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A study is made of the constraints placed upon the couplings and resonance spectrum required to saturate
finite-energy sum rules consistently in the region around t=0. It is argued that the probable existence of
crossing trajectories and cuts places a fundamental limit on the usefulness of finite-energy sum rules. The
demand that the spin of the resonances increase monotonically with mass implies that an infinite number
of asymptotically parallel daughter trajectories in the resonance region are required for consistency. This
result is independent of any statement about the energy dependence of the leading trajectory.

I. INTRODUCTION

'HERE have been several attempts in the past year
to use finite-energy sum rules (FESR) as the

basis of dynamical schemes for bootstrapping Regge
trajectories. ' ' The basic idea is that the same Regge
trajectory that controls the asymptotic behavior of the
scattering amplitude also generates a sequence of reso-
nances that dominates the amplitude at lower energies.
Thus, the amplitude up to the cutoff energy is repre-
sented by a sum of resonances, usually in the narrow-
width approximation; above the cutoff energy the
amplitude is dominated by a few Regge poles. The
FESR equations generated in this way are continuous
functions of the momentum transfer. In addition, it is
possible to generate additional equations by taking
moments of the sum rules. The hope is that this large
set of equations will determine both a set of Regge
trajectories and residue functions and a unique spec-
trum of resonances and partial widths. In practice, a
crucial part of the whole program is the choice of the t

dependence of the leading Regge trajectory and its
residue and the mass and spins of the narrow-width
resonances used to saturate the sum rules. Mandelstam, '
at one time, suggested that it might be possible to
satisfy the equations approximately with a single leading
resonance trajectory in each channel. Freund, 4 in fact,
proposed just such a solution, but he used the FESR
just at t=o. Dolen, Horn, and Schmid, ' while ex-
pressing the same hope as Mandelstam, also indicate
that in order to satisfy the t dependence of the equa-
tions, towers of resonance at each mass may be neces-
sary. However, their argument is somewhat obscure and
is based on a simple model containing a single leading
Regge pole with a known residue function. Mandula and
Slansky' arrived at a similar conclusion, but Goebel'
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showed that their arguments were incorrect. Ademollo,
Rubinstein, Veneziano, and Virasoro' have shown that
for mw —+ 7t-co, where the spin of co, is 1 or 3, the particles
on the p trajectory may be accompanied by sets of
particles on one or two parallel daughter trajectories.
They used a linear p trajectory, a low cutoff energy, and
required equality of two functions of t over a fairly
large region. Veneziano' has written down a closed
solution to the FESR equations for m.x —+ men which
incorporates the linear-trajectory hypothesis in a funda-
mental way and contains an infinite number of parallel
daughter trajectories. However, the Veneziano repre-
sentation is not a unique solution to FESR.' Moreover,
not only is it very difficult to reconcile with unitarity,
but it also encounters certain fundamental difficulties
when extended to pion-nucleon scattering. ' In addition,
the hypothesis of linear trajectories does not have a firm
experimental foundation, particularly for bosons. "
Kugleri2 has presented arguments for a square-root
trajectory; he interprets as resonances the loops in an
Argand diagram obtained from a partial-wave analysis
of a t-channel Regge pole. Linear trajectories are also
difficult to reconcile with traditional statements about
the analytic structure of scattering amplitudes. "

The theoretical justification of linear trajectories
seems to be stronger; however, the arguments are based
on the properties of nonrelativistic trajectories. ' In
particular, the trajectory function u(s) is assumed to
obey a dispersion relation with only a right-hand cut.
This statement, coupled with the requirement that the
narrow-width approximation be valid on the right-hand
cut, strongly suggests that the trajectories are linear.
On the other hand, in all models in which the Regge
trajectories are known to have the assumed analyticity,
Rect(s) approaches some negative real number as s goes
to infinity. In addition, there are both potential-theory
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and 6eld-theory models of intersecting Regge tra-
jectories with left-hand cuts. '4" In fact, there is a
theorem in potential scattering, which appears to be
true in relativistic models, that states that no Regge
trajectory can be real as it passes through a negative
integer value of the angular momentum. "

If n(s) has a left-hand cut, Imn(s) need not be small
on the left, even though the narrow-width approxima-
tion is still valid on the right. The theoretical argument
for linear trajectories then breaks down. We argue that
not only is it possible that the trajectories intersect, but
it is probable. In processes involving unequal-mass
kinematics or high spins, daughter trajectories" are
needed to cancel out unwanted singularities in the re-
gion near s=0. Since the coupling of these kinematic
daughters to external particles differs greatly from the
coupling of leading trajectories, it is unlikely in a
unitary theory that they are parallel to the leading
trajectory. Model calculations of these trajectories con-
firm this statement. " The parallel daughters in the
Veneziano model' are apparently degenerate combina-
tions of kinematic daughters or I.orentz poles, and

dynamical daughters or satellite poles. "Since these two
classes of daughters are distinguished by diferent
couplings to external states, unitarity will break the
degeneracy and probably generate intersecting tra-
jectories. In any case, if there are both kinematic
daughters and satellite trajectories, there are, almost
certainly, crossing trajectories. In fact, a Regge-pole
description of the region of negative s (or negative l in
the crossed channel) is probably very complicated. In
addition, cuts are almost certainly present in this same
region, "although they are customarily ignored in appli-
cations of FKSR. Thus, any procedure for solving
FKSR which is either sensitive to regions of large nega-
tive t, to contributions from secondary Regge poles, or
to cuts near I,=O is questionable.

In this paper, we abandon the hypothesis of linear
trajectories; we also abandon any statement about the t
dependence of Regge residue functions, secondary tra-
jectories, or the singularity structure for large negative
I,. Assuming only resonance saturation of FESR with
monotonically rising trajectories, we address ourselves
to the problem of determining the simplest spectrum of
resonances that can be used to saturate the FKSR

equations. Our conclusion is that an infinite number of
asymptotically parallel daughter trajectories is neces-
sary to satisfy the constraints arising from the de-
pendence on the momentum transfer t near t=0. This
result means that the presence of an in6nite number of
daughters in the Veneziano representations is not due to
either the linear-trajectory hypothesis or the complete
lack of unitarity, but rather it is a fundamental property
of FESR. Whether the trajectories are linear in the
resonance region is still an unsolved question. In addi-
tion, we conclude that, in the presence of an infinite set
of daughter trajectories, finite-energy sum rules by
themselves are insufficient to determine the parameters
of both the resonances and the Regge poles. Additional
information, such as provided by hypotheses like
duality, linear trajectories, absence of cuts and inter-
secting trajectories, smoothness of appropriately para-
metrized residue functions, negligible background inte-
gral, absence of ghosts, or maximal simplicity of the
resonance spectrum, is needed to obtain a unique solu-
tion. The theoretical basis of many of these assumptions
is weaker than that of the FESR, so it is useful to ex-

plore the dynamical content of the FESR without
them.

For simplicity, we consider the reaction xm —+ mm, but
the method can be generalized to arbitrary spins and
masses, and our conclusions apply to baryon as well as
boson trajectories. We start with the standard form for
FKSR derived from one-sided dispersion relations. '"
The resonance spectrum below the cutoff energy is
saturated by a set of narrow-width resonances of
(mass)'=s(J) and spins J; the resonances lie on mono-

tonically increasing trajectories. Although we use the
zero-width limit, our method can be extended to finite-
width resonances, at least in principle. Above the cutoG

energy, the amplitude is represented by a complete sum
over all t-channel Regge poles and cuts, plus the back-
ground integral. For mm ~ xco, the p trajectory is the
leading one in both channels. At I,=O, the leading
kinematic daughter is at ot, (0) 2and—, according to
Ueneziano, the leading satellite trajectory occurs at
ae(0) —I. Our lack of knowledge of these secondary
trajectories and residues, as well as the uncertainty in
the parametrization of the residue of the leading pole,
limits the information we are able to extract from the
FKSR. By successively increasing the cutoff energy to
include a new leading resonance, or tower of resonances,
we are able to derive an iterative equation relating the
residues of successive resonances. The equation clearly
displays the limitations mentioned above. When the
spin J of the leading resonance is large and there are a
Axed number of daughter trajectories, the equations can
be differentiated with respect to t a Gnite number of
times and evaluated at I,=O. When the pole residues are
eliminated from the resulting equations, a set of equa-
tions relating the mass and spin of the leading resonance
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is obtained. There is no solution to these equations when
their number exceeds the number of daughter residues.
If the number of daughter resonances increases with J,
the procedure breaks down since the number of deriva-
tive equations must also depend on J. If the iterative
equation is differentiated too many times, the ap-
proximation of neglecting high derivatives of n(I), the t
dependence of the residue functions, and the presence of
secondary poles or cuts, breaks down. In other words, if
the number of daughters is proportional to J, we find
that FESR are inadequate to 6x completely the daugh-
ter residues without the additional assumptions men-
tioned above.

After this work was completed, a paper by Moha-
patra" appeared which treats the same problem by
similar techniques. He showed that the resonance-
trajectory function must be of the~~form c(sins)'is if
there are a 6nite number of daughter trajectories
present. However, we show that if the I, dependence of
the equations is fully exploited, the constant c must be
zero. He did not consider the case of an indnite set of
secondary trajectories.

In the next section, we derive our basic equation re-
lating the residues of resonances in successive intervals
and discuss the approximations involved. In principle,
there is no difhculty in extending the method to 6nite-
width nonoverlapping resonances. We concentrate on
the xx —+ xco problem and the p-meson trajectory. We
demonstrate explicitly that the number of daughter
resonances must be proportional to the spin of the
leading pole. In Sec. III, we outline the extension of
our approach to the problem of arbitrary external
masses and spins. The conclusion is that all Regge
trajectories (not just the p) must be accompanied by an
infinite set of daughters.

II. SECONDARY TRAJECTORIES IN sr'~ ~es

A general t-channel scattering amplitude with helicities
) &+As-+ As+f4 obeys the following finite-energy sum
rule'.

ImAi„'(s,t)ds

(I—z,)Il &—s I (I+z,)1l &+s i

=Z P .'(l)C (&)3 '+', (~)

with

sin8,Zi' — -1''(.)=ZP'(I)L P)j ""
sin8&

(2)

2Pgqgsg(N)=11t+zr(I —Z) ) Z=3m~s+m~s)

and P ~ and q& are the I-channel momenta of the s.s. and
z~ systems, respectively. The sum over j includes all
resonances with spin j and (mass)s less than E. The
angular part of the residue function dpi~(z) has been
written as c(j) sin8, Pj(z,) and c(j) absorbed into the
definition of I';. Wherever s occurs on the left of (2), it
is evaluated at s =s(j), the (mass)' of the jth resonance.
The resonance sum on the left-hand side of (2) could be
smoothed out by replacing the sum by an integral. 2

However, the subtraction procedure we adopt below in
going from (3) to (4) would effectively replace the
integral by its integrand and lead to the same Anal

equation. In addition, we assume there is no non-
resonant background that should be included in
(2) "

If Ag is the sum over all those resonances in (2) with
(mass)' nearly equal to s(J), the (mass)' of the leading
resonance of spin J, Eq. (2) becomes

equal. Additional equations can be generated'' by
multiplying Ai,„'(s,l) by s"; however, since we are
ultimately going to restrict ourselves to a narrow-width
approximation, we limit ourselves to m =0. The higher
moments distort the mass spectrum and enhance the
contributions of resonance widths.

The discontinuity in s of the t-channel amplitude is
related to the corresponding discontinuity of the s-
channel amplitude by crossing. For arbitrary spins, the
crossing matrix has the form M&,„.i „(s,t), as may be
found in the paper by Trueman and Wick.2' If we con-
sider xw-+me, there is but one independent-helicity
amplitude Aoq', '4 and My„,y „becomes the unit matrix.
When the direct-channel amplitude is represented by a
sum of narrow-width resonances, the imaginary part is
a sum of 5 functions multiplied by the appropriate
coupling constants and angular factors. In this limit (I),
mm ~ mes becomes

where X=)~i—Xs, p=)is —X4, and M=max(~X)&[ii)).ss

ImA&„'is the discontinuity in s of A i„',z &(N) is cos8 in
the t channel evaluated at s=E. The sum on the right-
hand side of (I) is over all contributing Regge poles
with trajectory functions rr, (I) and residues P'(I). The
background integral and Regge-cut terms should also be
included in the sum if the two sides are set identically
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The cutoff parameter 1V(J) lies between s(J) and
s(J+2), since in ss -+ s-cs the intermediate states can
have only odd angular momentum. The requirement
that E(J) lie between s(J) and s(J+2) implies that, up
to an additive constant, Ar(J) and s(J) are the same
smooth functions of J' for large J'. On the right of (3),
only the leading Regge pole and the 6rst secondary pole
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are written explicitly. For mw —+ ~co, the first satellite
trajectory appears at o,'=n —1. In m-~ —+ mo, there is a
kinematic daughter at o, =o,—1; through unitarity, it
may contribute to (3), although with a nonsingulai
residue. When there is more than one leading pole, we
know only that a) n' We. subtract from (3) the corre-
sponding equation with N=N(J 2) a—nd obtain

A. =~(t)(C (J)7.-C (J-2)7.)
+e'(t)(C (J)7"—C (J—2)7") (4)

where
A g+2=FA,J, (5)

When (4) is divided into the similar equation for hz+2,
we find that

C (J+2)7 —
C (J)7 +(0'/&)(C (J+2)7"—C (J)7")+".p—

L (J)7 —
L (J—2)7 +(0'/P)(C (J)7"—C (J—2)7")+".

It should be emphasized that, insofar as the narrow-
width approximation with monotonically rising tra-
jectories and no nonresonant background is exact, Eq.
(5) is exact when all secondary Regge terms are taken
into account.

In (5), F depends on J through the dependence of
s(J) on N(J). If 1V(J—2) and 1V(J+2) are related to
N(J) by power-series expansions in J, F is given by

P' N'
+2 (n' n) —1V

' —+—, (6)
E

where A' and E"are the 6rst and second derivatives of
1V with respect to J. The first term on the right of (6)
is of order J '. The third term is of order J—', while
the second and fourth terms are of order J ' " and
J ' "' ') if s(J) =aJ".If the most important second-
ary trajectory has o.'=n —1, then F is known only to
order J '. Without further information about secondary
parameters, there is clearly a limitation to the accuracy
with which we know F.Note that F to order J ' depends
on t only through n(t). Fits to experimental cross sec-
tions tell us the value and slope of n, (t) at zero, but tell
us very little about the higher derivatives of u, (t).

To solve (5) for the dependence of h J on J, we note
that sin8./sin8i can be written as a product of two terms:

sin8. /sin8& = (p pq pt) "'(p,'q82s) ')'. —

Kg+2= FZg )

where

Z=EI,& (.)

The t-dependent factor is independent of J and can be
cancelled from both sides of (5). The s(J)-dependent
factor is absorbed into the definition of I';. Then (5)
becomes

(7)

I'g ——2g(0)s's io)—'/J' (10)

The expression for the mth derivative of a Legendre
polynomial with s= 1 has been used in (10).

dm

J'g (s)
dsm

(J+m)! 1 J'"
(J—m)! 2~m! 2~m!

For the particular case of sr~ ~ +co kinematics, s, at t= 0
is given by

(s—Z) 2m. '(m„'—m. ')'
s, (0)= =1+

4p.q, S

The pion mass is sufficiently small to set s(0) = 1. Since
(8) is a continuous function of t near t=0, it can be
differentiated m times and evaluated at t= 0. If there is
just a single resonance, its residue is eliminated by
dividing by (10). The resulting equation for the tra-
jectory is

Equation (7) is a difference equation for Zz. If only the
J ' terms in F are retained, it can be converted into a
differentia1 equation and solved to give

&.(t) =a(t)"(J) (J)'"-',
where g(t) is an arbitrary function of t. A convenient
choice for N(J) is

N(J) = lCs(J)+s(J+2)7
= s(J) (1+s'/s+s"/s+. ) (9)

and the difference between N(J) and s(J) does not
appear in the J ' part of F or in (8).

Equation (8) coupled with a statement about the
dependence of s(J) on J gives us the asymptotic J
dependence of the sum of the residues of resonances
with masses in the region of s(J). If the number of
resonances included in Z~ is small and fixed, the con-
tinuous dependence on t can be used to explore the J
dependence of the individual resonance functions. For
example, if there is only the leading resonance, its
residue for large J is obtained by evaluating (8) at t =0:

I';=I,(p,.~q,.'s)

1 J' j(0)
+n lns,

s 2! g(0)
(12)
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where z=dh/dt =2/s and the 2!comes from the m! in the
denominator of (11). For the p trajectory, ri(0) is
known. Equation (12) says that the Regge trajectory
satisfies a nonlinear equation of the form

J'= as+2!ris lns. (13)

Although g(0), g(0), and ri are all unknown, the domi-
nant term on the right side of (14) for large s is (ri lns)'.
Since 3!W (2!)', (14) is incompatible with (13).The mth
derivative equation is of the form

J2) m—
i

=(rilns)"
(m+1)! s /

Since the mass-versus-spin relation for the leading
resonance does not depend on how many times (8) is
differentiated, more than one resonance is required to
saturate the FESR les, ding to (8).

At this point, it is amusing to note that if (4) is used
for J=1 and J=3 with s replaced by A and no
secondary terms, the unknown residue function P (t) can
be replaced by the residue of the p pole (J= 1) multiplied
by L1V(1)$ i". When the first derivative of the J=3
equation is used to eliminate the pole residue, an
equation for the mass of the J=3 pole is obtained:

s(3)—Z =S(1—Z--&»)

ri(0) lnR

where 2=iV(3)/cV(1). If we choose E(3)=s(3)+ (s(3)—s(1))/2, Ã(I) = isLs(3)+s(1)j, n(0) = is, ri(0) = 1, and
s(1)=m, '= 0.6 GeV', we can solve the equation for s(3).
The solution is s(3)= (1.640)' GeV'. The agreement
with the suggested" recurrence of the p at 1.650 Gev
should not be taken seriously. However, the fact that
the p, its recurrence, and u(0) from scattering data
provide three points on a straight line is not evidence
for the linearity of the p trajectory function. In par-
ticular, this solution for s(3) assumes no secondary
trajectories and uses just the first derivative equation.
These same conditions lead to (12) in the asymptotic
limit.

The next question is whether some finite set of
resonances lying on daughter trajectories can satisfy
(8). These secondary trajectories must be asymptot-
ically parallel to the leading trajectory or there will be
a series of values of J for which Z& will contain only the
leading resonance. However, we have shown that Zq

"N. Barash-Schmidt et gl. , Rev. Mod, Phys. 41, 109 (1968).

The second-derivative equation also relates the various
trajectory parameters:

1 J' g(0) / g(0)
+l 2- — (0)+ (o))3! s' g(0) k g(0)

Xlns+Lri(0) 1nsf'. (14)

must contain more than one resonance. If there are e
such parallel daughter trajectories, then e derivative
equations can be used to determine the i'd+I residue
functions, and any further derivative equations de-
termine the trajectory. Again, it is found that the
trajectory depends on the number of derivatives. The
explicit proof of this fact is given in the Appendix. %e
have, therefore, proved our fundamental result —no
finite, fixed number of daughter trajectories satisfies the
FKSR equation. This proof does not involve any as-
sumptions about the shape of the leading trajectory, the
residue functions, or the nature of secondary Regge
poles.

There is a limit to the number of derivative equations.
In particular, if the number is of order J (i.e., m= aJ+b),
then the approximation for Ii breaks down. Thus, if the
number of daughters is proportional to J, we cannot
determine all the residues and do not generate any
constraints on the trajectory function. Even if we
specify linear trajectories, we cannot determine the
residues by this approach. One way to see that the
information contained in the t dependence of (7) is
limited is to note that if definite partial waves are
projected out, there is an integration over s, from —1 to
1.This integration in turn samples a region of t between.
—s(J') and 0. If ~t~ is as large as s(J), the neglected
terms in F )see (6)) are the same order of magnitude as
those we have retained, if not larger. In addition, for
large negative t the singularity structure in the complex
angular-momentum plane is very complex and the
identification of the dominant term is difficult. "

While it can be argued that the derivative procedure
samples the function in detail near t=0 and should be
valid even if there are singularities for negative t', the
approximation for F still fails. For large J, the function
F has the form

P= ]+(2g/J)+2(P+e)/ J'+
where 5=ii—1+m(n 1), if s=—aJ". The unknown
terms are represented by e (t). The new solution for Zs is

(16)

When we take m derivatives of (16), we find that

(a+5)
Zg ——(8 ln J)~—m(8 InJ)~' + ~ ~ ~

Zg dt J
e+5

+-',m(m+1) (8 ln J)"—' 5 ln J— + )
g

+m . +z (m —1)(m+2) (8 -ln J)

e+5
y 5lnJ—.. . 17

J
If m=a J+fi, (8 lnJ) is no longer the dominant term.
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The dominant term will involve higher derivatives of
n(t) and those parts of F of order J '. In pa.rticular, if
n(t) is a linear function of t while o(t) is quadratic, the
o(t) contribution dominates the known terms in F. An
expansion of F in inverse powers of J becomes meaning-
less in this limit.

The FESR does provide a great deal of information
about the J dependence of resonance residues. However,
without additional assumptions about unknown func-
tions or some other physical information, the FESR's do
not determine the parameters of the resonances and
trajectories used to satisfy them. The constraints
generated by (8) must, of course, be satisfied by any
solution.

The approximation for F breaks down for low values
of J. If secondary trajectories are known to occur at
0,'= n —2, then the fact that the J—' terms in F are also
known helps to extend the region of validity. However,
there is no point in using P ( z) inste—ad of (—z) in
deriving (1), since the extra terms are the same order as
those that are unknown. To show how the secondary
terms become more important, we mention that with a
scale mass of 1 GeV and a cutoff E of 1 GeV, the fourth
term in the expression for F in (6) is the same order as
the flrst (unless P'/P is unusually small). The success of
Ademollo et al. ' might be interpreted as a statement
that secondary eRects are indeed small.

The crossing matrix 3E&„i, „(s(j),t) is given by a sum
over products of rotation functions dq, q. s'(X;) 5 being
the spin of the external particles. The crossing angles X;
and the explicit form of 3fq„.q „arefound in the paper
by Trueman and Wick. 2' The sum over all resonances in
(18) with masses nearly equal to s(J) is represented by
A.g"&. We then proceed as before and subtract successive
towers of resonances to obtain

Ag+j""=F),qAg"",

F&,„=1+(s"/s'+ (n —3f) (s'/s) )+

(19)

(20)

and M=max((X(, (p~). If the masses of the resonances
in Az"& are assumed equal, the crossing matrix and
other factors depending on t and s can be factored out of

III. EXTENSION TO ARBITRARY
EXTERNAL SPINS

In this section we show how the results of the previous
section can be extended to processes involving external
particles of arbitrary masses and spins. When ImA q„'in
(1) is crossed to the s channel and saturated by reso-
nances, Eq. (2) is replaced by

M'i,„,. i, „(s(j),t) I'g „Jdg„&(8,)

(1—z,) kl & "I(1+z,)kl&+" I

the sum to de6ne Zz"~ by

s s
~s+1 '4v~oo' 1+ +

s s

X] n+ —
[

Zs"', (21)

where

~~'. . '(s(J+1))~.A', ;~, (s(J))=—I'~„;x,
-s/I sf

=4K&o, 1+ —+—(n+o(X —ti~) +. ~ . (22)
s s

To order J ', Eq. (21) is diagonal in helicities. The
omitted terms in (22) include off-diagonal terms that
can be explicitly calculated. For example, for arm. —+ m-co„

where ~, has arbitrary spin s, the oR-diagonal terms
have the form

and

t' s'
I'xo; ~+.o =

~
a„+(X,t)

(so/o

(s'
&to;i,—o=

~

a (X,t),
Is'&' j

(23a)

(23b)

where a +p„t)are known functions of X and t. The
solution of (21) is

Z sr =geo (t)s~ (J)s(J) +' (24)

When this is substituted into (23), we flnd that it is
consistent to neglect the oG-diagonal elements of (22).
Equation (24) contains (8) as a special case if the addi-
tional factor of (sp'g') '~' in Zs for o-vr-+ o.oi is taken
into account.

The complete analysis of the previous section can be
carried out with (24) replacing (8). The same conclu-
sions follow, subject to the same conditions. In general,
there will be trajectories with o.'= o,—x, where x is less
than 1. However, (24) is still the asymptotic solution,
and, except for the coeflicient g"&(t), it depends only on
the helicity and leading cross-channel trajectory. The
only delicate point is that z, (t=0) is not sufliciently
near 1,

z, (0)= 1+2$(bio —moo) (nzoo —m4o)/s'j+'

to set the Jacobi polynomial equal to its value at z= 1.
For linear trajectories, the J ' dependence of s—1 is

(1+z,)21&'+o'1(1 z,) kl &'—y'I

AJ~& = ~)I,P,;X'P'~ J
(1+z,)k I &+i I (1—z,)kl &—i I

~~& Xp; X'p'~ JX'p, '

and
g ~o=g I' &os. I&—ol, l&+ol(z.)

P„»(z)is a Jacobi polynomial. When (20) is multiplied
by Mq„,i, „'(s(J+1),t), we obtain
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compensated by the J' dependence of the mth deriva-
tive of the Jacobi polynomials. This difhculty is avoided
either by working at t=0 and taking into account this
extra J dependence or by choosing t so that s=1 for
s=s(J). Then, s(0) differs from unity for s=s(J+2) by
terms of order s ' and these are handled explicitly in the
derivative equations. The conclusions are unchanged.
No fixed number of daughter trajectories satisfies the
FESR equations; on the other hand, the equations by
themselves are insuflicient to determine the resonance
parameters if the number of resonances increases with J.
Since (21) is valid for both baryons and mesons, the
conclusions should also apply to baryon trajectories.

Fz—2 '(s)
+J QIJ 2n-

Fg g„'(1)
(A1)

APPENDIX

In this appendix it is proved explicitly that no Axed
number of daughter trajectories can be used to satisfy
(S). If Zz is given by

n n—1 P' n—I
N! (rm —N)!

(A4)

Thus, P~+~N is independent of all the pole residues and
is equaim' to 1. Equation (A4) enables us to write
Y~+q in terms of F '. The result is

N (—1)N+' "(N+1)! 1
1=—g — —FN+x „'. (A5)

(N+1 —r)! r!

The leading term on the right-hand side of (A3) is,
from Eq. (15),

F~o= (re+1)!((s/J')6 Insg~= (rw+1)!X~. (A6)

If there are N daughter resonances, there are N inde-
pendent functions of J labeled by 8„.The lrst N+1
derivative equations are sufBcient to eliminate the 8,
and obtain an equation for the trajectory. The problem
is one of solving a set of linear equations. If the right-
hand side of (A3) is labeled by F ', then the coef5cients
of B~ to B„arezero in F ",m& e, which is generated by

N+i (N+2 —r) (—X) +'-"
=0.

t=o gI
(A7)

/ J2) fS

(m) —
/

E s ) (rm+1)! Although (A7) was derived under the assumption that
there were N resonances with mass s(J), it holds to the
same approximation as (A2), even if there are only
N'(N. In other words, X must satisfy (A7) for all
N)N' (N(&J), but it cannot depend on N itself. If (A7)
is written as F(N, X)=0, then

2m (2e) "(—1)"(2nz)! I'g g~xpp (A2)
r!(2nz —r)! J"

We have redefined Fg ~ to contain an explicit factor of
P'g ~ '(1)P', and set'ds/dP= 2/s. When (A2) is divided
by the zero-derivative equation, it can be written in the
form

N+y ( X)N+1 r—
G(1V,X) =F(1V,X)+XF(N 1, X)= Q — =0

where the sum over e includes all the daughter reso- Thus, X satisfies the equation
nances, then the mth derivative of Zg evaluated at s= 1
1$27

~m (2m)! 8„ /s)~ZJ& '—= (~+1).l —I.=0 (2m —r)!80 EJ') Zz
(A3)

and

G(N+1, X)+XG(1V,X)= 1/(N+2)! =0. (AS)

with
(—1)2"

8,= —p e"I'g 2. .
J"r I

"We neglect terms proportional to n"J ~~, m&1, since they
are higher-order corrections to J3,.

Therefore, there is no solution to (A7) independent of
E, and the number of secondary resonances must
exceed the number of derivative equations.

Consistent with earlier approximations, we have set 8„for
r&E equal to zero.


