16 H. M. Lipinski and D. R. Snider, Phys. Rev. 179, 1315 (1969).
17 H. M. Lipinski, thesis, University of California, San Diego (unpublished).

(3.24)




186

The projection of this kernel for 7=1 is
(' !ch'le 1) = —im (8ot 8pa) (€oa/ 2M )5 78 m
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X {28 n0aa 20— 80P (L+(1/1,2) (PP = P")) Bz s ™30 (P, Pyuz)
80 P'(1=(1/1,") (P2=P")) Bz, 5" (P!, Poup) J=i(y/) 2 (T [ I®v*+v*® I | 1) B 'Y (P!, P,p,)
TII

+[Zi(\/i)/:“'ﬁz][5w+6x’—x(P2-BZ’E,l‘x' (n,'MI)(PIrPyMP) <n,M/2 ’COS¢ l”M2>
—P'P(W M'Z' | cosyy | nMZ")Bys g ™I (P Pt )) 484 0 rr (P20’ M'Z! | costy | nMZ! ) By 3,5 ™ ¥ (P, P, )
—P'PByisp ™ M) (P, Pu,) (' M'Z | cosy | nMZ))}.  (3.25)

We use the momentum cutoffs introduced previously to
cut off the appropriate kernels.

E. o and ¢ Exchange

The Lagrangian for w and ¢ exchange is identical to
that for p exchange except that =-¢ is replaced by e.
We neglect the magnetic coupling because of the small
isoscalar anomalous magnetic moment. The kernels are
then identical to those of p vector charge exchange ex-
cept that their sign must be changed as w and ¢ have
odd G parity.

IV. NUMERICAL RESULTS

For the one-meson-exchange kernels we use, in addi-
tion to the known meson masses and the pion-nucleon
coupling constant g,2= 14, the meson masses and cou-
pling constants determined from the fitting of nucleon-
nucleon and nucleon-antinucleon scattering data.’
These values are

pe=437 MeV, p,=591 MeV, g,2=2.26,
g.2=3.05, g,2=1.27, go2=2.T7, (4.1)
g2="T4, g2=114.

The exact solution of the BS equation is still dependent
on the three cutoffs introduced in Sec. III. With these
cutoffs, the BS equation is a Fredholm integral equation
with the Regge poles corresponding to the zeros of the
Fredholm determinant. The particular values of the
cutoff parameters for which we present numerical re-
sults are
Cp=9, Cy= 1, CM:0.0l; (42)
although for reasonable variation of these parameters,
the nature of the solution is qualitatively unchanged.
At t=0, the BS equation decouples as a result of the
0(4) symmetry and the various Regge poles are labeled
by the O(4) Casimir quantum numbers # and M. There
are three sets of amplitudes which have the quantum
numbers of the pion, one set with M/ =1 and the other
two with 4/=0.7-® Only two of these sets of amplitudes
possess a Regge pole. The M =1 set of amplitudes which
contributes to FW type-III parent has a Regge pole

which lies highest and with our choice of cutoffs is in
the vicinity of J=0. The other Regge pole occurs in the
M =0 set of amplitudes which contribute to FW type-1I
first daughter. This Regge pole lies far below the M =1
Regge pole at about J= —0.7.® The remaining M =0
set of amplitudes which would contribute to FW type-I
parent does not possess a Regge pole.

Away from =0, there isno longer any O(4) symmetry
and as a result the various sets of amplitudes are cou-
pled together. The Regge trajectories are then obtained
by the solution of the entire set of coupled equations,
and the Regge trajectories cannot be classified accord-
ing to a particular O(4) representation as was the case
at {=0. Because of the complexity inherent in solving
the entire set of coupled equations for the Regge tra-
jectories, it is instructive as a first approximation to
neglect the coupling between the M =0 and M =1 sets
of amplitudes. The trajectories then calculated can be
labeled by their M quantum number. The intercepts
and slopes of the two trajectories are

aM.=1(O)= '—0.02, OLM=0(O)= —0.69,
a1’ (0)=—0.2 BeV=2, au_(0)=1.2 BeV-2,

where we have adjusted our cutoff parameters so that
the highest trajectory lies at J= —0.02. In the small-
region where our perturbation solution is valid, the in-
clusion of the coupling between the M =0 and M=1
trajectories has little effect on the trajectories given by
Eq. (4.3) since the trajectories are so far apart. However,
if we extrapolate these trajectories, assuming they re-
main linear even for large ¢, then they will cross, with
the M =0 trajectory intersecting J=0at {=0.58 BeV2.
In order to investigate the nature of the trajectory mix-
ing, we adopt a simple two-trajectory algebraic model.
In the simplified model, the Regge trajectories are given
by the solutions of the equation
— (T2 )

J —ao—ont
et(
(Jorz J—B1—Bit

where ap= —0.02, 8o= —0.69, and ay= —0.2, 8;=1.2
are the intercepts and slopes of the M =1 and M =0

(4.3)

=0, (4.4)

18 The parent of this trajectory has the quantum numbers of
the Ax.
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trajectories. The nature of the coupling between the
two trajectories is inferred from the BS equation. The
solution of Eq. (4.4) is given in Fig. 1. The pion trajec-
tory which was M =1 at {=0 would then be =0 at
J=0," but with a mass which is far too large. We note
that the pion trajectory cannot have a ghost at J=0
for negative ¢ since it would be pure M =1 at that point.
Further extrapolation of the trajectory for larger
values?® of negative ¢ would not be justified as we have
determined the slope of the trajectories only at ¢=0.

19 The coupling of a trajectory which is the first daughter of type
II to the NN system is y,vs.

20 The pion trajectory calculated from the two-trajectory-
mixing model crosses J=1 at {=—2.4 BeV2
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We are led to conclude that the coupling of the pion
trajectory to the NN channel alone is not sufficient to
produce a physical pion with the correct mass. The in-
clusion of unequal-mass channels such as mp and w0
would tend to reduce the high mass for the pion because
of the resulting increase in binding.
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Jost-Function Description for the Bethe-Salpeter Equation™
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A new formulation of the Bethe-Salpeter eigenvalue problem is presented. An integral representation of
the eigenvalue condition is given which is a generalization of the familiar Jost function in nonrelativistic
theory. The formalism is worked out in detail for the scalar-exchange potential and is used to examine
Regge trajectories in the weak coupling limit. The detailed multiplicity of the lower trajectories is shown
to depend on the behavior of the potential at the origin in coordinate space, and hence to be very potential-

dependent.

I. INTRODUCTION

HE Bethe-Salpeter (BS) equation has become a
standard tool to use in developing an understand-

ing of the structure of therelativisticscattering problem.
Some specific problems that have been usefully dis-
cussed are the occurrence of bound states,! the behavior
of phase shifts? the properties of Regge poles,? and, in
particular, the relevance of daughter trajectories and
unequal-mass scattering.* A new interest has arisen in
multiperipheral models® and the general connection
between Feynman-diagram models and Regge models.®
In this paper a new and general approach will be
developed for discussing the solution of the BS equa-
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tion. It is a generalization of the Jost-function” approach
which has proven so useful in discussions of the Schré-
dinger equation.® Since the BS equation in coordinate
space involves a fourth-order differential operation, one
must deal with a two-by-two matrix and its determinant
rather than with the simple function used for second-
order differential equations. The present paper will be
restricted to a discussion at zero total energy, since the
ability to expand in four-dimensional spherical har-
monics will considerably simplify the discussion.

The standard BS equation looks as though it be-
comes singular if the potential behaves as badly as R~2
at the origin. However, it is well known that this is only
an apparent singular behavior, not a real one. This will
be discussed carefully below.

Our formalism will be applied to a perturbation calcu-
lation of the Regge trajectories at zero total energy. It
will be found that, in general, the multiplicity of the
lower trajectories increases quite rapidly as one goes
down in the angular momentum plane. This was
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Landshoff and Halliday,® and Caneschi.!* A simple ex-
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