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Pion Lifetime, use and e~ Intermediate States, and Sum Rules
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The pion lifetime is calculated assuming an unsubtracted dispersion relation for the axial-vector matrix
element and using px and O.m intermediate states as well as the SE intermediate state. By imposing con-
vergence conditions, a series of sum rules is obtained, including the generalized Kawarabayashi-Suzuki-
Riazuddin-Fayyazuddin relation and modi6ed Goldberger-Treiman relations. By assuming that the Ã37~,
p~m, and 0~7r vertex functions are dominated by a three-pion resonance with I=1 and J~=O, it is found
possible to make the Goldberger-Treiman relations agree with experiment if the resonance mass is gag
=2 GeV. This resonance is tentatively identi6ed with the KN' resonance structure observed around 2 GeV.

particular, the px and O.m intermediate states are studied
in detail.

In general, in this paper we have assumed that the
form factors of the matrix elements of it&A „(0) satisfy
dispersion relations which are ut @cost once-subtracted.
In our 6rst calculation, in Sec. 3, we assume that the
form factors of the matrix elements of j (0) approach
nonzero constants at infinite momentum transfer, and
therefore satisfy dispersion relations which are once-
subtracted. In our second calculation in Sec. 4, we
assume these form factors satisfy unsubtracted dis-
persion relations.

The convergence conditions on the O.m., p~, and XE
contributions lead to an hierarchy of sum rules. These
sum rules take the form of an extended Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin (KSRF) relation~ and
generalized Goldberger-Treiman relations. This pro-
gram is carried out with both once-subtracted and
unsubtracted dispersion relations for the %Em, pxm,
and arm form factors. In the former case, only scattering
contributions to the absorptive part are considered and
the correction to the Goldberger-Treiman relation is
found to be in the wrong direction. In the latter case, it
is found that a 10% correction to the Goldberger-
Treiman relation can be obtained by saturating the
dispersion relations with a meson possessing the
quantum numbers of the pion and a mass Mg=2 GeV.

1. INTRODUCTION

~M~NE method of deriving the Goldberger-Treiman'
relation assumes an unsubtracted dispersion rela-

tion for the pion lifetime form factor,

If, in the expression for ImF (P), only the ¹Vinter-
mediate states are k.ept, then the usual treatment of the
matrix elements that appear leads to a logarithmic
divergence in Eq. (1). Imposing the convergence con-
dition that the coefficient of the divergent term should
vanish yields the Goldberger-Treiman relation. Hy-
peron-antihyperon intermediate states have also been
considered in this connection. ' Although the 3m inter-
mediate states have the correct quantum numbers to
contribute, they are customarily ignored, since there is
no known way to estimate their contribution.

If we substitute the experimental value g~
———G~/Gv

=1.18~0.02 observed by Sosnovsky et u/. ' into the
Goldberger-Treiman relation F =g~M/G, we find
F =0.087M, which differs by 13% from the observed
value F =0.10M obtained from measurements of the
x+ lifetime. If we use the recently observed value

g~ ——1.23&0.01, based on a new measurement of
the neutron half-life 10.80&0.16 min, reported by
Christensen et ul. ' we Gnd J =0.090M, which differs

by 10% from the observed value. Thus, it is desirable to
find the source of this 10%correction to the Goldberger-
Treiman relation. Electromagnetic effects are only ex-
pected to provide about 1% of this correction.

In this paper, we shall assume the unsubtracted dis-
persion relation (1) for F ($) and impose convergence
conditions on this relation. Intermediate states other
than baryon-antibaryon states are also considered. In

2. PION FORIN FACTOR AND y~, era, AND NN
INTERMEDIATE STATES

The form factor is defined by

(Oi A„'(0)isrs(k))= (2sr)st'8, sk„F (k') (2)

where A„'(0) is the hadronic axial-vector current. By a
reduction of the pion state, we obtain

5,sk„ ImF (k')

(2sr)'
—2 t b'(k —F-)(0 l „-(0)ln)(rt f j (0) fo)

2i e
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$—mc2
K(k) =K(m. ')+()abk2 ImFa(k2) =-'2(22r)4 Q &4(k F—„)

The second term vanishes for physical pion decay, since tracted dispersion relation
ko& 0 and P„o)0, and we get

d(' ImE((')
(11)(~'-,')(~'-~)

mn. 2

X«I&"~.'(0) l~)(~lab(o) Io) (4) The Ai intermediate state does not contribute to
ImE($). Taking out the pion contribution gives

Let us define the form factors E( ) and y, in
terms of the matrix elements yg 2

f in
(O

I
~"~. (0) ~'(q) p "(p)

I

(out

P in
{olq. (o) (q)p (p)l

(out

r E(&)
&. (p+q)l (5)

(2~)' kK*(~)

2' ~,.-(~)
-ec (P+q)eb.d, (6)

(2~)' V,-*{()
where &

= (p+q) 2. Then, the pir contribution to
ImF (k') is given by

If.($) =K(mc2) 2F y—c +2F—yc,

E(~)= IE(~) I
'~(b),

ImK(~) = tang(~) ReK(q) .

(13)

The integral equation (11) may be solved' to yield

2 2
Yp 7r 'Jf'~7f p p 'Ir 7r +X

Ic($)=( I(ca').4 —2F,— +2c,
m ' —mc2 m. ' —$

$—mc2 dj' tan)P($') ReE($')
(12)

(&' —mc2) (&' —&)

where F —=F (m '), y, =yc —(m '), and )p($) is the
phase of E($):

S.bk2 ImF. (k') =-'(2~)4 g p d'pd4q &(p2 m')—
)=1 c,d

(r (—m, 2

Xexpl—
did(k')

(14)
(a'-m ')(e'-Z-22)

Xo(p)~(q' m. ')~(q)~'(—k p q)-- where 3 is the real constant

ie.,d ( —2i)x & (p+q)I —lb.' (p+q)eb d

(22r)2
'

k(22r)2)
'

(m, ' —m. ')
2 =exp

JPV (5')
(1~)

(~' —m. 2) (~' —m, 2)

where we have used

tE(()~, *(()+E*(()y„(() The discontinuity across the cut is approximated byXI, (7) considering only the contribution from pir-pir scattering.
Only pm intermediate states in the 'Po state contribute
to ImE($). Then,

P eacdebcd 2t)ab y

c,8

Z e.".(p+q)"" (p+q)
)=1

E($)=e"'E*(()+(other contributions) (16)

ImK($) =e" sinbE*(f)+(other contributions)
=ReLe" sin8E*(()j.

(~—m ' —m ')' —4m 'm. '

4m, '

and here k =p+q and k' = p. Also,

(8) Moreover,

ImE($) Re(e" sinb)—= tanbt (&),
ReK(]) 1—Im(e'b sinh)

(18)

We therefore obtain for ImF ($) the result

d4pd4q $(p2 m 2)p(q2 m 2)p(p)0(q)$4(k p q)
where () is the complex 'E() pir-p2r scattering phase shift.

If a once-subtracted dispersion relation is assumed for
=(22r)& 'E(k mc' m ')' 4mc'ma'3'(' (9) y, ($), then since neither the pion nor the Ai inter-

mediate states contribute to Imp„(&), only the 'F() p2r

intermediate state contributes, and

I F (~) =-' -&g2L(~ — '—m ')' —4m 2m 2)212

XPE($)y...'(f)+K*K)y...($)j/8m, ' (1O). vc«(k) =
I 7c«(E) I

e' (19)

Let us now assume that E($) satisfies a. once-sub-
J.D. Jackson, in Dispersion Relations, edited by G. R. Screaton

(Oliver and Boyd, Edinburgh, 1961),p. 1.
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Thus, pp (f) satisfies the equation

vp~w($) =vpww

dA(&')
(2o)

(~'-m. ')(&'-~-i )~

where P(t) is the same function introduced earlier in
connection with E($). The range of the integrations is

(m, +m.)'& P& ~.
The expression for the p~r contribution to ImF ($)

now becomes

lmF. (~) =-'~-'[(~ —m ' —m ')'

one finds in the pole-dominance approximation

ImEi($) = —n.5($—mg') GgGB,

ImE, (t) =-,,'~r(P —m ')G, Gn,

(29a)

(29b)

ImE3= 7r~(—$ ma—')Ga[GB+ 2(m„'-m. '—)Gn)/m~'
—2rrb(& —m. ')F.7,.. (29c)

Combining these results, we get

where n=(p —q)' and

& '(q)li- (o) IA '(P))=[~'-/(2 )'J[G (,' )
+GD(«'q)(& 'P)3 (28)

—4m 'm ']'"IQ(&)i'
4mp'P

/Gp
E(~)=

~

2r—.~.-..+
F mg —m&

2P',7, m' 2I' yp m '
&& E(m 2)A — +, (21)m' —m' m'

where
/f —m. '

0(&) =exp~

d$'p((')
(22)-„..&

(~'- .')(~' —~
—')~

and A is given by Eq. (15).
An expression for the subtraction constant E(m, ')

can be obtained if p7t- intermediate-state contributions
are neglected in ImE($). This case has been discussed
by Das, Mathur, and Okubo. ~ In the notation of the
present paper, we have

( (k)IA. '(0)l~'(p), ")=[~../(2 )'1,"(P)[E (~)g"
+Em(()k„(p+k)„+E3(p)k„(p—k)„), (23)

where now $=(p —k)'. We deduce that E($) discussed
earlier has the form

G,+ ', (m,-' m.—2)GD 2F.~ ..m. '
(30)

$ —m 2mg

Gp GgGg
E(m, ') = 2F y—p .—+

P7r mg m

2F yp „m'
[GB+-,'(mp' —m. ')GDj — . (31)

mg mp mg

The XE intermediate-state case was originally con-
sidered by Goldberger and Treiman. ' Here, for con-
venience only, a summary of their results in the notation
of this paper will be given. The form factors C($) and
E~~ (&) are defined by

111

&oi BpA„'(0) Ni(p)qi, N2(q)it2
out

i C(]) q
(kititr 92)Ui(p)75~~(q)2~

~
(32)

(2~)' C*($)J
E(k) =Ei(5)—(m. ' —m-')E~(k) —N3(&) (24)

We shall assume a once-subtracted dispersion relation
for Ei(() and unsubtracted dispersion relations for
E ($)2and E&($).By reducing the pion state in Eq. (23),
using the hypothesis of partially conserved axial-vector
current (PCAC) and the current equal-time commuta-
tion relations, and taking the limit k„—+ 0, we ob

E~~.*(())
g2~r'giUg(q)ysUi(p)G ~, (33)

(27r)' ENNY(f) ~

Ei(mp') =Gp/F. ,
where

&OI U.'(0) I"'(q)) =[6 .-/(2-)"'jG, ""'(q»).
Defining

&OIA„~(0)IA» (q))=[~,./(2~) 3G.,~„"(ql)
&~"(q) I &- (o) I ~'(P)) =2i[«-/(2~)'&" q~.-«»

tain
where (=(p+q)' and the n's are the nucleon isospinors

(25) and r (a=1,2,3) are the familiar Pauli matrices. G is
the pion-nucleon coupling constant G'/4~=14. 6 and
E~~ (m ')=1. The form factors a($) and b($) are
dehned by

(Ni(p)qi ~
A„(0)

~ N~(q)) g2)
(27) =(2m) —' -', nitrpg2Ui(p)[vpv~a(t)

+(p —q).v5&(k)1&~(q), (34)

where t=(p —q)'. Thus, C($) in (32) becomes
7T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters 19,

1067 (1967). C(k) =a(k)+(5/2m) &(5) . (35)
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Using a once-subtracted dispersion relation for C($) where $=(p —q)'. They are relatedby
with C(0)=A(0) =g~, and including the ~ and glV F =im, '—m ' F~ F2intermediate-state contribution to ImC($), gives

(45)

F.G
C(~) =I ~.~+

m m. 2 —~)

Now assume a once-subtracted dispersion relation for
Fr($) and an unsubtracted dispersion relation for F2($).
Then F($) will satisfy a once-subtracted dispersion
relation

Xexp
dA(~')

~ (g' m. ') (f—' f. i e)—1—
$—m'

F(P) =F(m.')+
d~' ImF (~')

(46)
(~' —m.') (~' —t)

where Q($) is the phase of C($) and The subtraction constant F(m, ') can be evaluated by
the standard current-algebra technique. We obtain

Re(e*'& sing) ImC(g)
tang(&) =

1—Im(e'& sing) ReC(t)
F(m ') =G,/F,

&0l~(0) l~(p))=G /(2 )"'
(47)

Here g is the complex 'Se gcV-EZ scattering phase
shift, and 8 is the real constant LAe'(x), B&A„(0)$8(xe)=i64(x)8.g(0). (49)

4'4(Y)
B= expl—

~ f(5 m ')')— . (38)

In the 0. model of Gell-Mann and Levy, ' one has

Z(O) =m. 'F.@.(O), (50)

where P,(x) is the o-meson Geld operator. In this case
In the once-subtracted dispersion relation for

I arzr (5),
G=m2F. (51)

d$' ImE~~ (t') The expression for ImF(t) is given by
, (»)

(8 m. ')—(8 t) — &.~ ImF(t) =k(2~)""Z ~'4+F- p)—
we use the same approximations as we used for C(P).
Only the gX intermediate state contributes to
ImE~~, (g), and

ola A„.(o) l~)&~IJ.~(0)
I (p)). (52)

The only pole term comes from the pion intermediate
state. We obtain

t'$ —m '
Z~~.(t) =expl

4~

dA(r')
, (40) G my, m'

*(~'—m ')(~' —~
—l.)

'
F(()=—+2F.

m.2 —m. 2

where Q($) is the phase of E~~ ($) and

tang(() =Re(e'& sing)/L1 —Im(e*'& sing)$ (41)

=ImZ~~. (()/Rex~~. (() .

P
—m. '

where we have used

d$' ImF (j')
(53)

&......&
(&'— .')(~' —~)

With these approximations the XE contribution to
ImF. (g) is

&m'(l)
I j '(0)

I o(p)) =2b, (2~) 'm.y...(q) . (54)

Also, q=(p l)' and.—y. =y, (m ').
We now have1 f 4M')'"—

ImF (&) =—
) (G 2F m.y m ' 2F.m,y,.m, '

F(t) =
I

—C+ — —— A(k),

(55)
F.G

XMG gg& X~~ '. 42
cV m. ' —() where

dk x(5 )
(56)

( .+ .) (5' m. ')(5' ( i—e)——
/$ —m '

Let us now consider the o.vr intermediate state. The
form factors F~(P), F~(&), and F(g) are deGned by

&- (~) IA.-(o) I-(p))
Lf/(2a)'jLF (f)(p+0) +F ($)(p—g),j (43)

and

(m. '—m. ')
C= exp

d]' x((')
—, I

~.&
(p' —m. ')(P' —m. ')]

(57)

&-'h) l~ A.-(o) I-(p))=~. (2-)-F((), (~) a M. Gell-Mann and M. Levy, Nnovo Cimento 16, 705 (196Q).
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Only o.m scattering contributions to the Omnes factors ImF (f) =&~ 'P'2

XL(E—m ' —m ')' —4m 'm ']'"~1i(k) ~'m 7
tanX($) =Re(e'~' sinpp)/L1 —Im(e'&' singp) j (58)

where qo is the '5& complex o-vr scattering phase shift. If
a once-subtracted dispersion relation with only Ow

scattering contributions is assumed for y, ($), then

(G, 2F m y, m ' 2F m 7, m ')
&&(

—C+ — l. (6o)
m2 —m'

3. SUM RULES

v.-.(&) =v--~(~). (59) We can now combine the various contributions to
ImF ($) arising from the pm, om. , and Ã1V intermediate

The 0~ contribution to ImF ($) is thus given by states. The total result is

(G, 2Fm,y, m' 2Fm, y „m2
ImFp(g) = ', 7r -'&='$(& m—.' m—.')' 4m—'m. ']'~'m.y. .'I —C+

m' —m' $—m'

1 ($ 43Pq'—I' ( F.G
X I1(()I»((—(m.+m )')+—

( )
3fGI g~~+ )I&»-(()I'0((—4~')

m m.~ —~)

pplf 8'

+—P(~—m ' —m ')' —4m 2m 2j'»
4a 4m, 'P

( 2F yp m' 2F7p m'
X~ Z(mp')A — +— —

~
fl(~)

~
»(~—(m +m.)'). (61)

m, '—m, ' m ' —$

Let us assume that F ($) (E/$) as $—~ ~, where E is a finite constant. Then Eq. (1) leads to the super-
convergence condition

ImF, ($)d$ =E. (62)

Substitution of (61) into (62) yields a rela. tion containing three terms which are, respectively, quadratically,
linearly, an.d logarithmically divergent. By demanding that the coeKcients of these divergent terms vanish, we
obtain three sum rules. We shall assume that the coeKcients of ( ' and $

' in the expansion of A(f) and KN~ ((),
in decreasing powers of g, are either zero or very small and may be neglected. . The expansions

((( m2 m 2)2 4m 2m 2 1/2

=1+R.(~), t.(~—4m')/8'"=1 —2m'/~+R~(~)
(2

((—m ' —mp')' —4mp'm~')"' 3( m+p'm)
+R,(8,

p i

are substituted. into Eq. (61) to give

4~1mF-(&) =(1/2$)D+R. (k)3 I~(k) I»(&—(m.+m-)')m. ~
2F,m.y...m. ' 2F.m.y...m. 'q

1go2 —m 2
g
—m. '

2M' — — F.G(+ 1—— +R~(f) 3IIG g~B+ i

—1—
mE

m' m'
+

~
~E».(&) (»(P—41'')

&( .'-~)~-

3(m, '+m. ')
+ 1— — +Rp(&) ~0(&) ~»($ (mp+m —)') X(mp')A—

4m, '
2F yp m'

tS'Ir SSp

1 m~ mp
+2F yp m' —— +

i
. (63)

P t2(m. ' —~)J
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Setting the coeKcients of P, P, and &
' equal to zero gives the sum rules

E(m, ,')A —2F.y...m. '/(m. '—m, ') =0, (64)

F.G 2J'~V p«2m~2
IE».( )I — In( )I =0,

M 4m, '
(65)

/'G, 2Fmy, m') '

( FG
i2IA(") ~'m v I

—G+, , I

—2M'Gl a~8 — +F-G'm ' IE»-(")I'
kF. m. —m.

—IQ(~) I2(2F y m /4m~2)I m —3(m 2+m 2)]=0. (66)

The first sum rule Eq. (64) is the generalized KSRF
relation as can be seen by using the pole-dominance

approximation Eq. (30) for E'(m„') and adopting the
resonance approximation 3 =1. Thus, we have '"
Gp

2F yp
——+-

F7r mg m

LG +-', (m, '—m„')G $, (67)
mQ

If If)(~)/E», (~)
I

1, then the correction is very
small. A ratio

I Q(ce)/E» (ee)
I

of 10 would increase
the error from 13%%uo to 30%%uo.

An inspection of the terms appearing in the third sum
rule, Eq. (66), shows that the E1V terms dominate the
sum rule; therefore, another modiied Goldberger-
Treiman relation is obtained.

The sum rule' obtained upon dispersing the matrix
element

(n. Iej A„I~)

would be

where Gq and G~ are the S- and D-wave coupling con-

stants for the Ai —+ px decay process. If we neglect the
terms involving the 2 ~ meson and use the p dominance

of the electromagnetic form factor

G 2F m.y. m„'—C+
m.2 —m. 2

(72)=0
7

2G.v.-=m.

we obtain the KSRF relation

with G, =m F„.This result is not in disagreement with

(68) our sum rules (64)—(66), but it cannot be deduced
directly from the pion lifetime calculation.

2V 2 1 2
ppx''/r c 2! 2 mp

The second sum rule Eq. (65) may be solved for F,
to yield

ggM 1 yp, m,)' Q(~)
F.=8 1+— —

I

— — . (70)
G 2 Gm, ) E»(~)

By using the definition of 8 in Eq. (38) and the fact
that 0 &@($)&vr, it can easily be shown that 1&8& 1.01.

The correction to the Goldberger-Treiman relation
given by (70) is in the wrong direction. We can estimate
this correction by using the values m, =0.769 GeV,

=5.14 (corresponding to a p width F,=112 MeV).
We get

—',(y, m /Gm, )2=0.0024.

9 D. A. Germen, Phys. Rev. Letters 19, 770 (1967).
~0 S. G. Brown and G. B. West, Phys. Rev. Letters 19, 812

(196/); Phys. Rev. 168, 1605 (196'/).

E» ($) =G(Mg' —M ')/(Mg' —$), (73)

~„.(~) =~...(M, ' —M.')/(M, '—~), (74)

y. .($) =y. (M~' —M ')/(Mg' —$) . (75)

Here Ma denotes the mass of the dominant three-pion
resonance. We then obtain for the XE, p~, and 0-x

"J. G. Cordes and J. W. MoAat, Phys. Rev. 164, 1787 (1967).

4. RESULTS BASED ON POLE DOMINANCE 'OF
E» (()~ V.- (5) &&D V- (0)

We shall now evaluate the matrix element of the axial
vector current assuming that the form factors E» ($),

($), and y ($) are dominated by a three-pion
resonance possessing the quantum numbers of the pion.
In this section, pole-dominance approximations for all
form factors will be used. I.et us consider"
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contributions in IinF ($),

4tr InlF. ($) =$(p4 m—p' m—T')' 4—m. 'm. 'j"'&(( (—mp+mp)') (me/ pw. mT'/'2(')

2F m y Mt4'F Mt4yt4, 2F m y Mti'F Mt4ytip

mp' —m~' m„' mp' Mt4' — $ —m~' m~' $
—Mt4'

M&' —m. ' /$ —4M'~ '~' / F.G $ F&
X +! —

! MGlg. + +
)

&+a
M MJ4'

Mg2 —m. '
0((—4M )+P((—m ' —m~')' —4m, 'm~'j' '8($—(tnp+m~)')(y p~~/4m'P)

Mti' —(
2F~y ~~m~' Fgygp~&g' 2F~yp~~m~' F~ygp~Mg' 3f~'—m

m ' —m ' M~'-m ' m.'-( Mg'-( Mti'-]

where Fz, G&zz, p», and pz, are defined analogously
to F, G, yp, and y, defined in Eqs. (2), (33), (27),
and (54), respectively. This result is substituted into
the unsubtracted dispersion relation Eq. (1).The terms
containing the double pole (M~' —&)

' are evaluated
assuming that the resonance has a width I'~ so that the
double pole becomes P(Mg' —&)'+I't4'Mz'g '. In the
terms containing only the single pole (Mz' —$) ', the
principal value is taken, a procedure which corresponds
to the narrow-width approximation. The px contribu-
tion contains a logarithmically divergent part. Applying
the convergence condition and using the pole-dominance
approximation for E(mp'), we obtain the relation

Gp/F ~ 2F,y p„+Fr—4yt4p„0. ——

then of the form

4m, '

m.y...m. ' 2F„m.q...y+ 1+—
2(m, +m.)' m. ' —mp' /

2 2 2L'mo' pox~ mm
— I4, (77)

(m.+m.)'
where

/] —4M'q'~' M ' —m. '

/ g(M~' —g)
(78)

( F„G 2I'yp 'm '
4tr'F =MG! gg — Ii- ——I2

M

In order that the KSRF relation be well satisfied, the
term Ftiyti„must be small. If we assume that Ftt($)
is dominated by the pion pole, consistency conditions
yield the relations

Fgy gp~
——n2F~y p~~, Fgo~~~ = —OfF~Q,

(($—m '—m. ')' —4m 'mp')'" (M 44' —mp')
, (»)

$4 (M,2 —g)

and
I =(m.+m.)'

(tn~+m ~)

where

~&p~oxF~ = —o 2mopaxxF. ,

n=g g.(m.')/gtt. (Mtt') alld

$($—mp' —tm ')' —4mp'm ')'"(MB' —m ')X,(80)
(&

—m-') P(Ms' —5)

Also,

(0!i:(0)Iz (v))=—L~.4/(2 )"'3g~.(v').
I4=(m, +m )'

(mtt+tn~)

Thus, in order to retain the KSRF relation, o. must be
small. Since n is unknown, we assume that it is so small
that the terms containing it may be dropped. In the
remaining terms, we shall neglect the pion mass when-
ever numerically justified in order to simplify the cal-
culations. The remaining contributions for $=m are

L((—m. '—m ')' —4m. 'm ')'"(Mt4' —m ')
(81)

(P—m. ') 't-'(M t4' —t)

%herever necessary, the principal value of the integral
is implied.

The roots in (79)—(81) may be evaluated by
making the approximations (m p

—m )/(m, +m )= 1 and.
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(nt, —rrt„)/(nt, +nt ) = 1. Performing the integrations in

(78)—(81), we get

Ii=2[(Mg' —nt ')/Mg')[a arctan(1/a) —1)
(Mtt (2M), (82)

where
a = [(2M/M n)' —1)'"

and

Ii ——2[(Mn' rn ')/M—tt') [ta ln
I (1+a)/(1 —a) I

—1)
(M it & 2M), (83)

where
ct =[1—(2M/M sr)')'".

Also, we have

Is [(MrP——rrt. ')/M— tt')
)&[(1—s)' ln

I (1—s)/s
I

—-', (6s' —15s+11)), (84)

where
s = [(sn,+nt.)/Mtr)'

and

Is ——[(Ms' —srt. ')/Ms')
&[(l—y)+(y —y')»I (y —1)/y I), (85)

J,=[(M„s—~ s)/M„s)
X[sr (1+3y—6y')+(y' —y') in

I (y )/y I) ~ (86)

y = [(rn.+nt. )/Mn)'.

As M~ —+ ~, we have u —+ 1, s ~ 0, and y —+ 0. Thus
I~ —+ 2 ln3E~, I2 —+ 2 in% &, I3 —+ —,', and I4 —+ 6. There-
fore, in the limit Mtr~ oo the sum rule Eq. (77)
reduces to our earlier result Eq. (65).

We have performed a numerical calculation in order
to determine the value of 3f~ for which the modified
Goldberger-Treiman relation Eq. (77) can be satisfied
experimentally to give I =0.10M. In Eq. (77), we
shall choose a (T-meson mass m, =0.75 GeU and a
width F =0.42 GeU." For the p meson we choose
ssp 0 769 GeV and Fp 0.112 GeV. This latter width
is the latest value obtained by the Orsay group from the
p' —+e+e process. "These input values correspond to

= —2.25 and yp =5.14, where the choice of the
sign of the o.srsr coupling is in accordance with Eq. (72),
i.e., the result obtained from current algebra and
PCAC. For g~

——1.18 the result of the calculation shows
that Eq. (77) gives I =0.10M for Mtt ——1.87 Gev or
M~=2.0 GeV. The value of M~ required to make Eq.
(77) satisfied is insensitive to the osr contribution for
either sign of pp

Resonance structure in the XE S-wave channel with
I=1 has been observed around 2 GeU. In particular a

~2R. C. Johnson, University of Toronto Report, 5968, p. 12
(unpublished); S. Marateck, V. Hagopian, W. Selove, L. Jacobs,
F. Oppenheimer, W, Schultz, L. I. Gutay, D. H. Miller, J. D.
Prentice, E. C. West, and M. D. Walker, Phys. Rev. Letters 21,
1613 (1968); W. D. Walker, J. Carrol, A. Gar6nkel, and 3. Y'
Oh, Phys. Rev. Letters 18, 630 (1967)."S. C. C. Ting, Proceedings of the Fonrteenth International
Conference on High Energy Physics, Vienna-, 196g, edited by J.
Prentki and J. Steinberger (CERN, Geneva, 1968), p. 43.

resonance designated by T(2195)'4 has been seen which
could be tentatively identified with our resonance.

S. CONCLUSIONS

In both calculations, it turns out that in order to
obtain finite results, a convergence condition must be
imposed which has the effect of requiring that E(&) be'
unsubtracted. From this point, our derivation of the
KSRF relation is essentially the same as that in Ref. 7.
The two derivations of the KSRF relation differ in that
ours is obtained as a necessary convergence condition,
while in Ref. 7 it follows from PCAC.

We note that in the 6rst calculation in Sec. 3, the
imposition of a second convergence condition leads to
the result that C(P) must be once-subtracted for con-
sistency because of the admixture of the pm- contribution.
In the second calculation, in Sec. 4, we do not find it
necessary to impose further restrictions on C($).

If one insists on using once-subtracted dispersion
relations for the EEx, pvr7f-, and (Txw vertex functions,
the results of Sec. 3 indicate that it is not possible to
obtain from the pion lifetime calculation a set of results
consistent with experiment. The generalized KSRF
relation can be derived, but the modified Goldberger-
Treiman relation obtained has corrections which are in
the wrong direction. Although these corrections may be
very small, they could be quite large.

However, the results of Sec. 4 indicate that it is
possible to obtain a set of results from the pion lifetime
calculation which are in complete accord with experi-
ment, if unsubtracted dispersion relations are assumed
for the EEm. , pmz, and Owe vertex functions, and these
dispersion relations are saturated by a three-pion
resonance with a mass around 2 GeV. This approach
has the advantage of deriving both the generalized
KSRF relation and a modified Goldberger-Trein1an
relation in a consistent manner from the pion lifetime
calculation; in particular, the modified Goldberger-
Treiman relation can then be brought into agreement
with the experimental value of F„.

There is no direct relation between our work and that
of Pagels. " In our calculation of the pion lifetime we
assume an unsubtracted dispersion relation for Ii (P)
and consider the EE, pm. , and o-vr intermediate-state
contributions to ImI ($). On the other hand, Pagels
uses PCAC to relate the form factor C(t) to the form
factor Etc~ ($). Then the problem of calculating Ii is
reduced to the determination of E~N (0).Pagels assumes
a once-subtracted dispersion relation for Etrsr ($) and
considers various contributions to ImE~~ ($), a number
of which involve the p and 0- mesons. Also, in this
approach C(g) must satisfy an unsubtracted dispersion
relation, which is not the case in our calculation, as we
have pointed out in the second paragraph of this section.

~4 N. Barash-Schmidt, A. Barbaro-caltieri, L. R. Price, A. H,
Rosenfeld, P. Soding, C. G. Kohl, M. Roos, and G. Conforto.
Rev. Mod. Phys. 41, 109 (1969).» H. Pagels, Phys. Rev. 179, 1337 (1969).


