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Interpolation of a Scattering Amplitude between Integral Values
of an External Spin*
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It is shown that the m* inverse-production amplitude in the reaction ~*z —+ mx, where m.* is a pionlike
particle of any spin, can be interpolated in a physically meaningful way between integral-spin values of
the sr*. A unique interpolation is obtained by formally treating the m.* as though it had spacelike four-
momentum, for which the spectrum of the angular momentum is continuous, and then analytically con-
tinuing the amplitude in the invariant square of the 2t-* four-momentum to timelike values. This procedure
selects one of two equally "natural" interpolations. The selected interpolation is then shown to be com-
patible with the requirement of constructing partial-wave amplitudes, containing the p, that have factoriz-
able singularities analytic in the spin of the 7r*, while the other selection is forbidden by this requirement.
An independent procedure, paralleling the usual Froissart-Gribov rule, also is shown to select the same
favored interpolation of the partial-wave amplitude.

I. INTRODUCTION
' 'N a m.m scattering bootstrap model recently proposed
& - for studying the possibility of the spin continuation
of an external particle, the problem of interpolating
the scattering amplitude between integral-spin values
was alluded to but remained unsettled. ' In this model,
the hypothetical self-consistent bootstrap of the p is
exploited in the reaction vr*x ~ xx, where x* is a, pion-
like particle of arbitrary spin J and mass M.

More recently the tI/'eneziano model, ' which ensures
crossing symmetry and Regge asymptotic behavior,
was applied to the same reaction and thereby generated
constraints for the external particle trajectory. ' Al-

though the models are strikingly different in content,
they both suggest that an external mass-spin relation
may be at least in part a consequence of internal con-
sistency. In the Veneziano model, crossing is exact, in
contrast to the possibly "complementary"4 bootstrap
model, where unitarity is emphasized' and plays a
crucial role and where crossing is crudely approximated
by bootstrap conditions in an E/D scheme. It remains
to be seen whether or not Regge behavior can be easily
incorporated into the bootstrap model.

The problem of interpolation between integral-spin
values does not naturally arise in the Veneziano
approach, since the analytic forms of the trajectories
are assumed at the outset. In the bootstrap approach,
on the other hand, the interpolation problem is un-

avoidable, since no assumption of any trajectory form
is required.

The purpose of this paper is to formulate a definite
rule for interpolating the scattering amplitude between
integral-spin values of the m in the inverse-production
reaction ~*x ~em. We also present some additional
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theoretical evidence supporting the interpolation rule,
as it manifests itself in a partial-wave projection, and
relating it to other work.

The rule is derived from the work of Bargmann' and
of Toller7 on the irreducible representations of the three-
dimensional Lorentz group or "little group" correspond-
ing to a system of spacelike four-momentum. In such a
representation the spectrum of the Casimir operator
that is the analog of the square of angular momentum is
continuous rather than discrete as it is in the three-
dimensional rotation group 03. Thus it is meaningful
to speak of a continuous angular momentum for an
elementary system of spacelike four-momentum. The
central idea to which we appeal in formulating the inter-
polation rule is that the Born amplitude (input to the
lV/D scheme) for a timelike sr* but arbitrary J' is
defined by an analytic continuation from the amplitude
for a spacelike sr* for which we make explicit use of the
irreducible representation belonging to the value J.

For simplicity we carry out the present study in the
framework of the earlier' one-channel, elastic unitary
bootstrap model instead of the multichannel version, '
and we adhere to a non-Reggeized, self-consistent p
bootstrap in the reaction m-*x ~ mx. It is hoped that
these limitations do not substantially reduce the validi-

ty or generality of our results which are, after all, conse-
quences of Lorentz invariance couched in the language
of this particular model rather than of a peculiar
choice of dynamical approximations.

The steps in our approach to the interpolation
problem are as follows: (i) The p exchange ainplitudes
are computed as though the m* had spacelike four-
momentum; (ii) the amplitudes are continued to
timelike four-momentum; (iii) comparison of these
with the p-exchange amplitudes computed in a conven-
tional manner yields a unique interpolation rule; (iv)
the rule so obtained is shown to be compatible with the
requirement that there exist combinations of the partial-
wave amplitudes that have factorizable singu1arities
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that are an. alytic in J; (v) an obvious alternative
interpolation rule is shown to be incompatible with
this requirement; and (vi) an independent interpolation
procedure, analogous to the Froissart-Gribov partial-
wave projection rule in the usual Regge analysis, is
shown to yield the same interpolated partial-wave
amplitude that would be obtained from the conven-
tional partial-wave projection of the p-exchange am-
plitude interpolated according to the rule derived
from the spacelike x*.

II. y-EXCHANGE AMPLITUDES
FOR SPACELIKE m*

We compute the p-exchange amplitude for ~* inverse
production in the reaction ~*x—& m~, where the m-* is
formally treated as if it had spacelike four-momentum.
As an elementary system, the x* is described by states
making up irreducible representations of the Lorentz
group belonging to a continuous spectrum of spin
values. The method, used in Ref. 1, of coupling tensors
comprised of products of momentum vectors to the
spin tensors describing the spinning particles8 does not,
therefore, adequately handle the coupling of the p to
the m* and x. Such a coupling procedure is inherently
discrete. Instead we introduce a set of elementary
amplitudes describing the virtual decay or —+m.*+p
such that in the Lorentz frame where the fourth
component of the x* four-momentum is zero, and all
three-momenta are collinear, the helicities have definite
values. These are analogous to the elementary ampli-
tudes describing the virtual decay of a timelike system
in its rest frame into final particles of definite helicities
moving along the spin quantization axis of the initial
state. '

In the following constructions, angles are measured
from the positive s axis in the clockwise direction about
the positive y axis. Rotations are always carried out
about the y axis and are indicated by E(8).A Lorentz
boost along the s axis is indicated by L(P).

We first consider the transition amplitude A (),o.) for
the inverse virtual-decay process or*+p ~ or where the
x* has spin J, spacelike four-momentum of invariant
square M'= —p'(0, and helicity X in a Lorentz
frame L& where the only nonzero component of its
four-momentum is the s component p, , the x has mass
= 1, energy E in L& and is emitted in the xs plane; and
the p, of invariant mass squared t, is moving at angle
x' tl p with helicity o- in L&. We treat the p in a non-Regge
manner as an off-shell state (t(0) of an elementary
particle of timelike four-momentum and Axed spin = 1
with three spin quantization states. The rest frame of
the p is necessarily related to L& by a complex Lorentz
transformation.

We prepare the state
I pi) of the p in I.i by starting

with a rest state
I
—o-) with spin projection —0 along
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the s axis, giving it a complex Lorentz boost in the
negative z direction and then rotating by angle —0„.
If we take the rest mass of the p to be «i( —t)'", where
«= &1, then we find

I pi)= R(—8,)L(—Pi) I
—e&, where

Pi= (1—tE ')'t') 1. The correct root of y—= (1—Pis) '"
= —«iiE( —t) 'I' is attained from the region Pi(1 by
a counterclockwise (clockwise) continuation about the
branch point at Pi= 1 for «i=+1 (—1).

In a frame L2, obtained by a real Lorentz transforma-
tion along the x axis, such that the x component of the

(and p) momentum vanishes, the state of the p is

I
ps&= ~(—s~)L(P»in8. )~(s~) I pi) =L(—Ps)~(~) I

—~»
where

cosa= cos8, (1—Pie sin'8, ) '",
sinn= —«is sin8, (P

'—1)'"(1—P ' sin'8 ) '"
Po = la i cosa) 1 .

Thus the helicity composition of
I p2) is given by

lps&= 2 d.,'(~)L(—Ps) I
—r),

where L(—po) I 7) is a stat—e of helicity +r moving
along the negative s axis.

The or* state in L2 is given by

l~,*&=Z(—-', ~)L(p, sin8, )Z(-', ~) I*))

= 2 d.~'( —t) l*~),

where I*X& is the or* state in Li, andi

r (J+v+1)r (J v+1)—
d,i'( i) =- (cosh'') "+"

r(Jy) +1)r(J—),+1)
XLsinh( —t))" ~PJ &" ~ "+"i(cosh2$)

for v)X, (1)

with
f'= istanh '(pi sin8, ) .

The connection between the normalization of the states
I*i& and the normalization of the corresponding states
when the x* is continued to timelike four-momentum is
ignored at this point, but becomes important in Sec.
III.

We may now write the amplitude for or*+p~ or in
the form

A (x,o.) = (or I
T

I I
vr *&,

I p,))
= &ldlx ( l )d 1 (««)+&odox ( t )d 0 (~)

+a-id-»'( —l )d.-i'(~) (3)

where the elementary amplitudes n„are defined by

~.3-= ( I
T'I l*~&, L(—its)I —

~&& (4)
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Conservation of parity tells us that the elementary dati'(n+or —8)=&ieiv2pstsf, (—ir'+1)'$'"
amplitudes are not all independent. Let Y be the rebec-

&& (4—i)»sr-' (11)
tion in the xs plane. Then we have" s—= —cosh2t

I'L(—p) I
—r)= ( )'~—~.l.( p)—I r)

where y, is the parity of the p. However, for the x*
states we have

where the phase y is irrdepegdent of v. This difference is
attributed to the fact that the 03 generators obey
FJ+= —J I', while the corresponding generators of the
three-dimensional Lorentz group obey" FL+——L V.
Applying Eqs. (5) and (6) to Eq. (4), we find
o,=rl r),y(—)'+"a „which reduces to i) yg, = —1 when
we set v=0. Hence ai ———a i and Eq. (3) reduces to

a ()~,~)=agoi'( —i.)d.o'(n)+a, I d,i'(—t.)d.,'(n)
-d" (-nd. :(-». (7)

We then consider the transition amplitude 2 (p.) for
the other half of the over-all reaction x*x~ xx, the
virtual decay or ~p+or. The incoming or is moving in
the negative s direction at speed P' = (s+ii' —1)/S in
L&, where s=square of c.m. energy of the over-all
reaction and S=Ls' —2s(—p'+1)+ (ii'+1)$'" The
state of the p, emitted in the xs plane at angle x—8,
with helicity 0, has already been worked out. We omit
the details of this more familiar computation. The
result is

2 (~) = —a'dp. '(or —8),

where a'B,p=(rII. (—ps)TIor) de6nes the elementary
amplitude u' and where

cos5= (P~ cos9o Pi)/d, —
sinb= piiP (P—is 1)"sin—8,/d,

d= (P 2+P 2 —2Pg cosg P 2P 2 slnsg )i/2

The amplitude for the over-all reaction is then ob-
tained by combining Eqs. (7) and (8) to give

&),—Z A P,~)~ (~) =op'doi'( k)doo'(~+~—&)—
0=1

+at'Ldn, ~(—i') dpi'(u+~ —5)

dg, ~( —l)dp i'(n—+7r 5) j, (9—)

where ao' and u&' depend in an unknown way on t and
J. Omitting some trivial but lengthy kinematical
reductions, we may express Eq. (9) in terms of the
Mandelstam invariants s, t, and u=3 —p' —s—t, using

doo'(~+~ —&) = (—~)'"(—&+4) '"
X (2s+1+1i'—3)T ', (10)

"M. Jacob and G. C. Wick, Ann. Phys. (¹Y.) 7, 404 (1959).
"L.Sertorio and M. Toiler, Nnovo Cimento 33, 413 (1964).

= ——,'I S'—(1—u) (s—p,
'—1)jS '1

2'= Ll' —21(1—~')+ (1+~')')'" (12)

and, from Eqs. (1) and (2) and identities" relating
Jacobi and Legendre functions,

doo'( —t )=P~(—s) (13)

III. AMPLITUDES FOR TIMELIKE ~*

The analytic continuation of amplitude (9) from
spacelike to timelike m* is carried out by analytically
continuing the functions on the right-hand sides of
Eqs. (10)—(16) from negative i =——p' to positive
v= 3P, where M is the mass of the timelike m*. Equiva-
lently, we continue p, to the imaginary value i&2M,
where e2

——+1. In this continuation we hold J, s, and
x= cos8 fixed, where 9 is the c.m. scattering angle in the
s channel.

For s real and greater than 4, S has a finite square-
root cut extending along the real v axis from v to v+,
where 1&v & v+. Hence S may be continued from any
negative v to a positive value in the neighborhood of
v = 1 without encountering zeros or singularities.
Since Lsd —(v —1)'j'"= -'(s —4)'"S sin&, the same state-
ment is true for this function.

The functions —t and T' have the same analytic
structure as S for fixed s and x. They are both positive
and real for any real v(v, except that they develop
second-order zeros at v=1 when @=1.These zeros are
a minor nuisance when we wish to continue the ampli-
tude to values of v&1, as we now explain. It is easily
seen that T ' is regular in the neighborhood of v= 1 for
—1&x&1.The problem of extending this interval to
x=1 arises because, as an analytic function of x, T'

(or T ') has a square-root cut over the interval x &x
&x+. where 1&x . An expansion of x in the variable
v

x =1+-,'(s—4) '(v —1)'+

reveals that the left end of the cut in x just touches the
right end of the physical region (x= 1) when v=1, and
this contact destroys the analyticity of T ' in v at
g= 1.

'2 Higher Transcendento/ Fgnctions, edited by A. Erdelyi
(McGraw-Hill Book Co., New York, 1953), Vol. II, p. 173.

dioJ'( t')+d ioJ( |) $21' attgisi
—(ps+1)2+1/2

&(I Pg i(—s)—sPg( —s)], (14)

doi'( —t) = —2(~+1) '~

&& I stm —(ii'+1)'$' 'S 'T'P g—'( -s) (—15)

dll ( i)+d 11 ( -1)
=2I Pg( —s)+zJ—'(7+1)—'Pg'( —z)j. (16)
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An example of this non analyticity is exhibited by the
function

s=——cosh2| = —[S—(s—4)'/2s '/'(s+ v —1)2]T
which, at x= 1, is discontinuous in v; s= —1, 0, +1
when v( 1, v = 1, v) 1, respectively. (At x= —1,
s always equals —1). The correct prescription for the
continuation of s from negative v to positive values
such that 1(v(v must therefore be to continue v

into this region 6rst for —1(x(1 and then continue
in x to x= 1, so that the full physical region is covered.

We discover that s, under the above continuation, is
the cosine of the scattering angle in the m* rest frame,
I.e.,

s= cosf,

where P is defined in Ref. 1.
The two independent amplitudes continued to

positive v are then

~'= {«'(—&)'"(4—t) '"T-'}
X (2&+t M' 3)p—z ( —cosp) {—e, &2~2g,—'M—' (4—])—1/2 }

XS[PJ 1( cost/)+cost/ p j( cost/)] ) (1 7)
and

A 1= —{2i62gii M(—t)'/'(4 —])—1/2T —2(J+1)
—1}

X (2s+ii —M' —3)S '[stu —(M' —1)2]'/2p~'( —cosy)
—{2&2ielgl'1 '(4—f) '"}[stu—(M' —1)']1/2

X [Ps(—cosg)+ J '(J+ 1) ' cosg Pz'( —cosp)]. (18)

The corresponding p-exchange an1plitudes for a time-
like x* computed by the covariant-tensor-coupling
method [Eq. (18) of Ref. 1], may be brought into the
sirnil ar forms

J3o' {(t m2) 'T [gT———+bJ(/+M2 1)]}—
X (2s+t M' 3)p~(c—os/)+—{ 2bj(t m') '—T~ '}-

XS[—Pg 1(cost/)+costgpg(cosf)] (19)
and

2J—1/2(j+1)—1/2([ m2)
—1MTJ—2

X [gT'+b J(/+M2 —1)]}(2s+t M2 3)S——
X $stu (M2 —1)']1/2P~'—(cosf)
+{4bj'"(J+1)'/2(f—m') 'MT '}
X [sou —(M' —1)']'"[Pg(cosg)—J' '(J+ 1)

—'
Xcosf Pg (cosp)], (20)

where m is the mass of the p, and a and b are J-de-
pendent coupling constants. We have replaced the coup-
ling constant b of Ref. 1 by b ~ (2J)'"(J+1)'/'Mb.

We note that in Eqs. (17)-(20), the expressions in
curly brackets are dependent solely on J and t, while
in the remaining parts of the right-hand sides of these
equations, the dependence on t and J is mixed with s in
an explicit and inseparable way. The mixed parts of the
corresponding amplitudes are identical only at even
integral values of J.These are, in fact, the only values

of J for which Eqs. (19) and (20) are physical, if we
assume that 2r* has even signature. If, on the right-hand
sides of (19) and (20), we then make the replacements

Pg(cosf) =P~(—cosg),

Jpg—1(coslp) = JPg —1( cosf)—,

Pg (cos'iP) = Pg —( cos'iP—),

(21)

(22)

which are valid at the even non-negative integral values
of J, the mixed parts of the corresponding amplitudes
are identical for all J, and a d efini te interpolation rule
is established. The interpolation rule conjectured in
Ref. 1, i.e., Eqs. (19) and (20) as they stand, is accord-
ingly incorrect since, for example, Pz(cosf) and
Pz(—cosf) are distinctly different analytic functions
of J.

We could adopt another point of view and simply
regard the left- and right-hand sides of Eqs. (21)-(23)
as two equally "natural" interpolations in the absence
of any evidence favoring one side over the other. We
have seen that the right-hand sides, irrespective of
naturalness, are the required interpolations when the
amplitudes are continued from a spacelike m*. In
Secs. IV-VI we demonstrate that, given the choice,
the right-hand sides are compatible with other require-
ments of the model while the lef t-hand sides are
expressly forbidden.

We conclude this section by demonstrating that the
two methods of computing the p- exch ange amplitudes
can be brought into complete agreement, al th ough
the required equalities seem overdeterrnined at 6rst
glance. Complete agreement is achieved by requiring
c4 0= Bo and 2 ~

——eB~', where the factor m is introduced
to accommodate a discrepancy between the timelike
and sp acelike helicity-s tate normaliz ations. The mixed
parts of these equalities cancel, leaving

n= —i@2J / (J+1)—1/2

and relate the elementary amplitudes az' to the coupling
constants by

(] m2)
—1 ( ()

—1/2 (4 ])1/2TJ—1

X [gT'+b j(t+M2 —1)],
gl~= b(e$122m2) 1(4 l)1/2T&—1J1/2(J+—1)—1/2

g2~( —/)1/2(4 /)
—1/2T-1

= (t—m2)-'T~-2[gT2+b J(~yM2 1)]—21g221/2g ~M—1(4 ()
—1/2

= —21/2b ($—m2) 1TJ'—1M—1Jl/2 (J+1)—1/2

g2g2 (J+1)—MT-2( t)1/2(4 /)-1/2

=2n (t—m')-' j-»' (J+1)-»2MT~-2

+[gT'+bJ(t+M2 —1)]—22"2elgl'T-'(4 —
&) '"=22/'nb(t —m')T —'

which are identically satisfied if we choose a relative
normalization factor
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IV. FACTORIZABILITY OF KINEMATIC ZEROS These integrals may be evaluated using the formula"

3
B&, d/, 2'(8——)B—1,

' sine dg.
2

(24)

In order to investigate the behavior of Bq in the neigh-
borhood of the threshold s=4 when &=1, we change
the integration variable to s=cosP, let o=s—4, and
introduce the symbol 1V=N(o, s) to repr'esent a/2y

functions of z and 0-, regular in 0- in the neighborhood
of 0-=0, of the form

1V(o,s) =1++ o"f (s),
n=1

It has been shown' ' that there exist linear combina-
tions of the helicity amplitudes f/, describing the direct
formation and decay of a p that have threshold singular-
ities and zeros that are factorizable and analytic in J.
The combinations are fi and fe cfi—, where c=c(s;J,M)
= (s+M' —1)(2s) '"M 'J'"(J+1) '".Such a uniform
factorization is required in order to carry out a unitariz-
ation procedure using dispersion relations. The pure
helicity amplitudes are unsatisfactory under the require-
ment of factorizability of zeros because of the exist-
ence of a nonsense channel at J=O. The general rule'
for obtaining the correct combination is to construct
out of the helicity amplitudes those amplitudes having
natural zeros" in J.

The corresponding factorizability of the same com-
binations of the angular momentum =1 projection
of the p-exchange helicity amplitudes is not obvious,
but in fact must be true for all J if the bootstrap
models are to exist. In this section, we exhibit the
factorizability property of the p-exchange amplitudes
for all J when %=1. For nonintegral J, we show that
the factorizability of zeros is sensitive to the interpola-
tion rule.

The angular momentum =1 projection of the p-

exchange amplitudes (19) and (20) is

k~+ "Pg (k)dk=
~1/22 J—n

'—1—I (J+&y1)
r (1+-2'22)r (J+-'222+-22)

YVe obtain

Bo=o "2/2 '{/J[&J+0(o)]+Jb/4 3J+—0(a)]) (27)

and

PJ—1/2+1/2( a) 1&J ln(2 28)+0(J )

which follows from the representation"

- r(~—J')r(J'+m+1)*-
Pg. (1—22:) = Q I' (—J')I' (J'+1)(2/2!)'

—oJ/2222
—2(2J)—1/2(J+ 1)1/2

X{Jug4+0(o)]+Jb(4 3J+0—(o)]), (28)

where the symbols 0(o) do not vanish when J-+ 0.
Amplitude Be, just like fe, exhibits the nonuniform

factorizability of zeros, since Boo=~» is free of threshold
zeros and singularities for J)0, while Boo= ~ ' is free
of zeros and singularities for J=O. Ke now may ob-
serve, from the structures of the right-hand sides of
Eqs. (27) and (28), that the combination Be cB1, —
where c=c(s;J 1)= (2J)" (J+1) '/'$1+0(o)], behaves
like f7~»+' for J)0, and therefore satisfies the require-
ment of uniform factorizability of threshold zeros.

On the other hand, let us now take the other choice
of "natural" interpolation mentioned in Sec. III and
suppose that the left hand sides-of Eqs. (21)—(23) are
substituted into the appropriate places in Eqs. (25)
and (26). It is sufficient to consider values of J' in the
infinitesimal neighborhood of some integral values, say,
J'=0. We can evaluate the resulting integrals fe'k~'™
XP~.( z)dk in the nei—ghborhoods of J'=0, —1 by
using the expansion

where f (s) is any polynomial in s. It is legitimate, for
example, to write X'=E. For equal-mass kinematics In this way, we obtain

(M=1) we have, in the neighborhood of o.=0, d(cosg) B / J/2m —2{4'[ J+0(J2)+0( )]= —4A/ada, S=2o'/21V, l= s2olV, etc—. ; a,nd Eq. (24),
with the right-hand sides of Eqs. (21)—(23) and with

and8= —z, becomes

B,=—3X2~+~~~»m-2 dk(1 —2k2) 1V (o,k)

and
XE(4/2+ Jb)k~+'P&(k) 2bJk P~ (k)]—

X{J'(J+1) 't 4/2 —(J+2)b]
Xk~+2Pg'(k)+2bk~+'Pg(k)) . (26)

» H. P, Jones snd M. D. Scsdron, Phys. Rev. 171, 1809 (&968).

Bi——3X2~+'o~/22/2 '(2J)'/'(J+1)'" dk(1 —k )X(o k)

B I—oJ/22/2
—2 (2J)—1/2 (J+ 1 )I /2

X{Jaf—28+0(J)+0(o.)]
+JbL20+0(J)+0(o)]), (30)

where the primes on By' serve to distinguish these
interpolated amplitudes from the first choice Eqs. (27)
and (28).

Again Bo exhibits the nonuniform factorizability of
zeros for J)0 and J=O. This time, however, the non-

"See Ref. 12, Vol. I, p. 171
See Ref. 14, p. 125.
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uniform factorizability persists in the combination
Bp' cB—i', with c=c(s;J,1). Moreover, even if we try
to find some new c (an oscillating interpolation of the
old c, for example, since we know that the old c works
satisfactorily for integral J), we find that the factor c,
needed for the parts of (29) and (30) that are propor-
tional to u is different from the factor cq needed for the
parts proportional to b. Hence, it is impossible to find
a new c such that Bo'—cBj' is uniformly free of kinema-
tic zeros; we conclude that the model collapses under
this choice of interpolation.

V. FROISSART-GRIBOV RULE

In the usual Regge analysis of spinless-particle
scattering, the correct interpolation in angular momen-
tum of the partial-wave projection Ai(s) = rs J' i' dx

)&Pi(x)A(s, x) is found" by (i) making the replace-
ment I'i(x)=in. $Qi(x+ie) Qi(—x ie)—j, valid in the
interval —1&x&1, (ii) rewriting the projection as a
contour integral —isis- ' g dx Qi(x)A (s,x), where the
contour encloses the cut in Qi over the interval —1&x
&1, and (iii) deforming the contour of integration to
enclose the singularities of A(s, x) instead of the finite
cut in Qi(x). In this way, we obtain the representation
A i(s) =z. ' J; dy Qi(y)D(y, s) which now yields the de-
sired interpolation in / through the standard continua-
tion of the Legendre function Qi. The function D(y, s) is
the weight function when the full amplitude A (s,x) is
dispersed in the coss of the c.m. scattering angle; i.e.,
D(y, s) is such that A(s,x)=z ' J; dy D(y, s)(y —x) '.

In this section, we carry out the continuation in
spin of the external x* by following steps closely paral-
leling the above Froissart-Gribov prescription. Thus
we express the partial-wave amplitude for integral J as
a contour integral over the Q J function in the cosP plane
(rather than the x plane), where f is the scattering angle
in the x* rest frame, expand the contour to infinity and
thereby pick up contributions from outlying singulari-
ties, and finally assume the standard continuation in

Qz in the resulting representation. Working only in the
limit Ã~ 1, we find that the resulting interpolated
partial-wave amplitude is identical to the representa-
tion (24) in which Bi, is interpolated according to the
right-hand sides of Eqs. (21)-(23).

We demonstrate this last statement explicitly for
that part of the angular momentum =1 projection of
80' that is proportional to u and which we call so. Thus,
with J initially assumed to be an even non-negative
integer, we have

3
So—

2
&&2~(cosg)x dx. (31)

' M. Froissart (unpublished); V. N. Gribov, Zh. Eksperim. i
Teor. Fiz. 41, 667 (1962); 41, 1962 (1962) LEnglish transls. :
Soviet Phys. —JETP 14, 478 (1962); 14, 1395 (1962)g.

When we change the integration variable to z= cosset,
and take M=1, we find

z= —Ps(1 —x)]'i'Ls+4 —(s—4)xj 't'

and so the physical range of s is —1&s&0. The contour
integral therefore would not appear to enclose the
entire cut of Qz(z), and correspondingly it is not clear
at the moment what is meant by an expansion of the
contour away from the cut.

To understand the source of this difficulty, we take
M) 1 in which case the physical range of s is normal,
i.e., —1&s&1, and we consider the behavior of the
integrand of so in the s complex plane as M —+ 1.
We find that all factors making up the integrand
have nonfactorizable square-root branch points at
z= z+= ~in(ks —1)iis, where n= (s+Ms —1)S ' and
k—=sM(s+M' —1) ', and hence the integrand is a two-
sheeted function of s with these same branch points.
If we define the physical sheet by extending the cuts
to &i~ along the imaginary axis with a gap on the
finite segment between s+ and s, then the only other
singularities in the integrand are the simple pole of
dynamical origin on the real axis (if m)M+1) at
z=z = n(h—+k)(h' 1) '—i', where h—= (eP—Ms —1)
X (2M) ' and a pole of order J+3 at —n. On the NN-

physical sheet these poles are found at —z and +n.
If the branch points are joined instead by a straight
cut along the finite segment of the imaginary axis
between s+ and s, then the integrand defined on this
sheet is a real-analytic even function of s', for any
integral value of J.

For s above threshold and M in the infinitesimal
neighborhood of &=1, it is clear that n)0 and that
k)1, k = 1, k (1 for M) 1, M = 1, M &1, respectively.
Therefore as M ~ 1, the branch points s~ —+ 0 and the
function T(z), in particular, is pinched into two
distinct analytic functions on either sheet. On the
physical sheet, T(z) ~ —4nz(n' —z') ' for Rez&0 while
T(z) —+ 0 for Rez)0. Hence, in light of this structure
of T, we could write the integral over the normal
range of z from —1 to +1 even when M=1 because
the vanishing of T in the right half-plane cancels that
part of the integral from 0 to +1.

For M) 1, Eq. (31) may be rewritten in the
form

3
xp ———iz ' (t—m') '

2

ds
)&T~(2s+t M' 3)Q~ (z)x —dz, —(32)—

ds

where the contour encircles the cut of Q~. Since we
find that the integrand of Eq. (32) behaves like ~z~

s~ 4

as
~

z~
—+~, the contour may be opened up in the left
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this portion of the cut, and we may write

x~=4 ' f „(s)Q~(s)ds

{b) g (s)Ps (s)ds

g( —s)Ps( —s)ds

3
= llm—

M-+1 2
(t—2/22) 'Ts(2s+t —M' —3)

XPs (—cosP) x dg. (33)

PIG. I. Sequence of contour deformations in the s plane for the
interpolation of the partial-wave amplitude between integral
values of J.

half-plane, for J& —1, as shown in Fig. 1(a), leaving
loops around the poles indicated by crosses.

The integral becomes simpler in structure if the
square-root cuts and the infinite branches of the path
of integration are joined in the right half-plane as
shown in Fig. 1(b). This procedure exposes the poles on
the nnPhysicat sheet. Then, because of the ese2//less of
the function so exposed, the residues of the poles in
the right and left half-planes cancel and there only
remains the loop around the Qnite square-root cut.
At this point the interpolation in J for 3f&1 follows
from the standard continuation in Qs which happens to
develop a cut along the entire negative real axis for
nonintegral J.

If we now take the limit 3I~ j. of this picture, the
square-root points pinch the Qs cut at the origin, as
in Fig. 1(c), and the contribution from the remnant
domain 8 of the right half of the physical sheet vanishes.
The integral is now

xs i' ' ——g(s)Qs(s)ds,

where

P—=48s'[16s (s—4))s/2

g(s) =ss+'[s —2 —(s—4)22][s—(s+4)s'j
X [s—(s—4)s'j—s—

2[//22s —(nP —4) (s—4)22)—',

and the path of integration is shown in Fig. 1(c).
A factorizable Jth-root cut at the origin develops
when M= 1 because of the factor ss in g(s). Analyticity
in M is unaffected if we take this cut along the negative
real axis.

The function g(s)Qs(s) in the domain of integration
may now be analytically continued through the cut
surrounding E. so as to leave only the 6nite part of the
Qs cut extending from the origin to s=1 as shown in
Fig. 1(d). The path of integration fmally encircles just

The last line of Eq. (33) is thus the same as the right-
hand side of Eq. (31) but with Ps(cos)P) replaced by
Ps( —cos)P). A similar treatment of the partial-wave
projections of the other parts of Bq' con6rms that the
right-hand sides of Eqs. (21)-(23) emerge in the inte-
grand of Eq. (24).

VI. CONCLUSION

y,= [aT'+bJ(t+M' —1))Ts—2(t—2/2)-l,

y2
———2bJTs '(t—2/22) '

(34)

(35)

yl —— 2[aT'+b J(t+M—' 1)j'—
XJ '"(J+1) '"MTs '(t—2/22)-', (36)

4b Jl/2( J+1)l/2MTz —2(t 2/22)-l (37)

where now the only unknown functional dependence is
that of a and b on the variable .'. . We have tacitly
assumed that the right-band sides of Eqs. (34)-(37)

It follows almost directly from the structure of
Eqs. (17) and (18) or, equivalently, from the structure
of Eqs. (19) and (20), with the substitutions indicated
in Eqs. (21)—(23), that we may summarize our know-
ledge of the p-exchange amplitudes for x*~—+ mm in the
form A'= 4)P),+V),G)„

with X=0, 1.Here Fq and Gq are explicitly known func-
tions of M, J, t, and s such that the dependence on
3f, J, and t is inseparately mixed with s. The quantities
p), and yl, functions only of M, J, and t, are partially
unknown in the sense that we only have explicit
knowledge of the ratios

@2/gl ———,
' J'/2(J+1)'/2TM ',

Pe/7l= —-',J'/'(J+1) '"TM '.
If pl and yl are assumed to carry the correct t-channel

threshold singularities and zeros and the p pole, and if
the quantities a and b of Eqs. (19) and (20) are inter-
preted in the customary way as t-independent coupling
constants, the dependence of P), and y), on M, J, and t
separates according to
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Fs (2s+——t—M —3)P~ (—cosf),

Gv=S/Pg r( «—slP)+coslPPg( —coslb) j,
(38)

(39)

Fr= (2s+t—M' —3)S 'Pstg —(M' —1)']'t'
&&Ps'(—cosf), (40)

Gr ——Pstg (M—'—1)'j't'LPg( —cosf)
+~ '(~+1) ' «sf P~'( —cos4)j (41)

are attributed largely to the transformation properties
of the spin states involved in the reaction and depend
in an explicit way on the scattering angle as seen in the
rest frame of the x* and the unphysical rest frame of

already exhibit the proper interpolated dependence on
J.

The functions

the p. (When either of these particles has spacelike
four-momentum, the corresponding scattering angle is
purely imaginary. ) The investigation of the interpola-
tion problem has focused on the J dependence of these
functions. The transformation properties of the space-
like ~* spin states uniquely lead to amplitudes which,
after analytic continuation to timelike m~, contain the
functions listed in Eqs. (38)—(41), where the Legendre
functions have the standard continuation in J.
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An alternative derivation based on the technique of asymptotic symmetry is given for the pion-pion
scattering sum rule. We propose a new asymptotic symmetry hypothesis in terms of the proper amplitudes,
which has the merit of narrowing the discrepancy between experiment and the Adler sum rule.

1. INTRODUCTION
" 'NTKNSIVE use of Gell-Mann's chiral current
~ - algebra' and the hypothesis of partially conserved
axial-vector current (PCAC) has been made in the past
to derive a number of sum rules in strong-interaction
physics. The earliest of these was the sum rule derived
by Adlers and Weisberger' (AW), relating the axial-
vector neutron P-decay coupling constant to an integral
over the pion-nucleon scattering cross sections. The
AW sum rule is, in fact, now regarded as a direct con-
6rmation of the validity of the chiral current algebra,
in view of its excellent agreement with experiment. It is

*Present address: Physics faculty, Southern Illinois University,
Kdwardsville, Illinois.' M. Gell-Mann, Physics (N. Y.) 1, 63 (1964).

2 S. L. Adler, Phys. Rev. Letters 14, 1051 (1965); Phys. Rev.
140, @736 (&965).

v W. I. Weisberger, Phys. Rev. Letters 14, 104't (1963)i Phys.
Rev. 143, 1302 (1966).

thus of great interest to look at alternative methods of
deriving such sum rules which do not make explicit
use of current commutation relations.

It has been recently demonstrated by Fayyazuddin
and Hussain4 that it is possible to derive the AW sum
rule as a consequence of the hypothesis of asymptotic
SU(2) XSU(2) symmetry and PCAC without the
explicit need of current commutation relations. This
derivation leads to the AW sum rule for zero-mass pions
(i.e., g'= 0). Besides giving new relations between form
factors for g' away from zero, this derivation brings to
light some new features of current-algebra sum rules:
(1) One avoids the tricky ambiguities of the soft-pion
limit, i.e., the vanishing of the four-momentum of the
pion, which is usually assumed in deriving current-
algebra sum rules; (2) the assumption of a symmetry

4 Fayyazuddin and F. Hussain, Phys. Rev. 164, 1864
(1967).


