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some sense be as small as possible, for otherwise A+
would be more than just a unitarity correction to d1+.
Furthermore, as we want to consider unitarization only
in connection with the problem of crossed-channel
Regge asymptotic behavior, which requires only that
$A+j ' diverges for large ~im/~, we will coniine our

' discussions only to large
~

/
~
. Now if we take only elastic

unitarity condition throughout, then (18) is replaced
by ct(s') = —1, in which case we may choose & =1.Since
the integral is then independent of 1 for physical l,
according to our previous point of view Et(s) must also
be independent of / so that the correction terms on the
right-hand side of (17) remain to be a minimum for
all /. If we assume the condition of Carlson's theorem to
be valid so that we can uniquely extend ct(s') and
L~'t(s') in the / plane, then these correction terms must
also be independent of / for ~im/~ ~ ~, so that
LA+) ' cannot diverge there. We conclude, therefore,

that elastic unitarity alone is not su%cient to restore
the crossed-channel Regge asymptotic behavior. If we
are willing to take inelastic unitarity into account, then
of course we may always find functions c~ and Eg so
that they diverge as

~
Im/~ ~ ~. However. , if we still

want the conditions of Carlson's theorem to be valid,
then all these functions are necessarily large for large
real positive 1 too. The question is then whether we can
still hope to regard the correction terms as small. The
answer is yes, because we can see from (8) and (9)
that t A+(s, /)] ' grows exponentially in / as Re/ —+~,
so that as long as the correction terms do not grow so
fast, they may be considered as small.
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A new representation of the scattering amplitude that has good analytic properties, Regge asympotic
behavior, and an arbitrary double-spectral boundary is proposed. The representation automatically yields
partial waves with the correct threshold behavior for both their real and imaginary parts. The presence
of the correct double-spectral boundary should be very important in decay problems, where an unstable
external particle considerably modifies the analytic properties of the amplitude. This representation in its
simplest version is applied to pion-pion scattering. Unitarity is enforced near threshold. By using the
(degenerate) p- and f-meson trajectories, the p width, and the Adler self-consistency condition, the three
isotopic scattering lengths, the f width, and the Regge-scale mass are predicted.

HE recent suggestion of Veneziano' for an explicit
form for the scattering amplitude that satisfies

crossing and Regge behavior has led to several inter-

esting applications to meson-meson scat tering2 and
three-meson decay' processes. However, when attempts
have been made to satisfy unitarity and to include

complex trajectory functions, severe difficulties with
this representation have been pointed out and have
led to several suggestions for modified building blocks.
All these proposed formulas have the disadvantage of
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being quite ad hoc and not being based on dynamical
ideas. For example, while they satisfy cut-plane analy-
ticity, they do not possess the correct double-spectral
boundary. |A'hile this defect may be small in the asymp-
totic limit, it could be important in the low-energy
regime and even crucial in three-particle decay applica-
tions where the presence of an unstable particle modifies
the analytic properties.

In this paper we would like to present a new type
of formula for the scattering amplitude which is moti-
vated by dynamical considerations, but which has
certain desired properties that do not seem to follow
easily from simple calculations —for example, asymp-
totic behavior. The undetermined functions in the
representation are then to be determined or restricted
as far as possible by an appeal to detailed dynamics,
especially unitarity.

The motivation for our representation is primarily
the Mandelstam representation. For simplicity, let us
consider the scattering of unit-mass spinless particles.
The box diagram for scattering through a pair of mass
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2M~ in the t channel and a pair 23f2 in the s channe1
can be written in the form

00

B2(s,t) =— ds'(s' —s)
—' ImB, (s', t) .

The absorptive part is easily calculated and turns out
to be a function of s and t, but the important point is
that t always occurs multiplied by a simple function
of s. In fact, one finds

ImB2(s, t) =A2(s, r) =g'(1 —4M22/s)'~'

1 s+st
X— dr'

)
(2)

(r' r) ltd'(—r' 4)j"'—
whel e

r =tC(S) =t(S 4M22)/—M22(S+St),

M 2sl (M12+M22 1 )2 4M22M12

The Mandelstam boundary for this diagram is given
by the curve r=4 The f.unction C(s) corresponding
to elastic scattering in the t channel is then

C, = (s—4M')/(s+M' —4M'),

and the elastic s-channel function is

C, = (s—4)/M'(s+M' —4)

where the C's vanish below their respective thresholds.
The full Mandelstam boundary is then given by the
curve r=tC(s) =4, where

C(s) =max(C„C, ) . (4)

The important behavior of C(s) is that in general it
vanishes as q2(s) near threshold and approaches 1 at
infinity. If one studies the manner in which this model
develops Regge behavior when the elastic ladders are
summed in the t direction, then to lowest order'

and
n2( —~)= —1.

One of the effects of the elastic box in the s channel is
to add to 0. an inelastic cut starting at 4M'.

Motivated by a desire to preserve the analytic
structure exhibited in Eq. (2), and to generalize it to
all orders so that 8 will have a Regge behavior for
large s, we will assume that the total absorptive part
has the form

This ansatz reduces to Eq. (2) if rr is replaced by its
lowest-order terms and if the constants P, se, and st
are chosen appropriately.

~ B. W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266 (1962);
T. W. B.Kibble, ibid. 117, 1159 (1960}.

One might expect, on the basis of Eq. (3), that the
parameter st is of order M' —4 if n(t) arises primarily
from the binding of states of mass 4'. However, if 0.
is dominated by the 2m state, then s~ is of order
M2(M2 —4), where M is the mass of the particle giving
rise to the force.

One of the main advantages, and disadvantages, of
this type of function is the fact that the integral over
s is complicated by the s dependence in r. It is precisely
this dependence, however, that guarantees the correct
spectral boundary. It has not been explicitly shown
that this simple ansatz, which attempts to interpolate
between the low-order graphs and the asymptotic
behavior, accurately reproduces the large-s behavior
of the three-particle exchange graphs, but it reduces
upon simplification to the multiperipheral type of
expansion. ' Our ansatz, however, does not collapse the
spectral boundaries due to multiparticle exchange to
straight lines, but approximates them by the exact
box-diagram boundary.

It is interesting to note that the correct threshold
conditions in s for all partial waves for both the real
and imaginary parts of 8 are satisfied by the general
form of our type of ansatz because of the presence of
the boundary curve C(s) in the t dependence. At this
point it should be stressed that the choice of Eq. (6)
is one of the simplest possible consistent with our
constraints. If one were to embark on an ambitious
calculational program, it should probably be modified
by introducing a more general ansatz with additional
parameters, which would then be determined by uni-
tarity. Also, note that the asymptotic behavior of 8
for large s comes from the large-s behavior of A. For
the leading term one may set v =t and a standard
Regge behavior is then achieved. The nonleading terms
can be quite complicated and they depend in detail on
the ansatz for A.~ Finally, the poles in these building
blocks occur only in their second argument.

Now let us try to apply this form to the physical
case of pion-pion scattering. We will follow the notation
of Chew and Mandelstam, except for normalization.
The amplitude A(s, t,l) can be written in terms of p,
and p, where p, is symmetric and p has no definite
symmetry. We define the three functions F, G, and II:

1 ds'dt'p(s', t')
G(s,t)+F (t,s) =—,(7a)

2r2 (s' —s) (t' —t)
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H(s, t)+H(t, s) =— ds'dt'p, (s', t')
4

(s' —s) (t' —t)

tion will be written
A t ~ Go+ $Go (I t

A ' -+ 3tI'(Gi+sG)'qs),

At ~ Gs+sGs (I
A (s,t,g) =G(s,t)+F(t,s)+G(s,l)

+F(u, s)+ H(u, t)+ H( tu) . (g)

ds' g' s'+st) (")

4 (s' —s)(s' —4) Qs' so

—=g+I (s,t), (9)

eo

G(s, t) =g+—

where g is a constant and r =tC(s):

C(s) =-', (1—4/s) for 4(s(20
=1—16/s for 20(s( oo . (1o)

In order to determine the parameters, we will enforce
unitarity near threshold for the lowest partial wave in
each isotopic amplitude. The Adler self-consistency
condition will also be required. This latter condition
requires a zero-mass extrapolation of one of the ex-
ternal legs. Since this is not a very long extrapolation,
the dependence of the spectral function will be ne-
glected. This is, however, in contrast to the three-pion
decay problem, where such an extrapolation has to be
done with more care.

Since we are enforcing unitarity only at threshold,
and neglecting other inelastic channels which are im-
portant in the determination of the meson resonance
parameters, we will assume that the masses of the p
and f, and the width of the p, are given.

The Adler condition requires that F(1,1)=0 and,
hence, g= —I(1,1). In general, there is no similar
condition on 6, but it also vanishes because of our
proportionality assumption. To enforce unitarity near
threshold, the isospin amplitudes in the forward direc-

The amplitudes 8 and C follow from A by permutations
of s, t, and u. It is the functions P, G, and II that we
assume have the structure of the basic building blocks
discussed previously. In order to prevent I=2 poles
in any channel, we set H(x,y) = —G(x,y). The I=i
poles arise in LG(t,s) —G(g,s)j, and the I=O poles
arise in LF(t,s)+F (N,s)j; thus we find a natural separa-
tion of the even- and odd-signature Regge-pole con-
tributions. For the purposes of this example, we will
assume that only the p and f trajectories contribute to
this process and, in addition, that these trajectories
are degenerate. Since the f is an even-signature tra-
jectory with a negative zero intercept, I' has been
subtracted once to eliminate a ghost at O.f =0. In addi-
tion, we will assume that F=yo, which implies that
the p chooses nonsense at n, =0. The parameter y will
be a measure of the breaking of strict exchange de-
generacy between the f and p. Finally, since trajectories
seem to be linear over a large range, we will set n(r)/
n( —~)&&1 so that the square brackets in Eq. (6) can
be approximated by unity. Our ansatz can thus be
written

We now expand the isospin amplitudes near threshold
in terms of our building blocks, keeping in mind that
Im(r~ constX(s —4) ")+'I', so that it does not con-
tribute to the lowest-order unitarity cut. By comparison
with Eq. (11),we obtains

Go = 10gp+6/I(0, 4)+2 (y —2)I (0,0), (12a)

(12b)

Gs =4gy+2 (1+y)I(0,0),
s +4 tt(0)

Gs'= (V-1)P

(12c)

(12d)

P d t I 4)is- ty ) [tG ]

3' 4 S S t SO )
/s +si (0)

+ (1—y) ~

— +O(4u'(1 —y)), (12e)
) so

v+1 (sr+4 "' »+4
Gis = (r'P~ ln—

6 k s, so
(12f)

where n(s) =(r(0)+s(r' for s 0. Unfortunately, except
for I(0,0), we cannot perform the required integrals in
Eq. (12) in closed form because of the s' dependence
in the argument of 0,. However, since most of the
integral comes from large values of s', C(s') can be set
equal to 1 in computing the integrals. It is crucial,
however, that one does not make this approximation
when computing the imaginary parts of the amplitudes.
We can then evaluate I(0,t):

'" 1(1—(t))1'(-')
I(O, t) = ———

2s s, I'(—' —(r (t))

&&F(—(t), 1—(t); -' —(t); ——,'s ). (13a)

As we will see later, 4s~&&1, so that we must analytically
continue the hypergeometric function. For n(t) near —'„
we can, to a good approximation, keep only the first-
order term of the expansion m powers of 4/sr.

p /&
u(t)

I(o,t)=—i-
~ES0

(13b)

'li we set I(0,0) =I(0,4), 7=1, and g= tI(0t0), we obtain—
from Eqs. (12a) and (12c), a2-——{2j'tI'}co=I(0,0), which is the
result obtained by Weinberg )Phys. Rev. Letters 17, 616 (1966)g.
See also D. I. Fivel and P. K. Mitter, Phys. Rev. 183, 1240
(1969); M. G. Olsson and L. Turner, ibid. 181, 2141 (1969);J. Zulco and D. Wang, Phys. Rev. Letter's 19', 1S99 (19M);'E. P. Tryon, Columbia University Report (unpublished).
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p s tt{p)

a,= (-,'y —2)——
Sp

(st+4)
as'= (v 1)p-l

Es, )

(14c)

(14d)

p (s,
ai= (3-»—I—

9~&so

V+t t&|+t)'" (»+4)aip = --n'pl
l

lnl
6 (s, ) E, s,

(14e)

(14f)

From Eqs. (14a)-(14d), we have a cubic for y that has
the solution y=1.028. Then, using Eqs. (14a) and
(14b), we obtain

thus

(st+4' tt (p)

ap ——2.0l-
ks, )

ap/ap ———1/10.4,

ai/ao=1, 21 & ~

(17)

(»)
Equation (14f) then gives

s,+4i
n'In l=0.96 GeV '.

sp )
(19)

Now, in order to proceed, we assume a straight-line
trajectory that passes through the p and f:

«=0.4&5, ~'=&.O GeV-2.

Then from Eq. (19) we obtain

(si+4)/sp =2.62.

(20)

(21)

Finally, to simplify the calculation, we will assume that
E(0,4) I(0,0). Equation (12) then becomes

p si)"")
«= (le+4)- —

I

~ so)

st+4' "'
«'= (v+2)p

s, )

Near Retr, =1, we set n, =1+n'(s —s)s,s)+s Imtr and,
neglecting nonresonant terms, we find

pI7' 4 3s
s =cos8. (22)

3trtr' sp ttt p'-s-i(Imn)/n'

If we require that this saturate unitarity, we obtain

2pI7' 4
p (23)

/35$P xQ sp ~tf=mp

Similar considerations near Reo,,=2 will yield

pqp 4 )s
(24)

5)tp)' )rial Sp )
The experimental width of the p is 120 MeV and,
using Eq. (23), we find sp ——26.7 and, from Eq. (21),
st=74. The width of the f is then determined to be
160 MeV, which compares very well with the experi-
mental value of j.45 MeV.

The scattering lengths are given by Eqs. (16)—(18):

up =2.04, ag =0.0935, a~ ———0.196,

where, for comparison, we note that Weinberg's value
of ao is 0.20.

Finally, we look at the high-energy behavior. In the
limit s —+ ~, t&0, the leading term in the scattering
amplitudes is proportional to G(s,f) as long as Imtr is
su(5ciently large (see, for example, Predazzi' and
Rosaries. ') If we scale out the leading s dependence in
Eq. (9), we 6nd

( S a(t) ( S tt(t)

G (s,&) i(&)l — =f(&)l-
isp (0.51

where s is measured in GeV'. Thus we see that in this
model, the Regge-scale factor is determined by the
width of the low-energy resonances. The value of
sp=0.51 GeV' compares very well with the values
found in phenomenological its.'p

One can now compute Ms=4+St, and we 6nd
3E=1.24 GeV, which would suggest that the trajectory
arises primarily from the binding of heavy particles,
such as pp, pf, and nucleon-antinucleon.

'OIn the bulk of the phenomenolosical Regge Gts, this pa-
rameter is arbitrarily set equal to 1 GeV'. However, in a few
recent Qts it was taken to be an adjustable parameter. R. C.
Arnold and M. L. Blackmon Lphys. Rev. 176, 2082 (1968}j
found sp

——0.3 GeV', J. Botke and J. R. Fuico /ibid. 182, 1837
(1969)] obtained limits of 0.1(sp(0.5 GeV'; and D. D. Reeder
and K. V. L. Sarma /ibid 172, 1566 (1.9685j obtained several
values depending on the particular process ranging from 0.3 to
4.0 GeV'.


