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We have studied the simultaneous bootstrap of the p and f' mesons, using the Balass method. When
we include the exchange oi an fe with physical parameters in the input force, we find that we obtain an
approximately self-consistent p with a mass of 710 MeV and full width of 100 MeV; the degree of self-
consistency is somewhat improved if the width is reduced to 66 MeV. One can obtain a simultaneous boot-
strap of both the p and f' with a p mass and full width of 710 and 46 MeV, and f' mass and full width of
1344 and 112 MeV, respectively. We believe that the double-bootstrap results are somewhat a6'ected
by our approximate treatment of inelastic effects, which involves a discontinuity in the inelasticity function
Ri near the position of the f .These results are based upon taking n, the number of poles approximating
the left-hand cut, equal to 7. The use of a large number of poles is important, and it is not at all clear from
the n dependence of our calculations that we have yet obtained a limiting form of the results as n becomes
large, even with n= 7.

I. INTRODUCTION
' 'N a previous paper' (hereafter referred to as AE) we
i - studied the validity of the Balazs method' 4 and
showed that it is a convenient method for doing boot-
strap calculations and, coupled with the Williamson-
Everett (WE) criterion, ' makes well-defined and rea-
sonable predictions, at least in the p bootstrap problem.
In this paper, we apply the Balazs method to the
problem of the simultaneous p and f' bootstrap. We
will draw heavily on the notation, terminology, and
equations of the previous paper AE in order to avoid
repetition.

In AE we found n—1 series of solutions for the boot-
strap problem, where e is the number of poles approxi-
mating the left-hand cut. We numbered the solutions
in order of increasing values of the p mass, and found
that for all values of e tried, series No. I was the series
chosen by the WE criterion. ' In this paper, we will
accordingly deal only with series No. I. Furthermore,
the WE criterion is used all through this paper in
choosing the optimum matching point vg and corre-
sponding bootstrap values, even when not explicitly
mentioned. A useful quantity connected with the KE
criterion is the percentage difference between the eth
derivatives of the two forms of the scattering ampli-
tude evaluated at the matching point v~ in an e-pole
approximation. In the channel with isotopic spin I and
angular momentum /, we define this quantity by

Pt'(rt, v p)

v' Xt'(v)-= P t'(v) j.=.~'"' ——
(v —v,)'-'Di'(v) „=„,

LAi'(v) j„=„ri"l X100, (1)
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i A. F. Antippa and A. E. Everett, Phys. Rev. 178, 2443 (1969).
~ L. A. P. Balazs, Phys. Rev. 128, 1939 (1962).
3 L. A. P. Balazs, Phys. Rev. 129, 872 (1963).'L. A. P. Ba15zis. Phys. Rev. 132, 867 (1963); 134, ABl(E)

(1964).
6 M. R. Williamson and A. E. Everett, Phys. Rev. 147, 1074

(1966).

where (rt) indicates the nth derivative 1Vtr(v), Dti(v),
and Air(v) are defined by Eqs. (AE-3), (AE-4), and
(AE-9), respectively. We choose the optimum match-
ing point for a given partial wave by seeking the value
of vp which makes the corresponding Pi ——0, or at
least minimizes it.

The p bootstrap problem has been the subject of
intensive investigation; several examples of such cal-
culations are given in Ref. 6. As is well known, one of
the principal difficulties with most such calculations
has been that while one could obtain, often with the
help of an arbitrary cutoff parameter, a resonance at
approximately the right position, the theoretical widths
have generally been much too wide. ' 4 One of the
motivations for the present work is a calculation done
recently by one of us, ~ using another approximation
method, also developed by 3alazs, s in which the
scattering amplitude for the relativistic problem is
obtained by the solution of an appropriate nonrela-
tivistic Schrodinger equation with an energy-dependent
effective potential. In Ref. 7 it was found that, if the
exchange of the f' as well as of the p was included in
the input force, one obtained a self-consistent p of the
right mass and a width almost consistent with experi-
ment, and, in addition, obtained an output f' of ap-
proximately the right mass and width, so that one
had a simultaneous or double bootstrap. The relatively
successful result of the calculation in Ref. 7 appears
to be a consequence of the inclusion of a shorter-range
attractive force, f' exchange, plus the fact that the
effective potential method includes, albeit approxi-
mately, the contribution of the higher-order terms in
the Mandelstam iteration. ' This latter fact has been
emphasized by Finkelstein, " and means that one can

~ G. P. Chew and S. Mandelstam, Nuovo Cimento 19, 752
(]961);B. H. Brandsden and J. W. Morat, ibid. 21, 505 (1961);
M. Bander and G. L. Shaw, Phys. Rev. 135, B267 (1964); J. R.
Fulco, G. L. Shaw, and D. Y. Wong, ibid. 137, B1242 (1965);
P. D. B. Collins, ibid. 142, 1163 (1966).' A. E. Everett, Phys. Rev. 173, 1663 (1968).

8 L. A. P. Balazs, Phys. Rev. 137, B1510 (1965).' S. Mandelstam, Phys. Rev. 112, 1344 (1958); R. Blanken-
becler, M. L. Goldberger, N. N. Khuri, and S. B.Treiman, Ann.
Phys. (N. Y.) 10, 62 (1960).

» J. Finkelstein, Phys. Rev. 145, 1185 (1966).
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at least hope that the effective potential method will
provide a better treatment of the more distant singu-
larities of the full amplitude in the t variable than,
e.g. , a conventional E/D calculation.

Although the results obtained in Ref. 7 are encourag-
ing, there are theoretical questions concerning the
result, which arise from two sources. The energy-
dependent potential which yields the scattering ampli-
tude in the channel where s is the square of the center-
of-mass energy and t the four-momentum transfer
squared has the forms

V (r,s) = Ch e(t,s)

In practical applications of the method, two approxi-
rnations are made. The first is that one writes e(t,s)
=2s 'i2Ai(t, s), where Ai is the absorptive part of the
amplitude in the t channel. This approximation is
exact only for t less than the lowest t-channel inelastic
threshold; for larger v, an exact calculation of v requires
a Mandelstam-type iteration, with the usual attendent
difficulties of divergent integrals, etc. Moreover, A~,
and therefore n itself, is in turn approximated by one
or two low-lying resonances, and there is the question
of the contributions from larger values of t. ~ is expected
to vanish at t large enough that A ~ is well represented
by its Regge asymptotic form, ' but there might be
significant contributions from intermediate energy
regions. These considerations raise doubt particularly
about whether the inclusion of the full f' contribution
to A& in the potential is correct. Chew" has suggested,
on the basis of the new form of the strip approxima-
tion, " in which the potential is represented by the
leading t-channel Regge trajectories at all values of s
(and not just s very large), that the force due to f'
exchange may be much smaller than its apparent value.
It is not clear that the representation for the potential
assumed by Chew is correct at small s (indeed, if taken
completely literally, it leads to contradictions with
t-channel unitarity"). However, it would clearly be
desirable to verify the conclusions of Ref. 7 that
one can obtain a reasonably narrow-width p when
higher-mass contributions, in addition to the p, to the
crossed-channel absorptive part are included by using
a different calculational procedure, with different a,p-
proximations involved, than were there used.

In view of the foregoing, it seems interesting to
study the double-bootstrap problem in the Balazs
method. A start on this has already been made by
Balazs in Ref. 3, but without the study of the effects
of choice of number of poles and matching position
which now seems to be necessary, ' ' and without the
inclusion of the contributions of the large-t part of the
crossed-channel amplitude as approximated by direct-

» G. I.Chew, Phys. Rev. 140, 8142'l (1965).~ G. F. Chew and C. E. Jones, Phys. Rev. 185, 3208 (1964)„

channel Regge poles; these contributions are included
in the work of Refs. 4 and 1, and will be included here.
Since the crossed-channel amplitude at large 3 is thus
included approximately in the input, arid since the
poles which approximate the left-hand cut and whose
positions and widths are determined by the method
hopefully reproduce, in a rough way, the effects of
both the near and distant singularities in s of the
partial-wave amplitude, the Balazs method should share
with the effective-potential method the advantage of
giving a better treatment of distant singularities than
the cV/D method. Moreover, the Balazs method avoids
the necessity of distinguishing between the potential
and the t-channel absorptive part, since the absorptive
part itself is the input into the calculation. In addition,
the method allows the inclusion, in an approximate
way, of inelastic effects in the direct channel; this
cannot be done easily using the effective-potential
procedure. The problem of the contributions from
intermediate values of t in the crossed channel, where
the amplitude may not be well represented either by
resonances or by its asymptotic form, still remains.
And, of course, there are additional approximations
peculiar to the Balazs method itself.

The results are discussed in detail in Sec. IV. We
6nd that it is important to go to larger numbers of
Balazs poles than considered in AE. When this is done,
we find that, if the f' with its physical mass and width
is included in the input, one obtains a self-consistent
p in good agreement with experiment. A simultaneous
"bootstrap" of both the p and f' is possible; the re-
sulting self-consistent values are reasonable, but not
as close to the experimental values as the results ob-
tained for the p with physical f' input. We believe
that this is at least partially due to the fact that in our
approximate calculation the value of the inelasticity
parameter Air is changed discontinuously from 1 (pure
elastic) to 3 near the position of the f'. The predicted
resonance widths are as narrow, and in most cases
narrower, than the experimental values. The most un-
satisfactory aspect of the present work is that it is not
clear that the results would not be significantly changed
by a further increase in the number of approximating
poles. The amount of computer time involved made it
impracticable to attempt to study this question by
carrying out further computations. The results do, at
least, establish, using different approximation tech-
niques than used in Ref. 7, that a bootstrap calculation
with a plausible treatment of more distant singularities,
in addition to p exchange, can yield self-consistent
results for both resonance masses and widths which are
in reasonable (about 10—20%) agreement with
experiment.

The values we have used for the experimental pa-
rameters of the p and f' are given in Table I, where
vg is the center-of-mass momentum squared at reso-
z.ance R, in units with h= c=m += 1, and is related to
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TAsLE I. Experimental values of the p and fo mass and width.
vp and vy are in units of 5=1N +=c=1,F, and Fy are dimension-
less, 1'1zp and m~ are the masses in MeV, and 6'I, and Am~ are the
full widths in MeV. Fy is computed with vz = —25 in Eq. (3).

V M F ABZ Vf SSf Ff 6'/)Sf

6.18 750 0.167 100 19.025 1253 0.279 140

p'() =(-"'/4 ')"'"". (7a,)

Rarita et al."give the coupled values for e& and c& in
our units as

much smaller slope and a much more rapidly varying
residue function. "In this paper, we use a Pomeranchuk.
residue function of the form

the mass m~ (in MeV) by

my=2m (vg+1)'~',

where m is the pion mass in MeV. F~ is the reduced
half-width of the resonance E. and is dimensionless. It
is related to the full width in energy, expressed in
MeV, by

~m g=2v~"&+'&'(v g vx—)' '~m—.pg/( v'+1), (3)

where lg is the spin of the resonance. The reader should
note that, for reasons of convenience, when /g@1 the
parameter I'z defined by Eq. (3) divers slightly from
the usual reduced half-width. Measurements of the
mass and width of the resonances show some varia-
tions, but these are not significant for the present work. ,
considering the probable accuracy of the approxima-
tions involved.

II. PROCEDURES AND CHOICE
OF PARAMETERS

ep=0.00856 and cp ——0.008173.

The change in the form of the Pomeranchuk residue
function affects the form of the input amplitude in the
I=O channel, and the estimate of Air(v), the ratio of
total to elastic partial-wave cross sections. The input
amplitude is discussed in Sec. III, and RIr(v) is evalu-
ated in Appendix A. In AE, we found an estimate of
Air(v) following a procedure given by Balazs in Ref. 4
(hereafter referred to as 3 III). The results are isospin
independent and are given in Fig. 7 of AE for /=0 —3.
In calculating Air(v), we had used Eqs. (Sa)—(6b) and
argued that the large slope will compensate for the
slowly varying residue function. This is con6rmed by
Fig. 1 which shows the value of Eir(v) calculated by
using Eqs. (7a) and (7b); it is seen that Air(v) =3, the
value used in AK, is a reasonable average value of

IOO

Two modifications are introduced in this paper over
AE, ™y,the treatment of the p trajectory and the
form of the Pomeranchuk residue. The p trajectory is
given by

ol
n, (s) = 1+e,(v- vv)

~.(s) =~.(0)+'eos- (4b)

IO—

where s=4(v+1), as usual. In AE, the slope was fixed
and set at cp=0.05. In the present paper, we have
axed the intercept n, (0) instead, since experimentally
it seems somewhat better determined The slope is now
given by

e,= [1—u, (0)j/(v, +1). (4c)

Also, in AE a Pomeranchuk residue function of the form

M+I

b

I.O—

P (s)= —P (0)" && (5a)

was used, with Pp(0) given by the optical theorem as

where
Pp(0) = —o..o'/4w',

o.ooor ——0.75 (15 mb).

(5b)

(5c) O, I

IO

I I I I I I I II
IOO

I I I I I I I I

1000

ep(s), the Pomeranchuk trajectory function, was taken
as FIG. 1. R~r(v)a~o(v) as a function of v for several values of l

Rir(v) =ratio of total to elastic partial-wave cross section. The
Pomeranchuk residue function pp(s) is given by Eq (fa) with.
e =0.00856 and c =0.008173.

np(s) =np(0)+ ', eps, -
with

ep(0)=1, and ep ——0.05. (6b)
~'W. Rarita, R. Riddell, Jr., C. Chiu, and R. Phillips, Phys.

In fact, the Pomeranchuk trajectory seems to have a Rey. 165, 1615 (1968).
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Rir(v) which is almost independent of /, as well as of I.
The asymptotic form of R&r(v) as given by Eq. (AE-7)
remains unchanged.

As discussed in AE, the results are independent of
the subtraction point vp, as defined by Eqs. (AE-4) and
(AE-5), if the exact form of the output reduced half-
width given by Eq. (AE-32) is used, and depend only
weakly on Po, even if one uses the approximate form
given by Eq. (AE-34) in which a linear output denomi-
nator function Dir(v) is assumed. Dtr(v) is defined by
Eqs. (AE-1) and (AE-2) and its linear approximation
is given by Eq. (AE-33). Repeating Eqs. (AE-32) and

(AE-34) in their general form, we have for the exact
output width the equation

(IB)out (I i )out
&i'(vz)

8 ReDi'(v)/r)v ( „=,a
(Sa)

TABLE II. Variation of the pole positions w;(N, v,vz) (i=1, e)
vrith n for vg=5. 5 and v= —2.

2 8
3 7.3

6.8
5 6.6
6 6.6
7 6.6

35 4 ~ 4

13 60
95 19
8.4 13
77 10
7.3 9.1

~ ~ ~

105
28
17
13

~ ~ ~

170
39
22

~ ~ ~

260
52

~ ~ ~

370

and for the approximate output width, the equation

(I'z)..i= (I'ir)..~= (vz —vp)&i'(vii). (Sb)

In the following, we refer to the use of Eqs. (Sa) and

(Sb) as the exact- and approximate-width cases, re-

spectively. In the present work, we investigate the
difference in results due to the difference in the two
forms of the output width and find that using the
exact form of the output width can change the results

appreciably, as will be seen in Sec. IV.
The choice of parameters is essentially the same as

in AE although some changes have been introduced.
Table II gives the pole positions (w;, i=1, e), as
defined by Eqs. (AE-3) and (AE-24)—(AE-29), as a
function of e. The values of m; were evaluated for
P= —2, Pg ——5.5 from figures similar to Fig. 6 of AE;
in general, the pole positions are very well determined.

The value of P& is slightly increased in this paper as
compared to AE because of the introduction of the f'
resonance as input into the low-momentum-transfer
amplitude given by Eq. (AE-10). vii is the point of
separation between low- and high-energy regions and
is the point at which Regge behavior sets in. Thus P~
must have a value which is larger than the c.m. mo-
mentum squared corresponding to the highest resonance
which is considered explicitly. In our calculation this is
the fP with an exPerimental value of vr=19.025 and a
self-consistent value as large as PJ

——24 in some cases;
hence we set P&= 25. In AE, where only the p resonance
was considered explicitly, we had set PD ——20.

A new variable, which did not play any role in AE,
appears in this paper. This is vs defined by Eq. (AE-1).
As mentioned there, the factor (v—vx)' ' is inserted
to factor the asymptotic behavior of the scattering
amplitude Air(v) out of the X/D equations. As seen
from Eq. (AE-1), vx needs to be large enough not to
destroy the threshold behavior P' for small P, and small
enough to allow the asymptotic behavior to set in at a
point which is consistent with the assumed starting
point of asymptotic behavior in the rest of the equa-
tions, speci6cally the point at which Regge behavior
becomes dominant. Thus, it seems reasonable to set
P~= —P~.

Experimentally, the values obtained for the intercept
of the p trajectory, tr„(0), as defined by Eqs. (4b) and
(4c), vary from 0.483 to 0.58. We found that varying
u, (0) from 0.58 to 0.483 hardly changes the results of
the single p bootstrap. Thus for the rest of the computa-
tions, as suggested by Ref. 13, we set

n, (0)=0.58. (9a)

Based on Fig. 1 and a o«,r ——0.75 (15 mb) (as justified
in AE), we chose the central average values Ri'= Rss ——3.
The subtraction point we set at Po ———2, and, for the
Pomeranchuk trajectory and residue, e~ and c~ are
given by Eq. (7b). The form of the p residue function
is the same as in AE. That is, we take the p residue
function to have the same form as that of the Pomeran-
chuk residue in Eq. (7a), but with

cp ——0. (9b)

III. INPUT AMPLITUDE

In performing a simultaneous p and fP bootstrap, two
low-energy resonance terms are retained in Eq. (AE-10).
Each resonance is defined by a set (v;, I';, /;, I;). One
term is due to the p resonance with (v„ I'„1, 1), and
the other is due to the f' resonance with (vr, I'r, 2, 0).
Thus, we have

~ '"'( ) = L4 '"'( )].+L4 '"'( )] (1oa)
where

E~ i'"'(v) 3.
12pn 2(v+1) 2(v, +1)

I'vvvPi 1+ -Qi 1+ (10b)
P Pp P

and
20Prp I'yves

L~i'"'(v) jr =
v (vr vA)—
( 2 (v+1) 2 (vr+1)

XPs~ 1+ Qi 1+ (10c)
vr P

As for the Regge term given by Eq. (AE-11), we
have already mentioned the fact that the Pomeranchuk
residue function varies more rapidly than implied by
an approximation of the form of Eq. (BIII-35), and it
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was precisely such an approximation that was used in
obtaining Eq. (AE-11). Now we slightly modify the
procedure of Balazs to obtain an equation similar to
Eq. (AE-11), but one which allows a more realistic
variation of the residue function of the form

while from (BIII-25), we have

P(s~)=vg ('»(v~ —vx)' — ("»P
( )'

&&Ld ()/d j.=. . (18)

Thus, since n p(sp) =1, we have

p(s) = const&(v (')ecc. Pp(sp) = v pI'pep. (19)

This can be written as

Starting from Eq. (BIII-20), we have

(11b)

Putting all the above together, Eq. (16a) reduces to

g ).(H)(v)

Lv/(v v )j(2vn)[I (0)) ( p)I(1+ p) (20)

P() () (l)
A $ (v) = —v'(2(x+ 1) — (2vs)) ~'

p (12a)
V Q

with

For the Pomeranchuk trajectory term, Pv(0), cz, and
es are given by Kqs. (5b), (5c), and (7), while the p
parameters are given by Eqs. (9) and (4c).

cg(e) = 2 I'(n+x)/~'~21'((s+1) (12b)
IV. RESULTS

g r(K) (v)
p (s)e4'~( "))v'(2vn)') +'p(

=g K;(l)
v "t(l;—1+a;(v—v;)]

In doing the p and f' double bootstrap, only one term
in Eq. (14) was retained, corresponding to the p tra-
jectory in the isospin I=1 channel and the Pomeran-
chuk trajectory in the I=0 channel. The p and Porner-
anchuk trajectories are given by

Renp(s) = 1+op(v —v,), Imnp(s) =0, (15a)
and

Reu~(s) = 1+es (v+1), Imnv(s) =0. (15b)

Thus, from Eqs. (14) and (15) we have

P.(,)~"'-"'(2 )"'-"'
A.g'(~) (v) =Kp(1) —

v (16a)
Vp6p V Vp

p (0)pcv(p+1) (2v )cv(v+1)—1

As'(~)(v) =Ks (2) (16b)
1-6~(v+1)

From Kq. (AE-12), we then have

K,(1)= —1.0 and Ks (2)= —0.4, (17)

c2(l) =m'"I'(l+1)/2'+'I'(l+-') (12c)

Now instead of approximation (BIII-35) Lwhich is
inconsistent with Eq. (11b) except in the case c,=0/,
we make the following approximation:

(2n+1)(;)(n) =const, (13a)

Rea=lg+ e(v —vs). (13b)

Then, evaluating Eq. (13) at v=v)), (n=lz) and sub-
stituting it back in Eq. (12a), summing over all tra-
jectories that contribute to the scattering amplitude
A)r(~)(v), and using the definition (AE-12) of K;(l),
we have

Because of the complexity and length of the equa-
tions involved in a bootstrap self-consistent calcula-
tion, complete reliance on systematic methods of itera-
tion is not possible. The situation is even more com-
plicated by the fact that simultaneous self-consistency
in two variables (four variables in the case of a double-
bootstrap calculation), the c.m. momentum squared
and the reduced half-width, is required. We have found
that we are forced to rely on familiarity and experience
with the specific problem at hand coupled with guess
work, intuition, and a set of "rules of thumb" that
develop along the way. This makes it necessary to
weigh the cost and eQort needed to obtain a specific
"bootstrap" for a given value of e and vg against the
usefulness of that result. Thus, in Figs. 2—5, we have
plotted the results of bootstrap calculations for a
certain range of vp, which is diGerent for diGerent
values of e. We believe that self-consistent solutions
of (v„ 1',) exist for vv beyond both ends of the range
plotted but that they are dificult to obtain, while they
do not serve any specially useful purpose. In special
cases where we thought the extension of the range
into a "dBBcult" region would shed more light on the
problem, we extended it. There are three main factors
that make a self-consistent solution dj'Loicult to obtain.
First, as e increases, the output vp becomes very sensi-
tive to the input v„ thus necessitating excellent initial
guesses. This is especially true for small v&, and also
for odd e cases. The second situation is that dvp/dvv

sometimes becomes very large, thus necessitating an ex-
pensive adiabatic extension of the range of solutions in
vJ; in order to be able to make good initial guesses. This
is also true for dl'p/dvv. The third hazard, which is the
most troublesome, occurs when I'p becomes excessively
large. The reason for this is that 1 p enters the low-

energy part of the input amplitude A&r z) (v) defined

by Eq. (10) as a multiplicative factor, and thus any
sensitivity this amplitude may have to variations in
the inPut value of v, grows linearly with I'p Fol Fp of
the order of 1.5, the initial guess on v, must be correct
to about 4 or 5 significant figures before a successful
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I.O

0.8-

0.6-

0
-7

l

-2 0
0 t

—5
l

-4
F

I

-3
I

-2 -0

(a) (b)

FIG. 2. Self-consistent values, in the approximate-width case, Eq. (8b), of v, and I', in a p bootstrap calculation with p and f input,
as a function of the matching point p~ and the number of poles tt. The mass and width of the input fp are fixed at their experimental
values, as given by Table I, while those of the p are determined self-consistently. (a) v„(b) I', .

TABLE III. Self-consistent values of (v„ I",) taken from Fig. 2
at the optimum matching point (vz), I,&", as judged by the WE
criterion, as a function of n, the number of poles. (v~),~t" and v,
are in units with k=c =m += i, m~ and hm, are in MeV, and Fp
is dimensionless. The value of Am, for n=7 marked by an
asterisk is self-consistent to about 6'P0, the other values to about
i'Po, as discussed in the text.

(v5')opt

—5.50—4.60—5.30—5.20—5.29—5.30—5.30

757
7i7
7i0
706
708
7ii
7ii

Vp

6.36
5.60
5.46
5.40
5.43
5.49
5.49

Amp

334
278
344
i84
i62
66

IOO~

0.550
0.497
0.624
0.336
0.294
O. i20
O.i67

bootstrap can be accomplished. The full range of varia-
tion of vx is —(p, +1)(pp (O. A careful study of Figs.
2—5 will show that when the solutions extend through
a limited range of vp which is considerably smaller
than the allowable range, it is because one of the three
above-mentioned difficult bootstrap conditions exists.
In any event, it appears that the optimum value of
vp always lies in the ranges of v&, for which results are
given, since, in general, the quantity I'&, defined in
Eq. (1), grows large near the ends of these ranges.

In presenting the results, we retain three significant

figures in general and sometimes four. On the other
hand, as already mentioned, in doing bootstrap calcu-
lations the output values are in some cases sensitive to
the fourth and fifth significant figures of the input
values. This should be kept in mind in any attempt to
reproduce the results quoted here.

We erst studied a p bootstrap calculation in which
fe exchange, with parameters equal to those of the
physical f', was included in the input, and the p pa-
rameters were determined self consistently. Figure 2
gives the results for the self-consistent values of the p
parameters as functions of v~ and e in the approximate-
width case; Fig. 3 gives the corresponding results for
the exact-width case. The two cases diGer markedly for
small e but become essentially indistinguishable for
large m. In Tables III and IV, we give the self-consistent
values of v, and F, at the optimum values of the
matching points, as a function of e, for the approxi-
mate- and exact-width cases of Figs. 2 and 3. In order
to attempt to answer the question as to whether the
results really approach a limiting value as e becomes
large, we have carried the calculations out through the
case +=7. As a practical rnatter, for some e it proved
dificult to obtain the self-consistent values in the
exact-width case at what would evidently'be the op-
timum value of vp, so that some lines of Table IV are
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left blank. We feel certain that solutions do exist for
all m. However, it appears that the minimum percentage
difference will, for m=4 and 5, occur at a value of vp

for which the width will be very large, probably greater
than 1.5, and as already mentioned, self-consistency is
dificult to achieve under these circumstances because
of the extreme sensitivity of output to input.

It is clear from Tables III and IV that one has a
well-defined theoretical prediction for the p mass, about
710 MeV, in the presence of physical f' exchange; this
differs from the experimental value by about 5%. The
m =2 and 3 results diGer somewhat from this value, but
all the results for e&~ 4 yield essentially the same result,
so that the method appears to yield a well-defined
limiting value for m, .

The situation with the width is much less clear. It
seems evident that if one wishes to obtain a reliable
result for the width, one must go to values of m at
least as large as those considered here. Using the ap-
proximate form of the output width, one finds the
bootstrap value for the width drops very sharply
between +=4 and x=5. The values for m=5 and 6
are roughly constant, and slightly larger than the
experimental width. However, between m=6 and m=7
there is again a rather sharp change, and the theoretical
value of the width drops to about -', of the experimental
value. The behavior in the exact-width case is roughly
the same, except that apparently the behavior is more

erratic for m =4 and 5, where we believe that the
theoretical widths are very large. The preceding results,
which correspond to the first six lines of Tables III
and IV, were obtained by requiring the input and
output widths to agree to about 1%. In view of the
approximations involved in the method, which presum-
ably affect the input and output widths in diGerent
ways, there is probably no reason to demand this
degree of self-consistency. It is not clear how much one
might relax this requirement. As shown in the last
lines of Tables III and IV, if one agrees to accept the
weaker requirement ~l"; —I',„t~ &0.01, or self-consis-
tency to within about 6%%uo, which seems not unreasona-
ble, then Are, =100 MeV„which is essentially the
experimental value, is also a self-consistent solution in
the 7-pole case.

Thus, from the foregoing, we see that we have an
acceptable bootstrap of the p, in the 7-pole case, with
the exchange of an fs with the physical paramet:ers,
and with a p mass about 5% less than the observed
value and a width consistent with experiment. The
degree to which one is encouraged by this result depends
on one's interpretation of the variation of the width
with n. One can take an optimistic view, particularly
if one takes the second of the two solutions for m=7
in Table V, and notes that the values of the width for
m =4 and 5 are probably very large, so that the change
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TAnLE VII. Self consistent values of (vp I'p vf Pf) fora simultaneous p and fodouble bootstrap. (vv) vtu and (vv)»PDare the optimum
matching points for the I= 1, /= 1 and I=-0, 3=2 partial waves, respectively. The meaning of the other quantities and their units are
the same as in Tables III-VI.

—5.40 708—5.30 711
5.44 118
5.49 46

(vp)zpf, 1'Np (MCV) pp 6/'lip (MeV)

0.216
0.0831

(vg) pt, Hsf (MeV)

—3.401 1410—3.601 1344

D~rsy (MeV)

24.50 42
22.17 112

0.0632
0.189

Finally, for the cases e =6 and m = 7, we have carried
out a simultaneous bootstrap of both the p and f'.
We have adopted the following procedure in performing
the double bootstrap. A p bootstrap, with p and fixed
f" input, was performed for different values of the
matching point vv, and the values of (v„ I"„) corre-
sponding to the optimum matching point, (vv), vr,", are
ta,ken to be the output. This constitutes the erst
iteration. In the second itera, tion we perform an f'
bootstrap, with p input taken from the first iteration,
for various values of vv. The values of (vr, I'r) corre-
sponding to (vv), vtss are taken as the output and then
used as input into the next p bootstrap calculation, and
so on. The iterations are continued until the output
values of the p and f' parameters are equal to the
input values. The exact form of the output width is
used throughout.

The results are given in Table VII, and are quite
similar to those given in Tables IV and VI. For v=7,
the f mass is somewhat decreased and the width
becomes somewhat larger in the double-bootstrap case
as compared with the ca,se when the p parameters are
held at their physical values, so that the double boot-
strap f' is in somewhat better agreement with experi-
ment. The p mass is unchanged, but the width, for
e = 7, is narrower and in worse agreement with experi-
ment than when physical f' exchange is used. It might
be added that, unlike the results given in Table IV,
the value of F, here is quite well determined even if
the degree of self-consistency required is relaxed; it
appears that in the 7-pole case I', must lie in the range
0.083~0.01 if one is to obtain self-consistency to within

From Table VII, we see that, in the 6- and 7-pole
cases, the Balazs method does allow a double boot-
strap of the p and f' with results in fair agreement
with experiment; in contrast to the usual calculation,
the resonance widths turn out to be somewhat too
narrow. Again, one has the troublesome problem that
there are significant changes, especially in the widths,
when e is changed from 6 to 7, so that it is difFicult to
know whether the results we have obtained are close
to what might be obtained as a limiting value if e were
made very large. We And it somewhat comforting that,
in the double-bootstrap case, the f' width increases
between e =6 and e = 7, giving us additional confidence
that the method does not lead to a continuing system-
atic decrease to negative widths as e is increased. We
should add that, as far as the values of the p parameters
@re concerned, we consider the results given in Table V,

obtained by fixing the fo input parameters at their
physical values, as more significant than the double-
bootstrap results. As we have already said, we feel
that the f' parameters obtained from the method are
somewhat unreliable because of our method of treating
inelasticity, and in a double-bootstrap calculation
inaccuracies in the f' parameters are in turn reRected
in the results obtained for the p.

It is perhaps worth pointing out that our double-
bootstrap results differ quite significantly, especially
for the f' mass, from those obtained by Balazs' in his
original treatment of the problem, in which he found
masses of 685 and 892 Mev for the p and f', and widths
of about 160 MeV for each. This merely emphasizes the
necessity of worrying about such things as the choice
of optimum matching points, the use of a reasonable
number of approximating poles, and the use of the
exact form of the output width, if one is going to
employ this method of doing bootstrap calculations
with any hope of success.

Finally, in discussing the results, it is perhaps worth-
while to point out that the effects on the output values
of the parameters of changes in the input values do
not always accord with one's intuitive expectations
based on the idea, that the forces we are dealing with
are "attractive. " For example, one would expect that
an increase in the input p width, and hence in the
strength of the attractive p-exchange force, would
lower the output p mass. Again, it would be expected
that if the fo input width were increased, one would
have to decrease the input p width to keep the output
p mass unchanged, since f' exchange is also attractive.
While there is a strong tendency for these and similar
expectations to be correct, one finds that for some
values of the parameters exactly the opposite effects
occur; e.g. , in some cases the p output mass increases
when the input width increases. These effects result
from the complicated nonlinear nature of the equations
being dealt with. It is true, e.g. , that increasing the
input p width gives a positive contribution to the
amplitudes A&i(v) in the nearby unphysical region.
This, in turn, tends to cause Xtr(v) to be more positive
for physical values of v, which in turn causes the zero
in the denominator function, i.e., the output mass, to
occur at a lower value of v. The foregoing is, in fact,
exactly what we mean when we say p exchange is
attractive. However, the p contributions to some of
the derivatives of the A~r(v) turn out to be negative,
and in some cases these negative changes in the deriva-
tives turn out to mean that increasing the strength of
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the p exchange force actually decreases the value of
Etr(v), on the average, in the physical region so that
the zero of the denominator function is actually moved
to a larger value of ~. One can look at the matter
somewhat differently by noting that the Balazs method
automatically includes the effects of short-range forces
which are required to produce a distant left-hand cut
which is reasonably approximated by the Balazs poles.
These short-range forces (which are determined by
the requirement that the two forms of the partial-wave
amplitude, and of e—1 of its derivatives, agree at the
point v =vv) may turn out to be repulsive, and evidently
for some values of the parameters the change due to
an increase, e.g., in the attractive p-exchange force is
more than compensated for by an increased effective
short-range repulsion. It is not clear whether this
apparent short-range repulsion should be taken literally,
or whether it results from the approximate form of the
t-channel absorptive part; it is possible that the differ-
ence between the form of the amplitude used and that
which would be obtained from p and f exchange by
the Mandelstam iteration procedure could correspond
to an effective short-range repulsion.

In the x-m problem the ratio of total to elastic
partial-wave cross section Z&r(v) is given by

~('(v) = —
2 (s/v)'" ImL1/~ 1'(v) 7

and the optical theorem takes the form

(A1)

where
ImA (s,0) =(I s(s—4)7't'/161'}o.(, ( (s), (A2)

s=4(v+1), m =h=c=1. (A3)

For v) v& we evaluate R&r(v) through equation (A1)
with A (r(v) given by Eq. (BIII-22) as

~1'(v) =Z pzr d (cos8)P((cos8)

2 sine/

XA'( —2v (1—cos8), 4 (v+1))

(t (cos8)Q((—cos8)

ability to take into account contributions from distant
singularities.

APPENDIX A

V. CONCLUSIONS

The results of our calculations are in at least fair
agreement with experimental information on the p and
f'. Indeed, when the input f' parameters are taken
from experiment, thus minimizing somewhat the un-
certainties due to our lack of knowledge of inelasticity,
one obtains satisfactory self-consistency for a p mass
differing from experiment by about 5%, and a p width
in agreement with the experimental values. The results
show that, when contributions to the left-hand cut
other than just p exchange are taken into account, one
can obtain narrow resonances in a bootstrap calcula-
tion, and, to this extent, support the conclusions of
Ref. 7. Indeed, there is some indication in the results
that one may, in fact, be troubled with theoretical
resonance widths which are too narrow.

As far as the usefulness of the Balazs method is
concerned, the present results a,re not terribly reassur-
ing, principally because one finds the results, in some
cases, still changing significantly with the number of
approximating poles, even when that number is made
as large as /. In this respect, the results of Ref. 1,
based on the behavior for m=2, 3, and 4, were some-
what misleading in suggesting that the m dependence
was not severe. It should also be pointed out that,
when calculations are done with the Bala,zs method
with the care which seems to be required, they can
be quite time-consuming. The work reported in this
paper required the equivalent of about two hours of
computing time on a CDC 6600. Against these factors
must be weighed the theoretical advantages of the
method, its freedom from cutoff parameters, and its

where

&&A 1'(—2v(1 —cos8), 4(v+1)}, (A4)

cos8 = 1+2t/(s —4) .
We perform a Regge expansion, in terms of t-channel

Regge poles, of A1(t,s) and for large s, which we assume
throughout, we can neglect the background integral and
are left with only the Regge-pole contributions

I 2nr (t)+17
A'(t, s) =g —-', ~ p.'(t)

&I Sln1l'nr (t)

( 2s ( 2s i
&& ~-,(~)I

—1— +(—1)'&-,((&I 1+ I (A5)

Renv(t) =1+-,'erat, Imnv(t) =0,
and the Pomeranchuk residue is given 'by

pv(t) = —p, (0)(-,'t —1)- ( &.".

(A8)

(A9)

or, from BIII, Eq. (A1), a,nd keeping only the highest
trajectory

L2nr (t)+17
~'(t;) = '~ . —-p-'(t)c (n. (t))

sin~nr (t)
2s q~~«~

XLc-'-""+(—1)'7 —
I (A6)

t 4)—
where

~ ( ) =2.1 ( +l)/-'"I'( +1) (A7)

We will neglect everything except the Pomeranchuk
trajectory, and so retain only the I=0 term.

The Pomeranchuk trajectory is given by
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From Eqs. (A6)—(A9), we have

A (t,S) = —22&IPp(0)eoP')tan(~~n-apt)+i7( 2S)oP('& (A10)

In obtaining Eq. (A10) we made the approximation
that cI((2P(t))p(2P(t)+17 is constant and evaluated it
at t=O, to get

l

Pl(x) =g «/, x". (A21)

We also define the integral

Pl(x) is a polynomial in. x of order I, and can be written
as

cl((IP(t))L2(2P(t)+17= 3(:I(1)=3.
Ke also used the trigonometric identity

(A11)

1~(g) = (A22)

A I'(v) =2&(v) 2 «~{b(v)Ps+I(g(v)) —1~(g(v))7

+zlzz(g (v))) (A23)From the discussion in the Appendix of BIII, we have
and XII v is given by

tan (-',zr ept) =-,'Ir ept
(I Il (v)v+ 1q

I/2

gII(v) = i, (A24)
v & E(v) p(III."(v)7'+pl "(v)7'

to about 10%.Also

(A15)-',s=2v, t= —2v(1 —cos8),
whereand hence,

(1+cosx)/sinx = cot-,'x. (A12)

Using the optical theorem as expressed by Fq. (A2), Then (A20) can be written as

the crossing matrix, and Eq. (A10), we obtain Eq.
(Sb) which we repeat here: l

(Ig&nP(t) —(2v)(v cPv In(zv)/2/v—vPv In(2v) cos8/2 (A16)2 J

Collecting the above equations, we obtain

(z~"(v) =b(v) 2 «2LI~+I(g(v)) —12(g(v))7 (A25)

A'( —2l (1—cos8), 4(v+1))
=l&( )9( )( o 8—1)+'7 ""'-" (A17)

where we have set
(zl "(v)=Z «212(g(v))

k=0
(A26)

E(v) =
&0 tot

e—g (~)
7

b (v) = 4&Epv v

g(v) =L2sp ln(2v)+2cp7.

Combining Eqs. (A17) and (A4), we obtain

(A18)

By partial integration a recursion formula for Is(g)
can be obtained from which the following formula can
be proved by mathematical induction:

(—1)"& " g" L(—1)""—~ '71I (g) = E — — ~. (A27)
gI(: ~~ ~ I g

Asymptotically,
A I'(v) = 22K(v) C (cos8)P I (cos8)

Xfb(v) (cos8 —1) +i7e«" & cosz
henct

I (g) —-L '+(—1)"" '7; (A28)

2 sin~i
C (cos8)QI (—cos8)

Xpb (v) (cos8—1)+z7 «(cvo&se (A19
since

(I Il (v) :0, (A29)

(A30)

(A31)
Integrating Eq. (A19) gives us the real and imaginary

parts of A II(v) from which we can calculate Im(A II (v)) ' Q e//, =PI(1)=1.
and, consequently, XII(v) through Eq. (A1).

We will now explicitly evaluate Eq. (A19) for the S b t't t' E (A29) (A30) d d fi 't' (A18)case of integer /. In this case since sinful=O, we have ~ ~ . 4.

AII(v) =-'2E(v)",Cx PI(x)Lb(v)(x 1)+i7p""& . (A20—)
22)-sp ln(2v)

El'(v)
~co) ~ I(cs&)

(A32)


