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The pion lifetime is calculated assuming an unsubtracted dispersion relation for the axial-vector matrix
element and using pr and o7 intermediate states as well as the NV intermediate state. By imposing con-
vergence conditions, a series of sum rules is obtained, including the generalized Kawarabayashi-Suzuki-
Riazuddin-Fayyazuddin relation and modified Goldberger-Treiman relations. By assuming that the NN,
prm, and grm vertex functions are dominated by a three-pion resonance with 7=1 and JP=0-, it is found
possible to make the Goldberger‘Trelman relations agree with experiment if the resonance mass is Mz
~2 GeV. This resonance is tentatively identified with the NV resonance structure observed around 2 GeV.

1. INTRODUCTION

NE method of deriving the Goldberger-Treiman!
relation assumes an unsubtracted dispersion rela-
tion for the pion lifetime form factor,

1 [ dE ImF.(¢)
Fa(§)=- / —
gt

™

If, in the expression for ImF,(£), only the NN inter-
mediate states are kept, then the usual treatment of the
matrix elements that appear leads to a logarithmic
divergence in Eq. (1). Imposing the convergence con-
dition that the coefficient of the divergent term should
vanish yields the Goldberger-Treiman relation. Hy-
peron-antihyperon intermediate states have also been
considered in this connection.? Although the 3 inter-
mediate states have the correct quantum numbers to
contribute, they are customarily ignored, since there is
no known way to estimate their contribution.

If we substitute the experimental value g4 = —G4/Gv
=1.1840.02 observed by Sosnovsky et al.? into the
Goldberger-Treiman relation F,=g,sM/G, we find
F.=0.087M, which differs by 139, from the observed
value F,=0.10M obtained from measurements of the
wt lifetime. If we use the recently observed value
g4=1.232-0.01, based on a new measurement of
the neutron halflife 10.8020.16 min, reported by
Christensen ef al.* we find F,=0.090M, which differs
by 109, from the observed value. Thus, it is desirable to
find the source of this 109, correction to the Goldberger-
Treiman relation. Electromagnetic effects are only ex-
pected to provide about 19, of this correction.

In this paper, we shall assume the unsubtracted dis-
persion relation (1) for F,.(£) and impose convergence
conditions on this relation. Intermediate states other
than baryon-antibaryon states are also considered. In

1

* Supported in part by the National Research Council of
Canada.

1 M. L. Goldberger and S. B. Treiman, Phys. Rev. 110, 1178
(1958); 111, 354 (1958); for a review of techmques used to derive
this relatlon see J. Bernstem Elementary Particles and Currents
(W. H. Freeman and Co., San Francisco, 1968).

2 M. Ida, Phys. Rev. 132 401 (1963).

3A.N. Sosnovsky et al. Nucl Phys. 10, 395 (1959).

4 C. J. Christensen et al Phys. Letters 26B 11 (1967).
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particular, the pr and on intermediate states are studied
in detail.

In general, in this paper we have assumed that the
form factors of the matrix elements of §#44,(0) satisfy
dispersion relations which are af most once-subtracted.
In our first calculation, in Sec. 3, we assume that the
form factors of the matrix elements of 7,%(0) approach
nonzero constants at infinite momentum transfer, and
therefore satisfy dispersion relations which are once-
subtracted. In our second calculation in Sec. 4, we
assume these form factors satisfy unsubtracted dis-
persion relations.

The convergence conditions on the o, pr, and NN
contributions lead to an hierarchy of sum rules. These
sum rules take the form of an extended Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin (KSRF) relation® and
generalized Goldberger-Treiman relations. This pro-
gram is carried out with both once-subtracted and
unsubtracted dispersion relations for the NNw, prr,
and oww form factors. In the former case, only scattering
contributions to the absorptive part are considered and
the correction to the Goldberger-Treiman relation is
found to be in the wrong direction. In the latter case, it
is found that a 109, correction to the Goldberger-
Treiman relation can be obtained by saturating the
dispersion relations with a meson possessing the
quantum numbers of the pion and a mass M p~2 GeV.

2. PION FORM FACTOR AND p=, ox, AND NN
INTERMEDIATE STATES
The form factor is defined by
(0] 442(0) | wb(k)) = (2)*28 0k, P (k2) , )

where 4,°(0) is the hadronic axial-vector current. By a
reduction of the pion state, we obtain

Savky TP 4 (£2)
(2m)*

w*(0)[)(n] 4(0)|0)

+84(k+P2) (0] 7%0) [n)(n] 4,2(0)|0)].  (3)

® K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16, 255
(1966) ; Riazuddin and Fayyazuddin, Phys Rev. 147, 1071 (1966)
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The second term vanishes for physical pion decay, since
ko>0 and P> 0, and we get

Sask? IMFH(k2) =1(2r)4 Y 84(k—P.,)

X(0]94,(0) [n)(n] j*(0)]0). (4)

Let us define the form factors K(§) and v,..(£) in
terms of the matrix elements

w@ﬂ@(ﬁ))
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where £=(p+q¢)%. Then, the pr contribution to

ImF . (k?) is given by
3

Sark® ImF (k%) =5 (2m)* 20 2 | d*pd*q 3(p>—m,?)
A=1¢,d

X0(p)o(g>—m+*)0(q)6*(k—p—q)
ieacd

(2m)?

X

(zw)ﬁ‘)e”x' (btaera

<K(£)’an*(f)+K*(£)’Yp”(f)>
X )
2

qN@+@(

Q)

where we have used
Z €acdCbed = Zaub y
c,d

3

2 & (pt+9et (p+9)

(E—my2—mz2)2—4dm, m*

)

4m,?

and here k=p-+¢ and k2=¢£. Also,

/ d'pdq 5(p*—m,*)d(¢*—m*)6(p)0(q)8*(k—p—q)
—(Gm)E [ (E—m2—m ) —dmim T2 ()

We therefore obtain for ImF.(¢) the result

TP (8) = b (6 —m,2 =, 2)E— dom, o 202
XLEE) Y prr*(E) KX (E)Vor=(8)1/8m,2. (10)

Let us now assume that K(£) satisfies a once-sub-
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tracted dispersion relation
E—m,? dt’ ImK (&)
KQ=Kmt)+— [ 22
™ (&' —m?)(E =)

The A; intermediate state does not contribute to
ImK (£). Taking out the pion contribution gives

2 m.2

I{(E) =K(mp2) _2F1r'Yp1r1r . 4+2F1r'Yp1r1r'—1r‘
MaZ—m,? Mme2—E
E—m,? [ dE tang(¢') ReK(¢)
5, (12)
™ (& =m) (& —§)

where Fr=F.(m:2), ¥prr=Yprr(ms2), and ¢(§) is the
phase of K(§):

K(g)=|K(®)]e?®,
ImK () =tany(£) ReK(£).
The integral equation (11) may be solved® to yield

(13)

2 2
K(8) =(K(m,,2)A —2le'fm—"+2m%”m—”~>
M —m,? ma—E
E—mg? dEY(E)
XeXp< - ) (14)
™ (& —m2) (¢ —E—ie)

where A4 is the real constant

A=ex (_(mpz—mﬁ)/‘ V) ) (13)
P . & —m)(E—m,))

The discontinuity across the cut is approximated by
considering only the contribution from pr-pr scattering.
Only pr intermediate states in the 1P, state contribute
to ImK (). Then,

K (&)=¢*®K*(£)+(other contributions)  (16)
and
ImK () =¢ sindK*(¢)+ (other contributions)
=Re[¢® sindK*(¢)]. V)
Moreover,
i o
ImK(¢) B Re(e Sma)——=mn¢(g) , 8

ReK(§) 1 —Im(e® sind)

where 8 is the complex Py pr-pr scattering phase shift.

If a once-subtracted dispersion relation is assumed for
v,r(£), then since neither the pion nor the A4; inter-
mediate states contribute to Imy,.(£), only the Py pr
intermediate state contributes, and

'YP‘IW(E) = l'Ypmr(E) [ eV,

6 J. D. Jackson, in Dispersion Relations, edited by G. R. Screaton
(Oliver and Boyd, Edinburgh, 1961), p. 1.

(19)
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Thus, v,--(£) satisfies the equation

Yore(E) =YVprr

e (5—%2 f dEY(E) ) 0
> (F —m2)(F —t—ie))’

where ¥(§) is the same function introduced earlier in
connection with K(£). The range of the integrations is
('mp+m1r)2< £< @©.

The expression for the pr contribution to ImF.(§)
now becomes

ImF(8) =4m ' [(§—m,>—mz*)*

Yorx
—dm,2m 22 Q(E) |2
dom 22
2F Y pratin®  2F oY prattin?
x(K(m,,2)A - + > (21)
mﬂ_?_mp2 mw2_£
where
g_mrz’

QE) =eXp(

™

° dEY(E)
% / _ ) (22)
(mptmp)? (El—mwz)(gl'—g_ta

and 4 is given by Eq. (15).

An expression for the subtraction constant K(m,?)
can be obtained if pr intermediate-state contributions
are neglected in ImK (¢). This case has been discussed
by Das, Mathur, and Okubo.” In the notation of the
present paper, we have

(k)| Au2(0) | p°(p), €5)=Leanc/ (2m)* e, (p)LK1(€)gur

where now £=(p—k)% We deduce that K(¢) discussed
earlier has the form

K (§) =K1(§) — (m,* —m*) Ko(£) —EK4(£) .

We shall assume a once-subtracted dispersion relation
for Ki1(¢) and unsubtracted dispersion relations for
K1(%) and K3(¢). By reducing the pion state in Eq. (23),
using the hypothesis of partially conserved axial-vector
current (PCAC) and the current equal-time commuta-
tion relations, and taking the limit 2, — 0, we obtain

Kl(mp2) =G,/Fx, (25)

(24)

where
O] V*(0) [ ,¥(g)) =[01a/ (2m)**1G reu (g, N) -
Defining
(0[4,2(0)[ Ann*()) =[8va/ (2m)**]G 4,42 (g,N),  (27)
(r4q)] j=*(0)[p°(p)) =2i[ eaac/ (2)*Tep* gV prx(m) ,

(26)

7T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19,
1067 (1967).
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where n=(p—¢)? and
(P j=*(0)| A1°(p)) =[eaac/ (2m)* )G s(ep* €a)
+Gplea-q)(ep-p)], (28)
one finds in the pole-dominance approximation
ImKy(§) = —wd(£—ma*)G4Gs, (29a)
ImK,(£) =3w6(¢—ma2)G4Gp, (29h)
ImKa = —w&(g—mAz)GA[Gs—l—%(mf—m,,Q)Gp]/mﬁ
—2w8(E—ma2)F ¥ prre.  (29¢)
Combining these results, we get
G, GaGs
I<(£) = <_—- 21;17p7r1r+
Fr Ma2—m,?
Gst+3(m2—m2Gp\ 28 1 pratn®
—Gy > - , (30)
mA2 ﬁ“mnz
and
G, GaGs
K(mpz) =\ 2F7r'Yp7r1r+'—w—
. mA2_mP2
wA ZI?n'prrmwz
G On =m0 - G1)
ma® M2 — My

The NN intermediate-state case was originally con-
sidered by Goldberger and Treiman.! Here, for con-
venience only, a summary of their results in the notation
of this paper will be given. The form factors C(£) and
Kny-(§) are defined by

_ in
Ni(p)m, Nz(q)m( >>
out

=i<%nwm>m)ysw(q)m(C(E)) (32)
oo

<0 I 944 “a(o)

(2m)3
and

in\ _
<< >N1(1))m, Nalg)ne
out )
1

_ Kywn.*(%)
2o Us(@)ysVa(p)G . (33
net e Ua(@)vsVa(p) (Km(s)) (33)

where £=(p-+¢)? and the »’s are the nucleon isospinors
and 7¢ (¢=1,2,3) are the familiar Pauli matrices. G is
the pion-nucleon coupling constant G2?/4r=14.6 and
Knyn-(mz*)=1. The form factors a(¢) and &(¢) are
defined by

(Na(p)m| 4x*0) [ Na(g), m2)
=(2m)7* gmitrenUs(p) [V, Ysa(8)
+ (P —9uvsb(§)1U(g),
where £=(p—¢)2 Thus, C(§) in (32) becomes

C&)=a(&)+(&/2m)b(8) .

7=*(0)0)

(2m)®

(34)

(35)
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Using a once-subtracted dispersion relation for C(£)
with C(0)=A4(0)=g4, and including the = and NN
intermediate-state contribution to ImC(%), gives

F.G ¢
c® =<gAB+ >
M

m7r2_£

e <£—mw2 /* dg'e() ) 36)
P T ant (8 —m2)(§ —E—1ie) ’

where ¢(£) is the phase of C(£) and

Re(esing)  ImC(§)
1—Im(e? siny) " ReC 69 .

tang(§) = 37

Here 5 is the complex Sy NN-NN scattering phase
shift, and B is the real constant

ma® (° dE'e(¢)
B=exp<—— / ——~———>
T Janr E(E' —ma?)
In the once-subtracted dispersion relation for

KNNW(E);

Kyna(§)=1+

(38)

E—mwz'/ dE’ ImKNNﬂ-(EI) (39)

(F—m2)(E—8)

™

we use the same approximations as we used for C(£).
Only the NN intermediate state contributes to
ImKNN,,(E), and

femt o dEe(E)
KNNzr(E):eXP( . /;M"' (E'—m,rz)(%’,—f—if)>, (40)
where ¢(£) is the phase of Kyx-(£) and
tang(£) =Re(e™ sinn)/[1—Im(er sin)]  (41)
=ImK yn+(£)/ReKyn+(£).

With these approximations the NN contribution to
ImF.(§) is

1 /E—4M\ 12
ImF (%) =—‘< )
dr\ &

F.G
XMG(gABqL?I— )IKNN,@)P. (42)

T

Let us now consider the o7 intermediate state. The
form factors F1(£), Fa(£), and F(£) are defined by

(¥(g) | Ax*(0) | o(p))
=0ao[ i/ 2m)* JLF(8) (p+u+Fa((p—9)u] (43)

and

(r¥(g)| 0#4,%(0) | a(p)) =0ar(2m)7°F (8),  (44)
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where £=(p—q)% They are related by
F(§) = (mo*—ma*)F1(£)+EF2(E). (45)

Now assume a once-subtracted dispersion relation for
F1(¢) and an unsubtracted dispersion relation for Fa(£).
Then F(£) will satisfy a once-subtracted dispersion
relation

E—mg*
P =F () f

iy

d&' TmF (&)
(F—m2) (' —8)

The subtraction constant F(m,2) can be evaluated by
the standard current-algebra technique. We obtain

(46)

F(ms®)=G,/F~, 47
where
4 0]2(0)[(p))=Go/ (2m)** (48)
an
[Ao*(x), 944,°(0)18(x0) =164(x)0262(0) . (49)
In the ¢ model of Gell-Mann and Lévy,? one has
2(0) =m2F+$,(0), (50)

where ¢,(x) is the o-meson field operator. In this case

Go=mF. (51)
The expression for ImF(§) is given by
b ImF()) =3(2e)"* X 64(g-+-Po—p)
X{0]0#4,2(0) |#)n] §2(0) |a(p)). (52)

The only pole term comes from the pion intermediate
state. We obtain

G, MY enntln’ MY oraMn’
F(£) =F~+2F,, —2F

maz—M'er

E—my’
E—mi* dg’ ImF(¢')
o wm
™ (motmg)? (E,"ma2)(gl"'£)

where we have used
(D] 72(0)| 0 (p)) =28a5(2m) "oy gr(n) -

AISO, n= (P __l)Z and Yornw ='Ya1r1r(m7r2) .
We now have

(54)

Goe  2F oY orxMa® 2F Moy gnnthng?
F()=(—C+

T mvz _mrz

)A(g) ,

—_— 2
Emm (55)

where

§—ma® ” dExX(¥)
A =esp(. [ )
T Jngrmp? (E'—ma?)(§ —E—ie)
and
(ma*—ma?) dg' X&)
C =exp<———~—-—— / >
™ (motmg)? (Sl*mwz)(fl‘mvz)
(7
8 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960).
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Only or scattering contributions to the Omnes factors ImF.(§) =gz 1&2

are considered, and thus, XL(E— o2 —mr2) =412 | A() | MY onr
tanX (&) =Re(e™™ sinne)/[1—TIm(e™ singe)], (58)

Go  2FmoYoratha® 2F MY oratn’
(1
where 7 is the 1Sy complex o7 scattering phase shift. If X<F ¢ M2 Em—my? ) (60)
a once-subtracted dispersion relation with only or " ’ " "
scattering contributions is assumed for vy,..(£), then 3. SUM RULES
YVarr() =VarrA(£). (59) We can now combine the various contributions to

ImF,(¢) arising from the pr, o, and NN intermediate
The om contribution to ImF,.(£) is thus given by states. The total result is

Go  2F oMY onaa®  2F zMoYonaMia?
ImF(8) =37 £ 2 (E—mo—m.2) 2 —4me*m, > ]V 2mw«w<p_c+ >

m.,2—-'m,r2 E_mn'2

T

1 7E—4M2\1/2 F.G
><|A<s>|20<z—<m.,+mf)2>+4—( : ) MG<gAB+-M— )lKNNw@lzo(s—cxM?)
7/

‘ - Yorw
+__I:(£_m 2_m”2)2_4m 2m72]3/2
4 ’ ’ dm 22
‘ 2F1r'Yp7r7rm1r2 2I?-lr'}’pﬂ'/r”'hr2
><<K(mp2)A l )lﬂ(é) [20(¢—(m,+mx)?). (61)
mﬂz__mpz Mal—§

Let us assume that F,(§)~ —(K/£) as § — o, where K is a finite constant. Then Eq. (1) leads to the super-
convergence condition

f ImF.(§)dé=K. (62)

Substitution of (61) into (62) yields a relation containing three terms which are, respectively, quadratically,
linearly, and logarithmically divergent. By demanding that the coefficients of these divergent terms vanish, we
obtain three sum rules. We shall assume that the coefficients of £~! and £2 in the expansion of A(§) and Kyn«(£),
in decreasing powers of £, are either zero or very small and may be neglected. The expansions

(é - mvz - 7”1r2)2 - 47"%'2/""5‘”2
-

(E—m,,z—mﬁ)z—‘lmpsz 3/2 3(mp2_|_mr2)
( £2 ) =1 £ +Rl’(£) ’

1/2
) 14 RA(E), [(E—dm?)/E]2=1—2m/E+Ru(D),

are substituted into Eq. (61) to give

¢ 2FameYonaa?  2F e onathin’
4 TP () = (1/ 201+ Ro(DT[A(D) | 0 — <m.,+m,>2>mmn<fc+ )
Fr Mg — Myl E—m,?
F.G e =
/ —1 m 1 m
M\ & Eme—p
gy kg

P
4m,?

+[1—2—A£[—2+RN(5)]MG[gAB : )]IKNN,@) |20(¢—4M?)

21?7r')’p1r1r7%1r2

+|1

3(my2+my?
[— o )+Rp<z)]m<z>|20<z—<mp+mr>2> [K(mm—

M —m 2

+2F ( L m?, m )] (63)
Y, 1|'1r1n7r2 - I .
’ E B Bme—p)
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Setting the coefficients of £, £, and £7! equal to zero gives the sum rules

MG(gAB_FjG>IKNN7r(°°) 12—2

Go  2FmoY orats’ ' F.G
% IA(OO ) ! 2ml770‘v7r1r<'r_c+v—_“> —[2M3G<gAB -

x m02 _"me

K(m,)) A =2F o pratn®/ (Mo —m,?) =0, (64)
F‘ll' 1f7l'2 ‘Il'2
T (e 20, (65)
4m,*
L>+FWGZMWZ:IIKNNW(°O)]2
M
— () [2Q2F 27 prrma/4m,H) [me2 —3(my*+m.)]=0. (66)

The first sum rule Eq. (64) is the generalized KSRF
relation as can be seen by using the pole-dominance
approximation Eq. (30) for K(m,?) and adopting the
resonance approximation 4 =1. Thus, we have”%10

G, GGy
- _2F1r’var1r+
F,. MAZ—1,?

Ga
=~7[Gs—i—%(m,,2~m,,2)GD] , (67)

ma

where Gs and Gp are the S- and D-wave coupling con-
stants for the A; — pr decay process. If we neglect the
terms involving the A; meson and use the p dominance
of the electromagnetic form factor

GYprr=m,%, (68)
we obtain the KSRF relation
'Yp'lerF‘ﬂ'rzZ%”'Lp‘2 . (69)

The second sum rule Eq. (65) may be solved for F,

to yield
2 2-—1
F_n_ _ BgAM[l +}<’Yp1r7rm7r> ] ) (70)
G 2\ Gm,

By using the definition of B in Eq. (38) and the fact
that 0<¢(£) <, it can easily be shown that 1<B<1.01.
The correction to the Goldberger-Treiman relation
given by (70) is in the wrong direction. We can estimate
this correction by using the values m,=0.769 GeV,
Yprr=35.14 (corresponding to a p width I',=112 MeV).

We get

Q)
KNNw(w)

3(Ypramz/Gm,)?=0.0024. (71)

9D. A. Geffen, Phys. Rev. Letters 19, 770 (1967).
10S. G. Brown and G. B. West, Phys. Rev. Letters 19, 812
(1967); Phys. Rev. 168, 1605 (1967).

If |Q(e0)/Kyn+(®)|~1, then the correction is very
small. A ratio |Q(%)/Kyy-(%)| of 10 would increase
the error from 139, to 30%.

An inspection of the terms appearing in the third sum
rule, Eq. (66), shows that the NV terms dominate the
sum rule; therefore, another modified Goldberger-
Treiman relation is obtained.

The sum rule® obtained upon dispersing the matrix
element

<7rla“A#|‘7>

would be

Gq Zl"wmf}’crﬂ'rmw2

F. Mo — M2

=0

) (72)

with G, =m2F .. This result is not in disagreement with
our sum rules (64)-(66), but it cannot be deduced
directly from the pion lifetime calculation.

4. RESULTS BASED ON POLE DOMINANCE OF
KNNT(E)’ “{pn(f), AND ‘Y:nnr(z)

We shall now evaluate the matrix element of the axial
vector current assuming that the form factors Ky (%),
Yorx(£), and verr(§) are dominated by a three-pion
resonance possessing the quantum numbers of the pion.
In this section, pole-dominance approximations for all
form factors will be used. Let us consider!!

Kyw(8)=GM p*—M*)/(Mr*—t), (73)
Vore()) =Vore(M*—M %) /(M r*—$),  (74)

and
Yorr(E) =Vorr(Mr*—M:?)/(Mr*—8).  (75)

Here M g denotes the mass of the dominant three-pion
resonance. We then obtain for the NV, pr, and or

1t J, G. Cordes and J. W. Moffat, Phys. Rev. 164, 1787 (1967).
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contributions in ImF,(£),

= LIFETIME AND SUM RULES

1641

A T F o (8) =[(E—ma2—m22)2— Amo2m s 20 (E— (Mat-12)2) (MY omxtin?/262)

Zﬁ‘rmv'Yarw MR2 FWMR'YRwr 2F7rm17707r7r ]M-Ii.’2 F«MR'YRJW
ez )

M —Mr?:  Ma? Mme2—Mg?

E—m.?

"nﬂ"2 g'—MR2

Mpg*—m,? E—4M2\1/? F.G
X %( > MG(gA+
Mpg*—¢

MR2—m,,2
X

RZ—

M m1r2_E I

0(E—4M?)+[(E—m,>—m.")*—

3 LFRGNNR £ >
M Mg?—t

Am ) m? PPI2O(E— (mp+ma)2) (Y prn/4m2ER)

x(x0n)

where Fr, GNNR, YRpr, a0d v ror are defined analogously
to Fr, G, Yprr, and verr defined in Egs. (2), (33), (27),
and (54), respectively. This result is substituted into
the unsubtracted dispersion relation Eq. (1). The terms
containing the double pole (Mz2—£)~2 are evaluated
assuming that the resonance has a width I'z so that the
double pole becomes [(M g2—§)2+Tr2M > 2 In the
terms containing only the single pole (M z2—§)~L, the
principal value is taken, a procedure which corresponds
to the narrow-width approximation. The pr contribu-
tion contains a logarithmically divergent part. Applying
the convergence condition and using the pole-dominance
approximation for K(m,?%), we obtain the relation

Gp/Fw—ZFr'prw+FR7RpW=0~

In order that the KSRF relation be well satisfied, the
term Frygr,» must be small. If we assume that Fg(£)
is dominated by the pion pole, consistency conditions
yield the relations

FR'YRpr':aZFr'Yprr; FRGNNR= —OLF.,G,

and
MryrorFr=—02MsYorrFx,
where
a=gr:(m+*)/gr:(Mz?).
Also,

(017x2(0) | R*(g))=[3ar/ (27)*/*]gra(g?) -

Thus, in order to retain the KSRF relation, o must be
small. Since a is unknown, we assume that it is so small
that the terms containing it may be dropped. In the
remaining terms, we shall neglect the pion mass when-
ever numerically justified in order to simplify the cal-
culations. The remaining contributions for ¢=m,? are

21"7r’y;wr1r”'l‘7r2 FR‘YRP‘II'MR2 ZF‘W'prrmr2 lf‘R'yRmrMRZ\MRz—mwz
+ + , (76)
mi—m?  Mg—m?  ml—f  Mg—f ) Mg—¢
then of the form
.G 2F 1Y prn?tn’
47r2F,,=MG<gA >[1— 1,
M 4m,?
m.,'y”,rm,rz / Zmeu'err
+ 14 >Is
2(m,+mw)2\ Mo®— My’
MY onnMaln
—1, (77)
(met+mz)*
where
) E___4M2 1/2 MR2_m1r2
- o) (78)
am? ¢ EMp*—¥) ’

o0

[2 = / dfj
(mptmg)?

[(E=m, = m2)2—dm,2m 2 T2 (M a2 —m.?)

» (79)
& (Mp*—%)
13=(m,+m,,)2 / df
(mot+my)?
[(S —_ ma'2 _— m”2)2 —_ 4ma2m7,—2]1/2(M}22 _m”2)
, (80)
(E—m )M *—§)
and
I4=(m,,—l-m,r)4/ d¢
(mg+my) 2
[(E—me?—m,2)? —4mo2m 2 V(M g2 —ma?)
. (81)

(E—m2)* (M p*— )

Wherever necessary, the principal value of the integral
is implied.

The roots in (79)-(81) may be evaluated by
making the approximations (#, —m.)/(m,+m,)=~1and
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(me—mr)/(me+m,)~ 1. Performing the integrations in
(78)—(81), we get

Ii=2[ (M g?—m.?)/M g*] a arctan(1/a) —1]]

(Mg<2M), (82)
where
a=[(2M/M zy*—1]"
and
I =2[(M g*—m*)/M g*][3a In|(1+a)/(1—a)| —1]
(Mz>2M), (83)
where
a=[1—02M/Mg)*]2.
Also, we have
Iy=[ (M g*—m:2)/M %]
X[(1—2)%In|(1—3)/2]| —1(652—15z+11)], (84)
where
g=[(m,+mz)/Mr]*
and
Is=[ (M g*—m+*)/M g*]
XLG=y+—y) In|(y—=1)/y|], (85)
Ii= [(MRZ_m1r2)/MR2]
X[F(14+3y—6y9)+(y*—y*) In| (y—1)/9|], (86)

where

y=L0notmz)/ M.

AsMpr— «,wehavea— 1,z— 0, and y — 0. Thus
I1—>2InMpg, Is— 2InMg, I3— %, and I, — %. There-
fore, in the limit Mp— o the sum rule Eq. (77)
reduces to our earlier result Eq. (65).

We have performed a numerical calculation in order
to determine the value of M for which the modified
Goldberger-Treiman relation Eq. (77) can be satisfied
experimentally to give F,=0.10M. In Eq. (77), we
shall choose a o-meson mass m,=0.75 GeV and a
width I';=0.42 GeV.!? For the p meson we choose
m,p=0.769 GeV and I',=0.112 GeV. This latter width
is the latest value obtained by the Orsay group from the
p° — ete~ process.!® These input values correspond to
Yorr=—2.25 and v,,»=>5.14, where the choice of the
sign of the g7 coupling is in accordance with Eq. (72),
i.e., the result obtained from current algebra and
PCAC. For g4=1.18 the result of the calculation shows
that Eq. (77) gives F.=0.10M for M p=1.87 GeV or
M =2.0 GeV. The value of M g required to make Eq.
(77) satisfied is insensitive to the or contribution for
either sign of v, rx.

Resonance structure in the NV S-wave channel with
I=1 has been observed around 2 GeV. In particular a

12R. C. Johnson, University of Toronto Report, 1968, p. 12
(unpublished); S. Marateck, V. Hagopian, W. Selove, L. Jacobs,
F. Oppenheimer, W. Schultz, L. J. Gutay, D. H. Miller, J. D.
Prentice, E. C. West, and M. D. Walker, Phys. Rev. Letters 21,
1613 (1968); W. D. Walker, J. Carrol, A. Garfinkel, and B. ¥*
Oh, Phys. Rev. Letters 18, 630 (1967).

138, C. C. Ting, Proceedings of the Fourteenth International

Conference on High-Energy Physics, Vienna, 1968, edited by ]J.
Prentki and J. Steinberger (CERN, Geneva, 1968), p. 43.

R. A. COLEMAN AND ]J.

W. MOFFAT 186
resonance designated by 7°(2195)'4 has been seen which
could be tentatively identified with our resonance.

5. CONCLUSIONS

In both calculations, it turns out that in order to
obtain finite results, a convergence condition must be
imposed which has the effect of requiring that K(£) be
unsubtracted. From this point, our derivation of the
KSRF relation is essentially the same as that in Ref. 7.
The two derivations of the KSRF relation differ in that
ours is obtained as a necessary convergence condition,
while in Ref. 7 it follows from PCAC.

We note that in the first calculation in Sec. 3, the
imposition of a second convergence condition leads to
the result that C(¢) must be once-subtracted for con-
sistency because of the admixture of the pr contribution.
In the second calculation, in Sec. 4, we do not find it
necessary to impose further restrictions on C(£).

If one insists on using once-subtracted dispersion
relations for the NN, prr, and orm vertex functions,
the results of Sec. 3 indicate that it is not possible to
obtain from the pion lifetime calculation a set of results
consistent with experiment. The generalized KSRF
relation can be derived, but the modified Goldberger-
Treiman relation obtained has corrections which are in
the wrong direction. Although these corrections may be
very small, they could be quite large.

However, the results of Sec. 4 indicate that it is
possible to obtain a set of results from the pion lifetime
calculation which are in complete accord with experi-
ment, if unsubtracted dispersion relations are assumed
for the NN, prm, and onm vertex functions, and these
dispersion relations are saturated by a three-pion
resonance with a mass around 2 GeV. This approach
has the advantage of deriving both the generalized
KSRF relation and a modified Goldberger-Treiman
relation in a consistent manner from the pion lifetime
calculation; in particular, the modified Goldberger-
Treiman relation can then be brought into agreement
with the experimental value of F..

There is no direct relation between our work and that
of Pagels.!s In our calculation of the pion lifetime we
assume an unsubtracted dispersion relation for F.(§)
and consider the NN, pr, and or intermediate-state
contributions to ImF.(£¢). On the other hand, Pagels
uses PCAC to relate the form factor C(§) to the form
factor Kyn«(£). Then the problem of calculating F., is
reduced to the determination of K yx.(0). Pagels assumes
a once-subtracted dispersion relation for Kyy.(¢) and
considers various contributions to ImK yx(£), a number
of which involve the p and o mesons. Also, in this
approach C(£) must satisfy an unsubtracted dispersion
relation, which is not the case in our calculation, as we
have pointed out in the second paragraph of this section.

14 N, Barash-Schmidt, A. Barbaro-Galtieri, L. R. Price, A. H,
Rosenfeld, P. Séding, C. G. Wohl, M. Roos, and G. Conforto.
Rev. Mod. Phys. 41,109 (1969).

18 H, Pagels, Phys. Rev. 179, 1337 (1969).



