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The study of the partial-wave dispersion relation (PWDR) is continued, being extended to the relativistic
problem in the presence of inelasticity. Less restrictive sufhcient conditions on the left-hand-cut discon-
tinuity AT are obtained to guarantee a solution of the PWDR problem when AT has both positive and
negative parts. The eAect of Castillejo-Dalitz-Dyson poles on solutions is also discussed.

dq'
D(k') =1- P'(q')

o q~ —~2
(1.2)

(In general one has to avoid zeros of D on the physical
sheet of the k' plane so that f=X/D will have the de-
sired analytic structure. ) It was shown in I that a solu-
tion exists if hT is subject to the condition

I. INTRODUCTION
' N a previous paper we considered nonrelativistic

partial-wave dlspelslon 1elat1olls (PWDR) alld ob-
tained sufficient conditions upon the left-hand-cut dis-
continuity AT which guarantee that E/D equations
without Castillejo-Dalitz-Dyson (CDD) poles lead to
a solution to the problem. The X/D equations in this
context are

H

X(k') =— =D(q')AT(q'),
vr „q'—k'

In Sec. IV we consider the relativistic version of the
E/D equations. It is shown that condition (4.11) upon
the left-hand-cut discontinuity AT is sufficient to guar-
antee that f=lV/D satisfms the PWDR. The analysis
here is similar to that in the nonrelativistic case as
carried out in I, which established the sufficiency of
condition (1.3). In Sec. V the inelastic version of the
relativistic X/D equations is examined. Finally, in Sec.
VI the results are discussed and various extensions of
them are considered.

II. N/D EQUATIONS WITHOUT CDD POLES]

Ke are considering the P%DR in the case for which

the left-hand-cut discontinuity is replaced by poles. The
question of when there exists a solution with only the
required singularities ji.e., no ghost or bound-state
poles) has been considered in I for the case in which the
residues of the poles are all of the same sign.

(i) Attractive case:

AT= —sr Q X 8(k'+a ') (a, X &0).

It was also shown that, for the case in which the left-
hand-cut discontinuity is replaced by a finite number of
poles, and in which the residues of these poles are either
all negative (attractive case) or all positive (repulsive
case), a solution of the PWDR exists under the less
stringent conditions (2.1) and (2.2), respectively.

In Sec. II of this paper, we extend this latter result to
the case in which AT has poles of both positive and
negative residues. $Eq. (2.3)) It is shown that if the
attractive part of AT is subject to the restriction (2.1),
while the repulsive part is subject to (2.2), the solution
of the 1V/D equations exists for the full discontinuity,
such that D has no zeros on the physical sheet of the
k' plane. In Sec. III we again replace AT by poles and
examine the effect of CDD poles on the zeros of D. The
purely attractive and purely repulsive cases are ex-
amined in detail, and the mixed case is discussed
qualitatively.

* Supported in part by the U. S. Atomic Energy Commission
Grant No. AT(11-1)-1573.

t Present, address: Illinois Institute of Technology, Chicago,
Ill. 606I6.' P. Johnson, Phys. Rev. 181, 2006 (1969). Hereafter we will
refer to this paper as I.

It was shown that a sufficient condition to guarantee
a solution with the required singularities is that the fol-

lowing quantity be positive for 0&g&1:

A(g) =det fb;;—gP;/(a~+tt, ))). (2.1)

(Note: dettv fA;;} is used to represent the determinant
of the X)&Xmatrix A;;.) When the X are increased so
that A(g) =0 at g=1, a bound-state zero of D(k') is
located at k'=0. As the X are further increased, this
bound state moves to positive imaginary k, i.e., to the
negative k' axis on the physical sheet. The residue of
this bound-state pole is negative.

(ii) Repulsive case:

AT=sr g tt b(k'+b ') (b, tt &0).

E(h) =det fbcs t'httc/(b;+b;))) —. (2 2)

It was shown that a sufficient condition to guarantee
a solution with no other singularities is that the follow-

ing quantity be positive for 0&h&1:
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When the p„are increased so that E(k) =0 at k=1, a
ghost pole of the scattering amplitude is located at
k'= ~. As the p„are further increased, this singularity
moves to finite, positive imaginary values of k. The
residue of this ghost pole is positive.

In this section we will consider the more general left-
hand-cut discontinuity with both attractive and repul-
sive parts, namely,

3I N»= 5—Z ),-b(k'+a ')+ Z ~-b(k'+b. ')3. (2.3)

Now let us consider the equations for Ã and D when
the left-hand-cut discontinuity is given hy (2.3). The
equations are of the form

cV(k') = g — D(—a ')
m=i ks+a

N p~
D(—b-') (2 4)

1 k2+b 2

Our object here is to show that if condition (2.1) is
met upon the attractive part of AT, and if condition
(2.2) is met upon the repulsive part of DT, then the X/D
solution of the composite left-hand-cut discontinuity
will have mo singularities in the upper-half k plane caused
by spurious zeros of D.

The proof of this result is crucially dependent upon
certain theorems about determinants. We will state
these theorems here and prove them in the appendices.
First, let us recall the de6nition of a positive de6nite
matrix.

Defteitiort. A real, symmetric ts&&rt matrix A =(a;,)
is positive de6nite if all its eigenvalues are positive. A
well-known' necessary and sufhcient condition for posi-
tive de6niteness of a real, symmetric matrix is that the
determinants of the principal submatrices A I, be positive
for k =1, ~ ., ts (2 t, consists of the first k columns and
rows of A).

Next, we state a useful theorem about the matrix
appearing in (2.1).A proof by induction of this theorem
is given in Appendix A.

Theorem I. De6ne' the determinant D of the EgE
matrix M

D =detM =det f 5;,+X;/(a~+a, )),

with u;&0. Let us consider the domain of ); for which
the determinants of the principal submatrices of M are
positive. Then r)D/rid, &0 for X; in this domain. LRe-
mark: The theorem applies if aH X;&0. Also, if condi-
tions (2.1) are met, the theorem applies for negative
coefficients X;.j The following theorem on determinants
is needed.

Theorem II. Suppose that a real matrix 8 may be de-
composed into 8=5+A, where 5 is symmetric and.

positive de6nite while A is antisymmetric. Then
detB &detS.

This theorem, 6rst proved by Ostrowski and Taus-
sky, 4 does not appear frequently in the literature; thus
we present a proof of it in Appendix B.

2 E. F. Beckenbach and R. Bellman, Irteittalities (Springer-
Verlag, Berlin, 1965), pp. 57-59.

~ This determinant is explicitly evaluated in I.' A. Ostrowski and O. Tanssky, Ned. Akad. Wet. Proc. (A) S4,
883 (1951).

+2 -D( —b'') (2 5)
n,=1 b~ —

gtWit',

The quantities D(—a ') and D(—b ') can be deter-
mined from auxiliary conditions obtained by substitut-
ing k'= —a~' and k'= b„' i—nto (2.5).

It is useful to consider the auxiliary functions
D,(k') and D„(k'), defined through the equations

D-(k') =1—a 2 — . D.(—a-'),
m=& a —ik

D,(k') =1+4 Q D,.(—b.').
=J 0„—ik

Let us also de6ne

(2.6)

hp;
S =det 8; +g —,X)„=det b; — —. (2.7)

cv a +a,,„ iv b,+b„

It is shown in Appendix C that under assumptions (2.1)
and (2.2) the functions D, and D„satisfy the following
constraints for 0&k'( ~:

1&ReD.(k')&D (0)&0,
1(ReD„(k')(D„(0)(~ .

(2.8)

3f gg.
~t-+ —D(—a')

at+am

N hp
D( bts) = 1, tV equat—ions

t=i a +bi

3f gg.—D(—a')
i=i b +a,

hp)+g bt~ — —D(—bts) =1, tY equations.
bi+b„

(2.9)

Note also that S, and X)„are positive under the as-
sumptions (2.1) and (2.2).

We will now show that under conditions (2.1) and
(2.2) the quantity D(k') cannot vanish on the physical
sheet of the k' plane (Imk&0).

The first step is to show that Eq. (2.5) has a solution.
To establish this let us examine the M+iV equations
involving D(—a ') and D(—b„'):
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where

X)= det I-= det 3f,
M+N M+X

b/-+g~1/(~/+~-)

gh~/(b +a;)

—/zp&/(b1+a )
(2.10)

hp1/(—bi+b ),

(We have introduced parameters g and. b here, where

0(g, k&1. We will eventually set g=h=1.) We can
prove that this set of equations has a unique solution if
the determinant of coefficients of D( a,2—) and D(—b12)

is nonzero. Let us denote this determinant by S

In Appendix D it is shown that for k' real and positive

the quantity ReD(kz) is positive under the assumption

of conditions (2.1) and (2.2). Thus for 0&g, 8& 1 the

quantity ReD(k2) cannot vanish for positive real values

of k'. As a result no zeros of D can enter the upper-half

k plane' for this range of values. Consequently, 8 can-

not vanish in the upper-half plane.
It was shown in I that if g and h, are sufficiently sniall,

there are no zeros of D in the upper-half k plane.
Specifically, the sufhcient condition (1.3) in this context

may be written

g(/, x.) '/'
5; +

(a;+a )3f=
(»p-)'"

(gh)'"
(b„+a;)

6«~-)'"—(gh)'"
(b1+a )

(p1p )1/2

8) —h
(b/+b )

Z --+2-
m=& 2am ~=~ 2b„4

(2.12)

To see that the conditions obtained here are consider-

ably stronger than (2.12), let us note that (2.1) and (2.2)
are satis6ed if the following simple conditions are met:

One can easily write M as the sum of a symmetric and an
antisymmetric matrix:

(Z,X.)'/2
b~-+g

(a,+a )

—(1,
m=1 2g

-(1.
n=l

(2.13)

(P1 -)'"
b).—h

(b1+b,)

(gh)1/2(p y )1/2

(bi+a )

We have seen that under assumptions (2 1) and (2 2)i
D cannot vanish in the upper-half k plane. In particular,
therefore, the residues of the poles of »n (2.4) cannot
vanish. Hence, the quantity f=N/D is unitary, has the
prescribed discontinuity hT, and vanishes as k'~~
within the cut plane.

P, .p )1/2

(gh)'"
(b„+a,)

The symmetric term is the direct sum of two matrices,
each of which is positive definite. )The upper matrix is
manifestly positive definite; positive de6niteness of the
lower matrix follows from condition (2.2).j The condi-
tions of Theorem II are thus met, and one may conclude
that detX)&0 here.

We can also show that D(k2=0)) 0 here By dire. ct
application of (2.5) one can show that D(0) is given by

nD(0)

b, gX,/(a, +a„—) hp//(b/+ g„„)= det (2.11)
-g~;/(b-+;) b.+h. /(b+b. )

By an analogous argument D(0))0.
We have thus established that under conditions (2.1)

and (2.2), the function X/D associated with the left-
hand-cut discontinuity (2.3) has neither bound states
nor real ghosts. However, it is possible for zeros of D to
enter the upper-half k plane at some point other than
zero or inanity. We must also eliminate the possibility
of these "complex-energy ghosts. "

111. N/D EQUATIONS WITH CDD POLES

The pWDR boundary-value problem in general does
not have unique solutions; the well-known C&D am-

biguity illustrates the nonuniqueness of such boundary-
value problems. We will discuss the case in which a CD&
pole of D is placed on the positive real k' axis with a real
residue. We are particularly concerned with how the
presence of this pole affects the zeros of D.

(i) Attractive case:

C

D(k2) =1—Q D(—/z ') — (3 1)
=1 g —Zk p' —&2

In the vicinity of the CDD pole at kz= p') 0 there will

be two zeros of D. If we choose c)0 in Eq. (1), these
zeros will lie on the unphysical sheet of the k' plane,
provided that D has no other zeros on the physical sheet.
Also, the first zero of D to enter the physical sheet must
do so at either k'=0 or k'= ~ . Let, us assume that con-
dition (2.1) is met so that a solution of (3.1) exists with

~ D is the ratio of two polynomials in g, fs, and k; thus as g»d
h are varied, the zeros of D move continuously on the Reimann
sphere.' See the Appendix of I, where these conditions are shown to be
suKcient to establish the validity of {2.1}and {2.2}, respectively.
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c=0 which has no undesired zeros. As c is increased, in
general, the zeros of D move so that one of them even-
tually passes through k'=0 and onto the physical sheet.
(We will see that none can enter through k'= ~ in the
attractive case.) In fact, we will show here that for
6xed values of X and u,

(8/8 )cD(k'=0) (0 (3 2)

In other words, increasing the residue of a CDD pole
here aids the formation of bound states just as increas-
ing the values of P does.

To establish (3.2), we use (3.1) in the usual way to
obtain

sheet at k'= ~ when the quantity

X) =det {b;; p~—/(b, +b,)} (3.8)

vanishes. But S is independent of c, so that the CDD
poles do not enhance the formation of ghosts in this
case.

(iii) Mixed case: Let us assume the discontinuity has
both positive and negative residues. Then the equation
for D is

M gm N P~
D(k', c) =1-P +P + . (3.9)

m=1 g —Q m=1 b —~k p2 k2

K)D(k' =0)

1—c/p' X;/a;= det (3.3)
~+~ 1 c/(p—'+a ) b;,+X;/(a;+a;)

where
n=det {b,;+X;/(a;+a;) }.

8 1—D(k'=0) = ——det S;,—
py M 2g; p2+a 2

X; p' —a;a,
(3.4)

It is also straightforward to show that the determinant
in (3.4) is S ReD (p'), where D obeys the equation

ai1d

D (k') =1+Q D (—a„,')
m=1 gm —

ZIc

n =det{bg —X;/(a;+a, )}.

(3.5)

Note that under condition (2.1), X) is positive, so that
no ghosts can enter from infinity here. It is straight-
forward to show from (3.3) that

We will impose both conditions (2.1) and (2.2), so that
ReD(k', 0) is positive for k' positive. We will consider
Eq. (3.9) only for small residue c. Now, if ImD(p', 0))0
for ~c~ sufficiently small, it is necessary to choose &0.
In this case the presence of CDD poles will increase
D(0). On the other hand, if ImD(p', 0)(0 then for

~
c

~

sufficiently small, it is necessary to choose c(0, and the
presence of the CDD pole will decrease D(0).

CDD poles always occur in the inhomogeneous term
of the equation for D, so that their presence does not
affect the possibility of ghosts appearing at k'=~.
However, CDD poles can cause complex energy zeros
of D to move onto the physical sheet and become
ghosts.

The considerations given here can easily be gen-
eralized to analyze the effect of more than one CDD
pole in D; clearly, the consequences are similar in this
more general case.

It is well known that one can formally impose the
threshold condition for partial-waves amplitudes of
order I by putting an /th order CDD pole in D at 0' =0
so that for l= 1 the equation for D would be

The function D defined in (3.5) has the left-hand-cut
discontinuity opposite in sign to the function D in Eq.
(3.1). Under the assumption (2.1), one can be assured
that S ReD(p')) 0. Thus

8—D(k'=0) =-
Bc

X) ReD (p')--(0. (3.6)

(ii) Repulsive case:

D(k') =1+P +
~=~ b —ik p2 —k2

(3 7)

Here it is also necessary to require that c be positive in
order that the zeros of D in the neighborhood of k'= p'
occur on the unphysical sheet. It again follows that the
first zero of D must enter the physical sheet either at
k'=0 or k'= ~. Let us assume that condition (2.2) is
satisfied. Then one can easily show that no zeros of D
pass through k' =0.A ghost zero of D enters the physical

D(k') =1—g D(—a ')
m=i g

p~ c
D(—b.2)—,(3.10)

=~ b —ik k~

where c&0 is necessary to avoid a zero of D on the nega-
tive real axis. One can show that in the purely attractive
case p„—=0, the solution of (3.10) for D will always have
zeros in the upper-half k plane. In the purely repulsive
case, D will have no unwanted zeros if condition (2.2)
is met. Finally, if one considers sufficiently small c in
the mixed case, Eq. (10) will have a solution if (Rek)
X(ImD(k' c=0)]&0 in the neighborhood of k'=0.

The latter result is in concurrence with the general
theorem proved by Martin~ showing that the number
of oscillations in the left-hand-cut discontinuity for the
/th partial wave must be greater than or equal to l.

~ A. Martin, Nuovo Cimento 38, 1326 (1965}.
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IV. RELATIVISTIC CASE VfITH NO INELASTICITY ls

C= Max
Here we will obtain sufhcient conditions upon the

left-hand-cut discontinuity to guarantee that the rela-
tivistic PWDR has a solution. We will make the ansatz
that the partial-wave amplitude for equal-mass scatter-
ing be written in the form 1V/D, where D has no zeros on
the physical sheet and no CDD poles, and E satisdes
an unsubtracted dispersion relation. We will~)initially
consider the "elastic" problem; i.e., we require that f(k')
obey the following relation for 0&k'& :

If 8 is Gnite and C is less than one, the Neumann series
of the integral equation (4.4) for D converges, and one
obtains the bound

Max
I
D(k') —1

I
&8/(1 —C).

k& -ie &0

Since D is real-analytic as a function of k, a similar
bound is valid for ks+ie real and positive. Thus if

(4 1) 8+C(1, then relation (4.6) is true; and by inference,
D has no zeros on the physical sheet of the k'
plane.

It is shown in Appendix E that if hT is subject to the

(4 2) following condition, then 8+C will be less than unity:

Im f(k') =k/(m'+k')'i'
I f(k')

I
'.

The 1I/O d.ecomposition leads to the equations

1 ~ dq2
1V(k2) =— ——D(q2)AT(1I2),

q' —k'
I+@2 -~'

I ~T(p2) I

dp' (1.
ns( —P')'"

(4.9)dfft g
D(k') =1—— —— AT(q2). (4.3)

s q2 —k' (qs+2122)'"

IkT = —lrA8(k2+a2) .

2 An examination of Eqs. (4.2) and (4.3) shows that a
D(k') =1+— dP'D(P )DT(P')H(P sk') s (4.4) bound state occurs at k'=0 when

We will compare this with an explicitly soluble model in
One may decouple these equations to obtain the follow-
ing integral equation for D:

where

H (ps, k2) = g
(4.5)

(C'+~') '" (C' —p') (C' —k')

2X "
dg 8

(~2 —~2)1/2 (g2+g2)2
(4.10)

ID(k') —1l &1 (4 6)

for k'Wie&0, he could deduce via the Phragmen-
Lindelof theorems that relation (4.6) was valid every-
where in the cut k' plane. In particular, therefore, D
would not vanish in the cut plane.

Now we obtain conditions upon AT which are suffi-
cient to establish (4.6). Let us make the delnitions

( 2 l4

Max
I

dp'IAT(p') I IH(p' k')
I I (4 7)

ks -is real r
If& —ie) 0

Of course, one must place a Holder condition upon 1' along the
left-hand cut and require that nT(pr) s 0 as pe-s —se to guar-
antee that the functions N and D defined by (4.2) and (4.3) are
actually analytic in the desired regions.' See H. McDaniel and R. L. Warnock, Phys. Rev. 180, 5433
(tw9).

The essential point here is that Eq. (4.4) is a nonsingular
integral equation, in contrast to the system (4.2) and
(43)

Ke wish to find conditions upon DT which are sufh-
cient to guarantee that D(k'), the solution of (4.4), has
no zeros on the physical sheet of the k' plane. From the
structure of (4.3), it is implicit that D is analytic in the
cut k' plane' with a right-hand cut along k'& Oy and that
D —+ j. as k' —+~. Thus, if one were able to show that

A ghost occurs at k'= when

2X "
dg q2

(~2+2122)1j2 (g2+g2)2
(4.11)

To compare condition (4.9) with the exact answers, let
us set rri=a arbitrarily. Then (4.9) guarantees that a
solution exists if

I
I, l/a'=I/(1+%2); (4.10) implies that

a bound. state occurs when )/as=air; and (4.11) lndl-
cates that a ghost is produced when —X/us = asar. 's

One would expect that condition (4.9) could be
greatly improved by more careful analysis of this ques-
tion. We have established that for sufficiently weak.
coupling strengths, a solution of the relativistic, elastic
PWDR does exist for a large class of left-hand-cut dis-
continuities 8 T. We remark that Eq. (4.9) contains the
implicit requirement that (g—p2)AT(p2) —+ 0 as ps~
—~. One can obtain a more general result which does
not contain this implicit requirement. Here we merely
state it:

For every number e such that 0&a&1 there exists
a number X(e), such that if DT(p2) is subject to the

Note that there is no symmetry between formation of bound
states with discontinuity hT and ghosts with discontinuity —~T.
The nonrelativistic analogs of the integrals in (4.10) and (4.11),
which do not contain the factor (q'+m')'12, happen to be equal.
The symmetry exists in the nonrelativistic problem and not here.
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condltloIl

dp' —(1,
( p2)1—c

(4.12)

then the quantities 8 and C will obey the relation
C&1. As a consequence, condition ~4.1 ~ s

cient to guarant t rantee a solution of the PWDR. Note
thatE . (4.12) still contains the requirement thathat q. &

~. s i
AT(p') ~0 a,s p' —+ —~. It is necessary o
AT —+ 0 in this limit in order that the unsubtracted dis-
persion relation for 1V )Eq. (4.2)j be valid.

V. RELATIVISTIC CASE WITH INELASTICITY

To obtain unique solutions of the PWDR in the ab-
sence of CDD poles, it is necessary to have some infor-
mation regar ing con rid'

~ t 'butions to the unitarity relation
~ ~ ~

from inelastic intermediate states. This information,
regarde as inpu od d t t the boundary-value problem along
with hT, is customarily given in one of two ways:

Case A. One is given the function g(k), subject to the
constraint 0& (k) & 1. The partial-wave unitarity re a-
tion may be written in the form

It is implicit in these requirements that q gq&1+
for all values of q. I et us define the quantities Bz and
Cz in analogy to Sec. IV:

2
By = Max

k2 —zc real 2

km —i) 0

C), —— Max
—~ &P'& —p~ 7I

2

p

ga

dp'I»'(p')
l I

II~(p'»')
I I

(5 5)

~c'I &~(~'il l»(v', i")I) .

(5.6)

p2

+ dp'ihT(p') i
&1. (5.7)

It is clear in analogy with Sec. that a solution of the
boundary-value problem will exist if Bi,+Ci,&1. It is
shown in Appendix F that Bi,+Ci,&1 if the following
conditions on AT, g, and o. are met:

—p2

7rm ir n.o „(—p') '~'

2i

(m2+k2) 1/2 ~(k)~2i5(ki
f(k'+is) =

k

h thus established that a solution does exist

for k&0 51 in the relativistic, inelastic case if conditions ( . ) an

where 8(k) is a real function to be determined by solving
the problem.

sub'ect toC B. One is given the function X(k), su jec ouse . n
itarit isX(k) &1. In terms of X, the statement of unitari y

'

1mf(k'+i~) =kk(k)/(k'+m') '"
i
f(k'+is)

i
',

for k'& 0 (5.2)

If one is given gl, q as
'

~qkz input he may use a tec nique
discovered by Froissart" to reduce the problem to t e
elastic case considered in Sec. PJ,
hand-cut discontinuity AT(k') is dependent upon

We will consider here only case 8, where one is given
X(k). The E/D decomposition here is

4.4 thesimilar to that in Sec. IV, except that in Eq. ( . ) e
function H is replaced by Hq, where

dq X(q) q'

(q'+m') 'I' (q' —k') (q' —p')
~ ~

We wish to restrict X(q) so that Hi, is analytic in k' in

impose ethe following condition of Holder type on I, :
let thereF d ' greater than or equal to zero, leFor q an q

exist a constant g such that

l&(q) —&(q')
I &alq —q'I ll(q+q') I', (54)

where n and P are positive numbers such that e+P = .
Let us also assume that X(0) =1.
"M. Froissart, Nuovo Cimento 22, 19 196I

VI. CONCLUSIONS

In ec. we iS II limited considerations to the case in
which the left-hand cut of the partial-wave amp I u e
was approximated by poles L q.
that if conditions (2.1) and (2.2) are met by the positive
and negative parts of AT, respec

'
y,tivel the nonrela-

1
'

E//D e uations will lead to solutions fortivistic, e astic eq
of the k'which D does not vanish on the physical sheet o t e

plane.
toOne expec s at th t these results should generalize

the case in which AT is continuous, at least for a large
class of functions AT. i2 Roughly speaking, it is reason-

that the integral equation for D the
continuous analog of Eq. (2.5)] be essentia y o re-

d that the Fredholm determinant of thisholm type an a e
'

f a Holdert' be nonzero. Also, AT must satis y a o er
d 1 2 arecondition if the Cauchy integrals in (1.1) an

to lead to functions analytic in the respective cut
planes.

T is non-We make the working hypothesis that if 6 is
pathological in the above sense, one may uniform y ap-

AT b oles in the 1V/D equations. Thus, inproximate y p
th t nuous case one expects there wi e accep a

n 2.2 aresolutions if the continuous analogs of (2.1 an
met. Since these latter conditions are rather unwieldy,

'd the more restrictive simpler conditions
(2.13). The continuous analogs of these conditions
should be sufficient to eliminate zeros of D in non-

f the relativistic version of this question is
CERNTh 977 ( bl h d)given in a paper by A. K. Common,
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and

1 iM2 Q 2
q

aT, (q') &1
22r „g(—q)'

pathological cases. In other words, one would expect
that if AT =d T,+B,T„where AT, &0 and AT,)0, such
that

cut discontinuities AT which produce bound states but
not ghosts. Not much is known about it, however. The
appearance of ghosts at in6nity can be avoided by mak-
ing sure that the Fredholm determinant of the integral
equation for D does not vanish. Complex-energy ghosts
on the physical sheet are more difficult to avoid.

d 2
q

AT (q')& —1,
22r „g(—q')

(6 2) APPENDIX A

Here we consider the matrix
there would be no zeros of D on the physical sheet of
the k' plane.

We expect a similar generalization of the results
about CDD poles obtained in Sec. III to the case in .

which AT is continuous.
In Sec. IV it was shown that if AT is nonpathological

and subject t.o condition (5.9), the X/D equations (4.2)
and (4.3) have a solution for which no zeros of D appear
on the physical sheet. We expect that the results of
Sec. II should have some generalization to the rela-
tivistic case. The results obtained in Sec. II are obtained
as consequences of symmetry, monotonicity, and posi-
tive dehniteness, and hence are rather independent of
the form of the matrices appearing there. Details will
not be given here; we merely state the result, which is
analogous to (2.13).

Consider the relativistic X/D equations in which AT
is given by Eq. (2.3):

M = {b;;+X;/(a;+a;)}.
Let us assume that the determinants of this matrix and
the principal submatrices are positive. We will show
that,

(det M)&0.
N, ;

We will prove this by induction on E, the order of the
matrix M. For X=1 the result is trivially true. Let us
assume the theorem is true for X (let b =aN+1); then

rj 8;,+X;/(a;+a;) 1/(a,+b)
(det M) =det

r/her N+1 N+1 l;/(a;+b) 1/2b

/a; —by2
=det

a;+a; Ea;+b)

M Since the theorem is assumed to be true for Eth-order
L
—P X 5(k'+a,„')+P / „b(k'+b ')j. (6.3) determinants

m=1 n=l

M 2g dq (1
12r (q2+=2/22)1/2 (q2+a 2)

~m 2

2P, n —(1.
(q2 2/22)1/2 (q2+b 2)

One expects analogous relations to be true for the case
in which AT is continuous. A generalization to the in-
elastic case should also be possible.

Finally, we note that the 1V/D equations are often
used to calculate the location and residues of bound
states for cases in which AT is strong enough to form
bound states. (It is usually assumed that CDD poles
are absent when this is done. ) In effect, one is assuming
that the partial-wave amplitude f(g, k2) corresponding
to the discontinuity ghT is meromorphic in some su%-
ciently large domain of g and k2. The question of whether
such a domain exists will not be considered here. Such
a domain does exist in nonrelativistic scattering oR a
superposition of Yukawa potentials.

Jn scattering oR a superposition of Yukawa potentials,
one does not get ghosts; ghosts are also unwanted in
1V/D calculations. There exists some class of left-hand-

Then sufficient conditions for a solution to the PWDR
problem are

l3 ~;0(—~,)—(det M) & det 8;;+ &0.
clgN+1 N+1 N ar+a/

Thus the result is true for determinants of order @+1
and the induction proof is completed.

APPENDIX B

Here we will prove Theorem II; our proof is based
upon that of Ostrowski and Taussky. '

We will show that if a real matrix 8=5+2, where S
is real symmetric and positive definite, and A is anti-
symmetric, then

detB& det5.

Let us first note that

detB = (dets) det(1+S 'A) .

Let us recall that if II is a Hermitian matrix, then S 'II
can be diagonalized and has real eigenvalues"; thus the
matrix S 'A can be diagonalized and has imaginary
eigenvalues. In fact, since S 'A is a real matrix, the
eigenvalues occur in complex conjugate pairs, so that

det(1+5 'A)&1,

13 See J. %'. Dettman, Mathematical Metlzods in I'Isysics and
E/2gir/eer2mg (MoGraw-Hill Book Co., New York, 1962), p. 59.
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or, equiva1ently,
detS& detS& 0.

then
ReD, (k') (1 (C3)

The theorem is thus proved.

APPENDIX C

and

ReD.(k')&1—g Q —D.(—a ') =D.(0), (C4)

Here we will establish the relations (2.8) for the
functions D, and D„, which are defined in Eq. (2.6)
with the parameters subject to conditions (2.1) and
(2.2), respectively. The argument will be presented only
for the attractive case D, ; the result for D„may be ob-
tained analogously.

Let us rewrite Eq. (2.6) as a function of x= ik—,

D.(—x')=1—
g P -D.(—a ').

m=r g +x
(2.6)

LNote that D(—a ') are real. ) For sufliciently small

g, D, has no zeros in the region Rex&0; thus D,(—a ')
are positive. In that case D,(—x') is a Herglotz func-
tion; it can vanish only for real values of x. D, remains
a Herglotz function so long as it has no zeros in the re-
gion Rex&0; in fact, as g is increased, the Grst zero of
D, to enter the right-half x plane must do so at x =0.

Under condition (2.1) one can be sure that D, (0) is
positive for 0&g& 1.It follows that under this condition
D,(—x') is a monotonically increasing function of x
for positive real x; i.e., for x)0,

for real positive k.
The result (2.8) is thus established.

APPENDIX D

Here we will show ReD(k')&0 for k'&0 under the
assumption of (2.1) and (2.2). One may use Eqs. (2.5)
to obtain the relation

One may eliminate the auxiliary quantities to write this
in matrix form,

S ReD(k')

X;u;
g

(k'+a/2)
—h

(k'+bP)

A. a
n ReD(k') =1—g — —D(—a„')

m=1 k2+a s

pnbn+g D(—b.'). (D1)
rk'+=b„'

0&D,(0)(D ( x')&D (——~)=1. (C1)

Now let us consider ReD, (k') for k real and positive.
From (2.6) one obtains

gX;
det 1 b/ +

M+X+1 (g +g )

p
(D2)

(b)+a„)

X u
ReD, (k')=1 —

g g D(—a ').
m=r g +k

(C2)

gA.;
(a.+b-) (b&+b )

One may eliminate the first column and then manipulate
Since under our conditions D,( a) is posi—tive, the determinant into the following simpler form:

X) ReD(k') = det
gX; k' —u, b~

a+b (k'+a')"'(k'+b ')'"

gX k —au

a +a (k2+a .2)1/2(k2+a 2) 1/0

hp~ k —8mb~

b+g (k 2+a 2)1/2(k2+bP)1/2

hp) k' —b)b.

b +b (k2+b 2)1/2(k2+b 2)1/2

The diagonal submatrices in (D3) are positive definite,
as will be shown, so that the conditions of Theorem II
are met. One can see, in fact, that the determinants
of these submatrices are simply K), ReD, (k') and
5)„ReD„(k'), where S, and D„are defined in Eq. (2.6).
As a result of the inequalities (2.8) it follows that
K) ReD(k') &0.

%e will now establish that the diagonal submatrices
in (D3) are positive. The principal subdeterrninants of
the top matrix are positive, since they are equal to
S ReD, (k') with some X set equal to zero. Similarly,

the principal subdeterminants of the bottom matrix are
also positive.

The desired result is thus obtained.

APPENDIX E

Here we will show that 8 and C, defined by Eqs.
(4.7) and (4.8), respectively, obey the relation 8+C& 1
under the assumption F&1, where Ii is defined by
Eq. (4.9). We will show this by establishing that
8+C(F.
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and bounding each term separately, using the condition
(5.4) in the process. We merely state the result here,

I &2 t
&Lg/v'( —p')3-'~+~ ')

Thus we have shown that

(FS)

(1+2gnt sr g 1
lReII, (p,~)l&l -~ — . (F9)

m 2 n Q( —p')

One can now employ bounds (F3) and (F9) to establish

that B~ is subject to the bound

/ 1 2g 2g) o dps
+—+

I
l»(p') I

xm x en

dp'l AT(p') l
. (F10)

From the inequalities (F2) and (F10), it follows that
condition (5.7) is sufhcient to guarantee that Bq+Cq&1.
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Formulations of baryon-exchange-degenerate schemes incorporating SV(3) symmetry are presented.
We discuss the relevance of the SU(3) solutions to the baryon spectrum and backward-scattering data and

present a more empirical broken-SU(3) approach to reconcile the duality constraints with experiment.

I. INTRODUCTIOÃ

HE duality of direct-channel resonances and Regge
exchange poles' has led in some instances to a

considerable simplication in dynamical models. The
combination of duality and SU(3) theories gives
further severe restrictions on trajectories and residue
functions, but unfortunately we find that some of these
constraints appear to be at variance with empirical
observation. Since SU(3) is a broken symmetry, it is

an interesting question whether a broken exchange-
degenerate SU(3) theory can exist. In this paper, we

investigate duality constraints for s, t, and u channels
in meson-baryon scattering, seeking a solution con-
sistent with the baryon spectra and meson-baryon
scattering data.

In those pseudoscalar-meson-baryon scattering re-

actions for which the t channel involves exotic meson-

exchange quantum numbers, the absence of forward
peaks is one of the more striking empirical observa-
tions in strong-interaction scattering; similarly, back-
ward peaks are absent to a very low level for reactions
requiring the exchange of exotic baryons. '' The ab-
sence of exotic exchanges, as inferred from scattering
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Energy Commission, under Contract Xo. AT(11-1)-881,C00-238.
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data, provides valuable insight into the dynamics of
these two-body reactions through the duality principle.
The duality constraints connected with t-channel

exotic may be considered separately from those con-

nected with n-channel exotic. There is already some

evidence on the validity of the I-channel exotic con-
straints from E+p backward-scattering data. 4 On the
other hand, the empirical absence of t-channel peaks
should place even more stringent requirements on the
dynamics, since the allowed forward cross-section
peaks are generally an order of magnitude larger than
the allowed backward cross-section peaks. We con-
sider it to be most reasonable, in view of these facts,
to impose both t- and I-channel exotic duality condi-
tions simultaneously. This we do in Secs. II and III.

A further complication in applying duality for baryon
exchanges concerns the MacDowell symmetry. ' Ana-

lytic requirements on fermion exchange amplitudes force
a conspiracy at N=O between exchanges of opposite
parity. If we first restrict our attention to positive u
(the mass region), then duality conditions can be
applied to a I-channel parity-conserving helicity
amplitude of definite v.I' quantum number5 and we ob-

e V. Barger, Phys. Rev. 179, 1371 (1969); P. B. James, ibid.
179, 1559 (1969); K. Igi and J. Storrow, Nuovo Cimento (to be
published).' At asymptotic energies (s —+ ~), fermion Regge-pole exchange
contributions can be isolated according to 7.P quantum number
through the I-channel parity-conserving helicity-amplitude
formalism (cf. Ref. 3). By this separation, we can deal indepen-
dently with the dominant and reflected (in +st) branches of the
fermion exchange amplitudes. If instead, we were to consider
directly the invariant amplitudes, 2 and 13, then both &P branches
would be involved simultaneously.


