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observed in the experimental decay data Lin the ratio of
the p and E*(891)widthsj. The p-f' row is independent:
of. the p and E* rows, because of singlet-octet mixing.

Table I includes some predictions for Z* and ™*par-
tial widths that, are not measured yet. The predicted
sum of the sr Z+ partial widths of the h.+Z'+Z' reso-
nances in row 6 of the table is computed with phase-
space factors corresponding to a resonance mass of
1690 MeV.

The trajectory ED to that of the Z(1382) is interest-
ing. Because of the fact that EE states of all charges
are exotic, the ED hypothesis requires that the Z (1382)
contribution be cancelled by the Z member of the j~=

~

octet, and that the A. member of this octet be decoupled
from EE states. It is seen from row 2 of Table I and
from Ref. 7 that these requirements are in fair agree-
ment with experiment. On the other hand, the Z'(1382)

contribution to the + Z+ mocle may be cancelled by a
combination of the Z" and A of the —', octet, It is seeii

from row 1 of. the table that the A plays a dominant role
in this cancellation. Thus, the 2 A. and Z' trade roles.

The data concerning the j =~+ trajectories do not
support the Veneziano choice of so, as is seen from the
discrepancies in the last column of the first two rows of

Table I. However, if a new so were chosen so that the
predicted recurrence widths were smaller by a factor of

3, the predicted ED widths would be smaller by v3 and

would still agree satisfactorily with experiment.
Most of the experimental widths are not very ac-

curate. However, the general agreement between the
experimental and predicted widths in the 6fth and

sixth columns of the table is encouraging for the com-

bination of the ED hypothesis and the Veneziano energy
dependence.
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Methods for incorporating higher-symmetry ideas into the phenomenology of Regge poles are reviewed.
These methods, which were developed originally for treating models of the "quark-excitation" type, are
extended to cover also the "orbital excitation" models with particular reference to the oscillator model.

higher symmetries. A beginning was made in this direc-
tion in a series of recent papers. Unfortunately, although
the discussion was general, the details of the formalism
were given for one specific model of Reggeized higher
symmetries, specifically, the model based on a quark-
excitation picture for higher resonances, where along
a trajectory the total quark content for physical states
(half the number of quarks plus antiquarks) increases

by integer steps in the form 1V, %+1, %+2, , and it
is the quark number X which is Reggeized. It is our pur-

pose in this paper to consider in detail the rival models
based on an orbital excitation picture of two- and three-
quark composites Lgroup-theoretically, models of the

type SU(6) Cmoz, (3), with a Reggeization of the orbital
quantum number 1.$.

As is well known, the quark-excitation models predict
"exotic" resonances with high values of strangeness and
isotopic charges, while in the orbital models only the
1's, 8's, and 10's of SU(3) make their appearance. The
physical hadron spectrum may, in the end, prove to
possess features of both models; the present evidence,
however, seems to favor orbital models of lesser or
greater complexity with the known baryon resonances
apparently grouping themselves in multiplets of (56,0+),
(56,2+), (70,1 ), . and meson resonances in (35,0+),

I. INTRODUCTION

(~[NE of the rather surprising features of the present
scene in particle physics is the increasing evidence

of the relevance of SU(6)-like symmetry ideas' in de-

scribing hadron spectra on the one hand and, on the
other hand, the comparative disregard of such sym-
metries and the strong correlations they may be ex-

pected to provide among residue functions —even as
a crude guiding principle —by those working in Regge
phenomenology. '

One possible reason for this disregard could be that
detailed experimental confirmation (from decay data)
of the validity of higher symmetries for coupling param-
eters and residues exists for the low-lying SU(6) states
only. A second and more practical reason is perhaps the
nonavailablity of a simple, consistent, and detailed
formalism embodying the marriage of Regge ideas to

*Present address: Imperial College, London, England,
t On leave of absence from Imperial College, London, England.
i For a recent review, see H. Harari, in Proceedings of the

Fourteenth International Conference on High Energy Physics, -
Vienna, 1tt6$ (CERN, Geneva, 1968), p. 195.

'The only systematic attempts in this direction that we know
of are by P. G. O. Freund, Phys. Rev. 157, 1412 {1967);R. Arnold,
ibid. 162, 1334 {1967);Y. Ne'eman, L. Horwitz, and N. Cabibbo,
Phys. Letters 22, 336 {1967).
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(35,l ), of SU(6)glOz(3). We wish to stress that
the great virtue of using symmetry ideas is that we do
not require the physical existence of quarks; we obtain
quark-model results, with their correct relativistic kine-
matics, without actually believing that such objects exist.

The plan of the paper is as follows. In Sec. II, we re-
view the basis of the Reggeization procedures, given any
rest symmetry group for particle multiplets. The most
important concept here is the notion of generalized
helicity. This is introduced and we then define the ap-
propriate rotation functions needed for Reggeization.
These functions are a generalization of the familiar
dye ~(0) rotation functions of the group Oq(3). In Sec.
III, the equivalent M-function formalism for writing
amplitudes using multispinors is introduced in terms of
which actual calculations are made. We wish to stress
with the greatest possible emphasis that this multi-
spinor formalism, using Bargmann-Wigner equations
to describe supermultiplets, is not just a luxury. Insofar
as it embodies the correct kinematics' and (most im-

portant) provides a natural formalism into which
symmetry breaking -sects (due to mass splittings within
a supermultiplet) can be incorporated, the rnultispinor
W-function formalism for scattering amplitudes is an
important ingredient of the Reggeization scheme. One
wishes one could stress this enough so that the unfor-
tunate prejudice against learning what is basically a
very simple and yet extraordinarily powerful technique
could be overcome. Section IV deals with the detailed
description of the oscillator excitation model and its
application to Reggeized meson-baryon (MB) and
baryon-baryon (BB) scattering. In Sec. V, we discuss
brieAy the kinematic-singularity problem and the ques-
tion of Tollerization versus Reggeization of physical
amplitudes as a means to cope with such singularities.
Section VI discusses the situation where the singularities
are removed by Gribov doubling of the meson multi-
plets. In a separate note, the formalism of this paper is
applied to the problem of charge-exchange meson-
baryon scattering to see if the Reggeization of SU(6)
0(3)-like theories with the drastic decrease in the
number of residues they provide gives a reasonable ht
to the data. 4 There we show that, in fact, one can corre-
late all known processes with a one-parameter formula.

II. REGGEIZATION SCHEME FOR HIGHER
SYMMETRIES ' GENERAL

CONSIDERATIONS

As stated in the Introduction, there are two distinct
types of models of Reggeized higher symmetries.

' The point to be reiterated is that in theories of SU(6) variety
the "Clebsch-Gordan" coupling coefficients contain mass-depen-
dent kinematic factors. If the symmetry were exact, it would not
matter how these things were computed. The symmetry, however,
is not exact and the multispinor formalism has the advantage of
explicitly stating this mass (and the kinematic) dependence. It is
therefore relatively easy to take account of symmetry-breaking
effects, for example, by introducing physical masses in place of
mean multiplet masses in the kinematic factors.

4 R. Delbourgo and Abdus Salam, Phys. Letters 288, 497
(i969).

A. Orbital Excitation Models

Here, higher symmetries corn.bine intrinsic spin and
unitary spin as in the original SU~ s(6) proposals
emanating from Wigner's SU(4) (F is the unitary spin
index and S is intrinsic spin), while Reggeization pro-
ceeds for orbital momentum L. (Here J=L+S.) The
models we shall consider correspond to the following

symmetry groups '.

A. SU(6) CglOr. (3),
U(6) 8 U(6) i, ,80~(4),

A(ii). U(6) g U(6) i,scaSU~(3) .

(i) 0(4) orbital nzodels. The U(6) &( U(6) intrinsic-
spin —unitary-spin symmetry treats quark and anti-
quark spins as distinct and independent so that the
intrinsic spin group contained' in U(6) 8 U(6) is the
subgroup SUs, (2)SUs;(2). As is well known, this
group has the same structure as Os(4). From this point
of view, a natural, though by no means essential, gen-
eralization of orbital angular momentum also is to con-
sider four-dimensional orbital momenta, thereby en-

larging 01,(3) to 0~(4), where X stands for the quantum
number appearing in the eigenvalue E(%+2) of the
0(4) Casimir operator. ' '

(ii) U(3) orbital mode/. A remarkable feature of the
baryon spectrum known at present appears to be that
all known particles belong to (56,L"'") and (70,L' )
The fact, that there appear to be two (56,0+) multiplets
and no (56,1+) bears out the need for a radial quantum
number A for classification purposes. A suggestion has
been made that possibly the extra orbital degrees of
freedom are associated with a harmonic-oscillator-like
potential and the Reggeized quantum number is one of
the Casimir operators of the three-dimensional har-
monic-oscillator group SU(3) rather than 0(4). This
oscillator group SU(3) is the same group familiar from

'Another freedom which has not been exploited lies in that
groups like SU(6) and U(6)QxU(6) admit of pseudoquark repre-
sentations in addition to quark representations (pseudoquarks,
like the antiquarks, carry opposite intrinsic parity to quarks). In
fact, we shall see later that a Tollerization of physical amplitudes
(in contrast to Reggeization) more or less forces one to take
pseudoquarks seriously, and with them hadrons of unnatural
intrinsic parity.

6 The important physical example where rest states are appro-
priately classified in terms of a four-dimensional angular momen-
tum group O~(4} is the case of the hydrogen atom, the four-
dimensional character of the group being a reflection of the extra
symmetries possessed by the Coulomb 1/r potential. As is well
known, hydrogen atom energy levels fall on Regge trajectories in
an E versus L'"' plot, where the principal quantum number S
determines E(1@+2), the Casimir operator of the orbital O~(4).
I iver =- i(k|+k~), where k& and k2 are the 2 three-dimensional angu-
lar momenta associated with the two independent subgroups
OI„(3) and OI,~(3) which make up O~(4): O~(4) =Op, (3) XO1,2(3).
For the hydrogen atom, only states with k&=k2 are realized and
5=0, f, 2, . . .]The possible existence of such an orbital Oy(4) in
hadron spectroscopy has been speculated by Barut and Kleinert
(see Ref. 7). The fact that two (56,0+) multiplets appear to be
known seems to bear out the need for a radial quantum number
like N for classification purposes (see further under the "oscillator
model").' A. 0. Sarut and H. Kleinert, Phys. Rev. 161, 1464 (1967).
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(4) The importance of the generalized helicity sub-
group lies in that, if the symmetry were exact for three-
point vertices, 8' spin must be conserved. Labeling
physical states with E and W Pin analogy with J' and
X for G=SUs(2)j, we thus have, for the three-point
function,

nuclear physics shell-model spectroscopy. It is discussed
in detail further on.

B. Quark-Excitation Model

In a diferent category and contrasting with the spin-
orbit coupling models considered above is the quark-
excitation model which was treated in detail in the
earlier papers. ' Here one starts the rest symmetry
U(6) S U(6) and Reggeizes one or more of the Casimir
operators of this group. One of the simplest cases was
the Reggeization of tota/ quark number E, the physical
particles lying along two master trajectories in E versus
(mass)' plot and 21V taking the values 3, 5, 7, ~ ~ for
baryons and 2, 4, 6, - for mesons.

Peg geisatt'on procedure Now. , even though the physical
ideas behind the two types of models A and B are
different, the techniques for applying Regge ideas to
the high-energy behavior of scattering amplitudes are
very similar. So we shall state these in generality for any
particle classification group G.

(1) Neglecting small deviations from a mean mass,
assume that al/ hadron states (at rest) can be classified
as representations of a (rest) symmetry group G.

G= SU(6) SO(3) for orbital models
of type A

=
I U(6)SU(6)]SO(4) for orbital models

of type A(i)
= jU(6)8 U(6)jSU(3) for orbital models

of type A(ii)
= U(6) S U(6) for quark-excitation models

of type B.

(w) T(z)
~
w,w, &=p (t-w)w, w,p~,~,(z). (1)

Here (iW~WrWs& denotes the Clebsch-Gordan coeK-
cient which in Gs couples D~&S D~s to D~. (In gen-
eral, there may be more than one independent coupling,
so we have included a parameter f to distinguish among
them. )

(5) W spin is also conserved for collinear scattering
processes (forward scattering). Thus,

(w, w. ~z(~) ~w, w, &

= p (w,w, ii-'w&T„.,(z)(i-wow, w, ). (2)

(6) The noncollinear four-point functions exhibit
conservation of coplanar symmetry which for models
A, A(i), A(ii) is SU(3), LU(3) SU(3))SO(2),

LU(3)SU(3)lS U(1),

and for model 8 is U(3) S U'(3).

(7) If we assume only that the subgroup symmetries
(1)—(6) hold as empirical facts (at least to a fair approxi-
mation), there is the mathematical theorem" that we
may express a nonforward scattering amplitude in
terms of a cosrtp/etc set of suitably defined functions
ds s"~(e) as follows:

(wsw4
~
T(z,o)

~
w,w, &

(w,w,
~

i'w')d ~ (—tl)

r "(&)C.W
I
W W & (3)

Here,

d~ ~"(e)= pw'~ e-'" ~xw& (4)

are the generalized rotation functions —the matrix ele-
ments of the space rotation operator e"~2—for the
group g. The expansion theorem used above relies on
the completeness notion which requires that we sum
over a one parameter family D -of representations of
G, since we are dealing with a function T(e) of just one
variable 8.

Note that we are making the important distinction between
Us(12) and U(6,6) In its original formulation, U(12) was the
symmetry group combining iltrilsis spin (S) and unitary spin
(t), while we regard U(6,6) as a noncompact rest symmetry which
combines total spia (J) and (F). The two Us (6) groups in models
A(i), A(ii), and model Il are therefore different groups; they refer,
respectively, to intrinsic spin S (which has to be combined with
the orbital angular momentum to give J) and to J itself.' For a fuller discussion, see Delbourgo, Salam, and Str@thdee,
Ref. 8.

(2) A significant empirical feature of the spectroscopy
is that only some rather simple representations of these
groups appear to be realized in natur= in general,
these are representations characterized by just one
quantum number 1V (Casimir invariant of G) besides
baryon number.

(3) For every rest symmetry group G, there exists
a generalized helicity subgroup which we shall denote
as Gl4 the generalized helicity' being denoted by 8".

8 R. Delbourgo, Abdus Salam, M. .A. Rashid, and J. Strathdee'
Phys. Rev. 170, 1477 (1968); R. Delbourgo, A. Salam, and I'
Strathdee, ibid 172, 1727 (19.68); R. Delbourgo and H. A Rashidi.
iM 176, 2074 (19.68).

'All rest symmetry groups G must contain the subgroups
SUs(2)QxSUs(3) LSUs(2) =SUz(2)O+SUs(2)g. Embedding
SUs(2) into the Lorentz structure SI,(2,C), one identi6es the con-
ventional helicity subgroup as that subgroup of SUs{2) whose ele-
ments commute with the Lorentz boosting operator J03. To de6ne
generalized helicity, one may likewise imbed the respective rest
symmetry groups G into the appropriate relativistic structures:
A SLs{6,C)QxOz(3, 1),
A(i) Us(12)QxON(4, 1) or Us(12)QxOir(4, 2) = Us(12)QxUir(2, 2),
A(ii) Us(12)QxUir(3, 1),
8 Uir(6, 6).
The corresponding generalized helicity subgroups are

A U(3) XU(3) i wQxO(2),
A(i) Uw(6) QxO(3),
A(ii) Us (6)Qx U(2),
13 Uw(6).
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FIG. 1. Trajectories from
O(4)~ excitations. (o =normal
parity; X=abnormal parity. )
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(8) We connect the expansion (7) with»sumption
(1) if we now assume that T~(E) exhibits poles in the
complex X Casimir plane, corresponding to supermulti-
plets of group G; this reduces Eq. (3) to the form

(w,w, i T(E,8)
i
w, w, )

(w,w. if-'w')

Xgw, w4r w "Pdww ~ (—8)/(E' —nzN'))

Xgrww w (&W I
WtWs). (3)

(9) We can now pass to a Regge amplitude by mak-
ing a Sommerfeld-Watson transformation:

lim (Wsw4I T(E,8) Iwtws) Q grw w, w,

Xtdw w (8)/sins. o(E)jgrww„w, (fwiwtws), (6)

where n(mN') = 1V is the supermultiplet trajectory
function.

(10) The points on a "master" trajectory n(m~s)
represent particles of diGering spin values which the
supermultiplet groups together. In Refs. 8 and 11, the
mathematical reduction problem of expressing the gen-
eral rotation functions d~(8) in terms of the Legendre
polynomials Pz(8) or P~(8) and their derivatives
Ld (8)=pg, xaJ', xP (8)jwasdiscussedindetail. Phys-
ically this means that one master trajectory gives rise
to a number of equally spaced satellite trajectories
labeled with the parameter Ir {in the conventional
Regge ReJ-m' plane), all parallel to the master tra-
jectory in the exact symmetry limit. (These satellites
are not to be confused with the daughter trajectories
considered by Freedman and Wang and by Toiler. ) In
the O(4) orbital scheme for rnesons, for example, the
following schematic picture may hold (see Fig. 1):

Ã= 0 S~= 1,0 I~= 0+

X=1 S~=1 0 I=1 0+.

37=2 S~=1,0; 1.=2+1 0+;

j"=0—,1—

J~=2+ 1+0+. 1+ 1—0—

J~=3,2,1 0 2+ 1+ 0+. 1,0 2,1+,0—.

3P=M'(1V, J,F)
=3Es'(1V)+Mrs(F)+ ass(F), (7)

where 1V=J+K, and F denotes the SU(3) labels (in-
cluding I and Y). To incorporate trajectory shifts due
to symmetry breaking in the formalism, one may go

Note the rather obvious but extremely important cir-
cumstance that the leading satellite trajectory with the
0 particles on it is automatically shifted downwards by
one unit of J from the leading vector-tensor trajectory.
The very high-energy behavior, naturally, is always
dominated by the leading trajectory if the selection
rules allow it to be exchanged.

(11) To take account of trajectory shifts due to sym-
metry breaking, we need mass formulas which, in gen-
eral, may have the form (with I. in place of J for the
orbital models)

back to the formula

d1V b~d~( 8)—
sins 1V t —Ms(1V)

(8)

The satellite trajectory functions n(K,J,F) are given as
solutions of t=3f'(K, J,F).

Unfortunately, no completely reliable theoretical
method exists for computing these trajectory shifts. We

"R. Delbourgo, K. Koller, and R. Williams, I. Math. Phys,
10, 957 (1969).

write d~( —8)=P axJP~( 8), and, as an—ansatz, re-
place JP(1V) by M'(1V,J,F), obtaining'

dJ b~+xaxgP g( 8)—
sin7rJ t M'(K JF)—
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must therefore, at present, introduce the precise trajec-
tory functions as part of empirical input. The utility of
the supermultiplet Reggeization schemes is thus im-
paired, except for the hope that the residues are not so
strongly affected by symmetry breaking as the trajec-
tories. This appears to be the case for meson-baryon
scattering (see Ref. 4).

(12) The rotation functions were computed in a previ-
ous publication" for a number of groups for simple
classes of representations. As a general rule, a rotation
function divq"~(8) is a sum of derivatives of the basic
function d(q(ii (the function which appears in super-
scalar scattering with the exchange of a multiplet
labeled with the quantum number N). This is analogous
to the statement that the di, q ~(8) in three dimensions
can be expressed as sums of derivatives of I'~(8). We
list in the adjoining table these basic rotation functions
for symmetry groups and representations of interest.
G is the multiplet symmetry at rest, G~ the generalized
helicity subgroup, g the embedding covariant group,
and N labels the (one-parameter) class of representa-
tions (more precisely, we indicate the Young tableaux
to which N refers).

(a,) G= U(v) (n U(v), Gir ——U(v), b = U(v, v) .

For representations (IVii, W~) corresponding to Young
tableaux (N, 0,0, ,0; N, N, N, . ,N),

(8) ~ Cpr' (cos8).

(b) G= U(2v), Giv ——U(v) (I U(v), g = SL,(2v, c) .

For representations (W&) described by tableaux
(N+1, N, ~, N),

d (8) ~Ci(" -'*(cos8). (10b)

(c) G= U(v), Gir= U(v —1), g= U(v, 1) .

For representations (N) described by tableaux
(N,0,0, ,0),

d~(8) = (cos8)'v. (10c)

(d) G= O(v), Giv= O(v —1), g= O(v, 1) .

For representations (N) described by (N, 0,0, .
,0),

d (8) ~C~ '(cos8). (10d)

Proofs of statements (a), (b), and (d) are already in
print"; a proof of (c) is given further on. The Reggeized
components of models A, A(i), A(ii), and 3 are the cases
(d) with v= 3, (d) with v= 4, (c) with v = 3, and (a) with
v= 6, respectively.

III. COVARIANT FORMALISM FOR SCATTERING
AMPLITUDES AND I FUNCTIONS

So far we have worked with the helicity formalism.
In principle, all we need now are general expressions
for rotation functions ds (v ~(8) in terms of derivatives
of d~~~ ~~~

~ of Sec. II and formulas for the general Clebsch-
Gordan coeKcients (W~ WiW2), etc. One can proceed

perfectly well by listing these things with the use of
sophisticated group-theory methods, including the spin-
orbit coupling coeKcients needed in models A, A(i), and
A(ii). It so happens that one of the simplest ways of
making these computations is to work ab initio in terms
of an 3f-function approach using a multispinor formal-
ism. Since this has the additional merit of exhibiting
manifest covariance, of allowing crossing to be per-
formed with ease, of automatically incorporating the
threshold and other mass-dependent kinematic factors, "
from now on we shall abandon the helicity framework
and work consistently with the 3SI functions.

A(i): Hydrogen like excitat-ions. Represent SU(2)
SU(2) =O(4) multiplets belonging to the repre-
sentation (-,'N, —,'N), N= 0, 1, 2, , by the multispinors

symmetric in n's and P's separately, satisfying n, P = 1, 2,
3, 4, Bargman-Wigner equations:

(p —m) *'@(
&

(ei" par)(p)

=@( - )"' " '"'(p+~)e""=0 (12)

A(ii). Represent SU(3) multiplets belonging to the
representation" LN7, N= 0, 1, 2, , by the fields

which are symmetric but not graceless in their indices.
The equations they satisfy are the same as for the 0(3)
case:

p„@„=0,
pug'(uiu~" uv) = 0

~

J.' ~(11 "tv) ™&4(t1" tx) ~

(13)

So much for the orbital part of the representations
in the models A, A(i), and A(ii). I'"or the intrinsic-spin—

'2 As stated in the Introduction, the explicit appearance of the
mass factors permits one to devise mass-breaking prescriptions."See P. G. 0. Freund, Nuovo Cimento 58, 519 (1968) The O(3)
decompositions of these tensors is as follows:

Dimensionality %&3
1

3
6

10, and so on.

A. Wave Functions of Particle Multiplets

Consider first the wave functions of the particle multi-
plets for the various models:

Model A: Orbital excitations Rep. resent O(3) multi-
plets of L=O, 1, 2, ~ ~ ~ by symmetric traceless tensors

e(p), e,(p), 4(„,.i(p),

with the restrictions



REGGE IZATION I N SU PERM ULTI P LET THEORIES i52i

unitary-spin part, we employ the U(12) formalism for
models A(i) and A(ii) using the multispinors

CB"(p), A, 8=1, , 12

for mesons (6,6) of rest symmetry UB(6)SUB(6) and

]11[ABc](p) A 8 C= 1 12

(symmetric A, 8, C) for baryons (56,1) and lf'[AB]c
antisymmetric in [A,Bj and satisfying the cyclic con-
dition

+[AB]C++[BC]A++[CA]B

for the (70,1).
The Bargmann-Wigner equations'4 are

(p —m), Ae..= C..(p+~).c=-o,
(14)

(p ~)D +—(ABC) (p m)D +—[AB]C 0, etc

Combining the spin —unitary-spin and the orbital
degrees of freedom, the tensors have the final forms:

Model A(i):

4'[AB]c[~,...~» [B'"~N] for (70, 1,1V),

with the equations of motion (12) and (14) stated earlier,
and

Model A(ii):
C'B [ul" uN] for (6,611V),

%[ABC][ul. ..uN] for (5611,E) 1

+[AB]C[ul ..uN] for (7011,Ã),

satisfying Eqs. (13) and (14).We shall be concentrating
on model A(ii) in what follows.

Model 8: The quark excitation mode/ was dealt with
in detail in Ref. 8. To complete the discussion for the
case of the group U~(6) X U~(6), the appropriate multi-
spinors belonging to the fully symmetrical representa-
tion (the so-called Feynman representation) are

@A @(A A ) C]'(A A A )
3 ' ' for mesons

+(A1A2A3)+(AyA2AIA4) )
' ' ' for baryons,

satisfying Eqs. (14).

B. Three-Point Couplings

Given three multiplets of G for any of these models,
one can easily write down the G~ invariant couplings in
3f-function form by noting that the three-particle mo-

where

2 ff 0 NB(g08A +flgl(f]/f]qB ) jC N[](p q) (16)

@[N](plq)
—

p
—(N+1)

q Aq 0.1. . .
q

a1]]r

XC'A [ " ]'B'"B"'(P) (1"a)
—(N+1) A . . . a. B

qul
' ' ' quN~A [ul" uN](P) (17b)

fqB AlqB A2. ~ ~

qB AN@[A A ] [ 1' ' 'BN](p) (17c)

is the coupling corresponding to scattering of super-
singlets for each of these models. Note the distinction
between qB" and qf[ . For the U(12), case qB 'qB 1]b

where a, ff refer to SU(3) indices and ff, P to U(4) indices.

C. Supermultiplet Exchange Contributions to
Four-Point Couplings and Computation

of Rotation Functions

Just as the Legendre functions dq ],~([]) can be
"calculated" by considering the exchange of a spin-J
particle in an M-function framework, so can the gen-
eralized rotation functions ds s N(e) for each of the
models by exchanging a supermultiplet of quantum
number E using the covariant couplings (15) written
earlier. The procedures were illustrated in great detail
in Ref. 8 for model 8; here we quickly go over the
methods again for models A(i) and A(ii). The basic
functions d[1][f]N(e) arise from scattering of super-
singlets. Combining the three-point couplings with the
[1]1']propagators

menta transform as G~ scalars. The rule then is to
saturate all indices among them. selves and with mo-
mentum tensors; the number of different ways of doing
this giving the different types of couplings one can con-
struct. To illustrate, consider the simple case of a quark.

(6,1; 0),~, and an antiquark (1,6; 0);~0 coupling
with the (6,6; Ã) „meson multiplets.

A(i) & «= B"(lp+q)»( lp+—q)
X)&08A qD +Gf&A &D hqB, "

]
[Bl" Biv](p) ~ (15a)

A( ) = "(:P+-q)-.(-:P+q)-L~.~"q- +G.~"~- ~

Xqul quN C [u1' uN] (P") 1

&.«= B"(lP+ q)»( lp+ q—)
XLG g Bq Al+G g Alp Bjq A2

. . .
qB AN&/[A A )[Bl."BN)(p) (15c)

We can cast all models in the differential form

A(i) (C'A
&

&'B' B"'(P)@B"'[f[ f"f &""'N'(—P))(P' —~')
=(P+&)A"'(P &)B ' Z (P+&)—"' . (P+&) "'(P &)Bl" (P —&)BN'"—

a, P

A(ii) (@A [ul" uN](p)@B' '[ul'" uN']( P))(P
—(p+1]d)A (p ~)B' Z ( gulul'+pulpul'J~ ) ( guNuN'+puNpuN'l~ ) 1

(18a,)

(18b)

A complete and detailed discussion of the U(12) multispinors appears in Proceedings of the International Se7nincr in IIigh-Energy
Physics and Elementary Particles, Trieste, 1965 {International Atomic Energy Agency, Vienna, , 1965).
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we get

(p' —IV') &C'(N) (p e)@(N)(—p V'))
= ([q~ (q'[/p, ')N+IXcos8 CN'(cos8) A(i)
= (jq( (q'(/tl') +'&(,'cos8(cos8)N A(ii), (19)

where

lql tq'I cos8= VV—'+V pz' p/~', (2o)

showing that the excitation functions are CN'(cos8) and
(cos8)N for O(4) and U(3), respectively; both rnulti-
plied into a U(6)SU(6) spin factor (cos8)=d[l)[ll(")
X(cos8) coming from the (6,6) piece."

More complicated functions can be discovered by
differentiation; for example, in quark-antiquark scatter-
ing the derived d~ can be recovered from

I:as~~'+~gl(8/8'")]
&& I xone "+~gl(8/8v'~ ' )]d[I)[I)"(8) (21)

by contraction over external wave functions. We thus
have a complete 3E-function substitute for quark-anti-
quark scattering of the helicity formulation of the earlier
section. More complicated cases of physical interest are
described in Sec. IV for model A(ii).

IV. DETAILS OF MESON-BARYON AND BARYON-
BARYON SCATTERING IN THE

OSCILLATOR MODEL

In this section, we wish to discuss the harmonic-
oscillator model in detail. From the slender evidence
available, it appears that baryons group themselves as

A. Wave Functions

Hereafter, we work entirely in the covariant frame-
work provided by the auxiliary group U(12) jm U(3, 1).
For M-function purposes, we adopt the fields

Bv'& (Pl' "PN)l p(&&&) (Pl"'PAN)l and P[&&)&.(Pl"'PAN+i) '

If we are interested in the I.orentz group components
within the supermultiplets, we make, in the first step,
the decompositions

(ul PN) (P")
= (1/2v2IV) L(7 p+3f)

~ bsI'(P1 PN)
—7P~P(Pi ~ PN))&~'l

+&&&(Pl" PN)(P)
= (1/212~) L(7. p+~b, C]- eD(. A.)v.(. -'N)

+ (1/6~2~) (L(V.P+IVbsC]-e
Xe,sew, " („,...„)+perms}, (23)

[AB)C(ul" PN) (p)'
= (1/4IV) L(~ p+IV) ~„C].,e...ar.e,„(„,...„»

+(1/2v2)IV/(y p+IV)y C]. X), , „,...„„)
+51/2h/6)&]f [b p+&)VAC]e, she'Jfu a(ul"'PN)

E(y"' p+~)'Y&C]uve«&+A e(ul" PN) }
+ ("s./12') &Lb p+~)»C]-7'JJe(. 1~ -.»

+Lb P+Iv)vsc]ev'JJ-(. , 'N)}

wherein the (1V) excitations of the basic (quark) spin
fields E(0 ), V(1 ), tV(-,'+), D(-,'+), is explicitly ex-
hibited. In the second step, the excitations are reduced
under O(3)1, according to the further decomposition

(56,0)

(56,2)
(70,1) 4 (Pl"'PN) (P)

with (56,1) apparently missing. It would thus seem that
we are realizing the quantum numbers E=0, 2, 4, of
an SU(3) group, corresponding to representations

L=O

L=O, 2,
L=O, 2, 4, etc.

Also, we know that d[1)[I) =(cos8) fol all Illo(leis 111

the asymptotic limit. So, we can in any case regard the
oscillator model as representative of all models in the
high-energy limit. Of course, to lower orders the models
will differ from one another.

(I-N)( )+
A (1V—1)(2&V—1)

A+Z duAPA (Pl'"A["'PN) (P)
I[;l

+lower orbital mornenta; (25)

(f„„=—g„„+p„p„/IV' and lt" are traceless in their indices.
(fe indicates that )AA is absent, etc.) In the third step, the
product of each of these SU(2)1, irreducible components
with the SU(2) e componen. ts is reduced out into total
SU(2) J components. If we take a given orbital excita-
tion L, the decomposition reads as follows: For fields of
(quark) spin 1, —,', and —,

' (the only cases of physical
interest),

px(~r)~ ~ w — (L)4'u(ul". Pr) @(uua" pr) ~~I III~~(f 1" ~ "Pl~~
Ll-(I-+1)]"' ' ~

1 2I.—1~'"- 2
+

~
Z duuA(t'(ul A ur) ""Z~PAut~(uul At us)""I 21.+1) A 2I.—1 A)

"Actually, if Bose statistics is taken into account, only odd iV values for A(i) and A(ii) and even i)[' values for B are permitted.
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&
"+"+——

I I (4I.—1)]»s ~

(L+$)4'u(w" us& ='r'(uut" ur&

(27)

4 ~&&II'(S~ "~"~J.~) ~M ~la%'(~us "&"~1,) 3~™I+(IX." eJ)(L+$)~ ~ .g. (L+$) 1 y. .I, (J+$)

[I.(I+3)]"' s M

1(21.—1 "'-
+ I o Z duuA'(ur" s- ur&

2I

2
m ~ua~t'r'(V~&" Ir&" fjl I',&

(L $) 1~,I, (L $)
3 m &elf~ ~v'(w -.I" I I,)

2L,—1 ~~

I/2—6 2 2
+ duuo~w4'(ui sf "ur& "tt'u Z duouA (w" s&" ur&

— Q dusupu~f(uu, " sic" ur& ) (28)
(1.+3)!j 2J —] kl 2J —g ri~

where P&»...»& &~+'& are Rarita-Schwinger fields of spin
E+ra and we have used above the abbreviation for the
relativistic spin operator wu= P&,oxuyo/—3I. In the exact-
symmetry limit, we can summarize these reductions by
sets of J trajectories, as depicted in Figs. 2—5, where we
have assumed exchange degeneracy for ease of drawing.

B. Three-Point Couylings

The great importance of reductions (22)—(28) is
apparent when one wishes to compare matrix elements
of particular spin components, primarily in the three-
point couplings which are relevant for correlating vari-
ous decay parameters or Regge residues. As we men-
tioned earlier, these three-point vertices are constructed
in a Gg -invariant manner by forming index invariants
between fields and momenta. ' For hadrons like (6,6; 0),
(6,6; 1), (56,1; 0), (70,1; 1) and a meson supermultiplet
of excitation E which we later Reggeize, we list below
the effective Lagrangians of these hadrons, writing our

couplings in a differential notation:

(6',6; 0);u+,—(6,6; 0)i~,—(6,6; 1&I)u:

"~"(lP+q)~"(lP q)—
X Iro' &~a'&r&"+pro" &u 'qn"qr&'

( 8 c&

+~I&'+&I ~s' +&~"
Bqg Bqg

( 8 8
+ph&&-&I err' ——8r&"

I e&»(P,q); (29)
Bq&D Bq+/

(66' 1)-;~a—(66 0)-:~o—(66 I&')u:

C'~ u(sP+q)c'c (sP —q)

X (hoo~B I&D +lr Iroo qB qD )qu

0 = normal parity, p = ahrtoepnal parity

The over-all coupling constants depend intrinsically on the
excitation numbers of the three interacting particles (E&,Xn, i&rll,
and we may even suspect that when one excitation number be-
comes large there is a corresponding falloff in the residue; but we
do not attempt to investigate this aspect.

FIG. 2. Reggeized SU(3) nonets of mesons from oscillator model
(6,6; E). (o=normal parity, )(=abnormal parity. )

+(Ir hol~B ~D +fool qB qD )
t9gp

8 c&

+pquI 4o4 -+4o 4
Bq~ Bqc

8 c& c&

+~'— ~»~s'- -+h»'~n" — —
I

C &~&(P,q); (30)
Bqu Bqg Bqg

(56,1;0) ,*,—(56,1;0);,—(6,6'; 7&'():

'(sP+q)gi~c»( —sP+q)
XLgo4. +mgt(c&/Bq~")]C (rr& (P,q); (31)

(56,1;0);~, (70,1; 1),*~,—(6,6—; Ã):
2=m +ui c& u(sp+q)u(r&cr&&( —sp+q)

XI goq +~ g&(~/~q. )](~/~qs")~ &rr&(P q) (32)

This set of formulas are some of the most crucial ones
in this paper.



R. DELBOURGO AND A. SALAM

Fro. 3. Reggeized SU(3) octets of positive-parity baryons
(56,1; 21') and negative-parity baryons (70,1; 2K+1) from oscil-
ator model.

As before, we have used here the abbreviation

(&)(p q)=q~i' ' 'qr xq& +& (ui" uv)(p) (33)

for the fully contracted meson field of excitation S.The
superscripts (&) on the couplings h for meson coupling
(with no baryons involved) refer to the even and odd
Ã values of the exchange mesons. Bose statistics tells us
that h+= 0 when E is odd and h = 0 when E is even. "

C. Meson-Baryon (MB) and Baryon-Baryon
(BB) Scattering

The two most important cases concern meson-
baryon (MB) and baryon-baryon (BB) scattering. We

8 ((I (I') ~ L(M+P)q'(M P)js-4—
~(N)— —,(36a.)

8qg~ p' —M' 4M'

»(a a') la'lf, p q'

A(v) = —
I

—6 + p)i, q (36b)
Bq p' —M' k M'

»(a a') ~ 'I a'I '( p q'

I

—q.+ p.
ps —Ms

I:(M+p) q'(M —p) js"
X—— (36c)

A(~) =
tag ping'g

investigate the pure symmetry linut (with all masses
degenerate).

0 we apply the coupling rules embodied by formulas
(29)—(32), it is always possible to express the covariant
3I functions in the form

DvDs'~(&)(pi qiq) ~ (34)

where D stand for various differential operators whose
order is governed by the external excitation numbers, and
where d, (~) is the fully contracted propagator which
occurs in the scattering of supersinglets:

A()v) = (I ql I(I'I) ~+'I (cos8 )~+'/(P' —M)v')g (3&)

Iql Iq'I cos8,—= —
q q'yq pq' p/M~. (20)

In fact, (cos8)(cos8)'v is the direct product of the basic
representation functions d(u(, )

«.s)(8)d(,)(u (8) for
I U(6)8U(6)78U(3) from which the general

(8)d(~),u. , (8)

follow by the differentiations. Let us list the first few
derivatives for later use:

s/z

(q q')"—&()v) = (M+P)()e—'(M P) g ~. (3—6d)
8qa~ p —M

These Reggeize through the replacement

(a (I')" (a e')
(» —+n —1).

p' —M' sins-(n —1)
(37)

It is well known that (37) gives poles at nonsense»

3/2

Fro. 4. Reggeized SU(3) decuplets of baryons
from oscillator model.

7/P-

"The subscripts on the dimensionless coupling constants refer
to excitation numbers of the U(6)QxU(2)s subgroup representa-
tions; for instance, h~~ in (30) corresponds to the (35;3) component
of the exchanged meson, the "0"referring to singlets of the group,"1"to the 6rst multiplet, "2" to the second, and so on. Note that,
in contrast to model 8, modeis A(i) and A(ii) can have no 405
component of U(6)s in couplings to the exchanged mesons. Also,
observe the very small number of constants that appear, particu-
larly for the baryons. This is the most powerful predictive feature
of supermultiplet theory.

3/2

Fro. S. Reggeized SU(3) singlets of baryons
from oscillator model.
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values(n=O, —1, —2, ).A recent suggestion to avoid
these poles has been to replace 1/sin7r(n —1) by F(1—n).
This corresponds to introducing the Gell-Mann ghost-
eliminating mechanism. It may be possible to devise
other mechanisms for eliminating nonsense J values,

but they would not fit into the orbital excitation picture
so simply.

The above is all the apparatus one needs for studying
the physical amplitudes of interest. We now summarize
the formulas for BB and SIB scattering:

T»=N" (2P+q )»cD( 0P+—q)& (—0P+q )&~ c D (0P+q )

Xm '( +"[got)~ +mg&(B/BqB")][g04 "'+Nigi(8/Bq~ ')]~(N) (38)

(0P+q)NB(:D( 0P+—q)@~"(0P+q')~'c '(0P q')(~—t)

X g0bB +Bigl h0 t)B' t)D' +tl h0 q Bi q D'
~q~~—

+t),A'

Bq g

8 ')) 8 8
~y)((tgi( ) t')Bl ——()Dl

~
g(N) . (39)

Bqc~ J Bqg~ Bqc~ )—

8 8
T., =(mt ) N 'g, h, (+)-N"-' NBcD(c,e}B"' — —~(N)

Bq~ Bq g
8

+(my) 'gihi 1 QBcD[@p@]B (4o)
8qg Bq g

These are the master formulas of this paper. For de6nitions of derivatives and wave functions C~~, , see
(22)—(28).

To illustrate the use of these master formulas, consider the charge-exchange MB processes. For those amplitudes,
the couplings go and ho are not relevant since they only describe elastic processes. Thus,

Recall that (&) superscripts refer to even and odd 3 . As is well known, after Reggeization a signature factor needs
to be introduced into the formalism (the simple argument of Reggeization in Sec. II does not automatically produce
this). In what follows, whenever we write g+, we shall assume that 1V-signature projections —',(1+e* N) are to be
included. Performing the differentiation and simplifying,

with
T., = [g h, (+)/(t —cV')]uF (C,@)F u(q q')N+[gihi( )/(t —M')]uF [C,C]F n(q q')N

(F+) '=(1/2~)(~+a) '
(41)

(42)

and t= p'=31' at the—pole. I.et us focus our attention on only those reactions where the incoming meson is pseudo-
scalar and the target is a nucleon, while allowing the final meson and nucleon to be any other member of the (6,6)
and (56,1) rnultiplets. Breaking up the outgoing mesons in formula (41) into vector and pseudoscalar parts and
separating out SU(3) components, the Reggeized amplitude reads

TR,,„,=[1+~/2)J,]n"D(F, q'F /t() B~BCD

Xpp (1—e' -)I'(1 n)(P, P)P(q q'/—pm) ='+ 'lt()+1+e' +)I'(1-—n~)(P, P)D(q q'/pm) + '] '
+[1+%/2t(]u"cD(F [q',y),]y,F /2ti) ~u [-',P (1—e' -)I'(1—n )(P, V),)D(q q'/)((m) ='
+lP+(I+B*-+)F(1 ~)(P,V~) (q q'/t ~) + '].0+[1+~/2 3~""D(F vn.-F+)'NBcD-
X[-',p (1—e' -)I'(1 —n )(P,Vg) P(q q'/)((nz) ='+ ,'pp(1+ B~+) I'(1-—np)(P, V),)D(q q'/t(m) + '],'. (43)

We have distinguished between the two possible trajectories o and n+ associated with the two signatures. The
(q q') + ' or (q q') =' oscillator factors are characteristic orbital effects. Making a further decomposition into
octet (Ã) and decuplet (D) pieces of the 56, one gets

TPN PN ((JP(&&)P+BD(&&')D+N '[f)r (&q'&') P+&)D(&q'&)D])
X[-,', P F(1—n )(1—e' )(P,P) p(q q'/)((m) =i+0P+F(1—o+)(I+B*-+)(P,P)D(q q'/„~)-+-)] (44)

with M'=t,

+g) = ~ — 1 ) Cp= —— Qg) ) (45a)
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Mq) 2m ( M'q
j. — 1 1——,by =-,bg) .

2p) ( M 4 4m')
(45b)

D, Ii having the usual SU(3) connotations, as previously,

( M)( 2m) 1
TpN pal=i 1+—I 1+—

i
-e„„i,gq„'q.psDi, cVpsp (1—e* -)1'(1—rr )(P,E)p(q rf'/. arm)

2p) E M im'p

+-'0+(1+e'- )I'(1—+)(»)n(a. e'/~~)" '3 (46)

t' M il'tl «»gi (P~W~V&3)
1T- . =I 1+—.- —p, — + '

—,~. L-;~ (1-e'--)P(1-- )(~,~.)-(~ e'/. )=-
2@ M'p p 4M@

( M 2') Py
+-,'Pp(1+a' +)I'(1—n+)(P, Vg) p(q q'/arm) 'a+I 1+— 1+——luVsg'—

21r M I M

XpsP-(1 —e'--)I'(1 —~-)(~,l'x) p(» tl'/P~) ='+sj3+(1+e'-')I'(1 —~+)(~ l'~)n(& &'/ ~)" 'j (4&)

These are the amplitudes in the exact-syx~unetry limit
with all masses degenerate. The following significant
features may be noted:

(a) Barring differences due to signature, there is a
con@non residue and trajectory function occurring in
the characteristic combination

(b) The signature factors (1&e' +) multiplied into
I'(1—rr~) mean that the even n-signature amplitudes
vanish for n= —1, —3, and odd o,-signature ampli-
tudes vanish for rr=0 —2 . . . Hence, the vector (—)
trajectory g~ves amphtude zeros for o,=0, —2, and
the tensor (+) trajectory for n= —1 —3 . this ap-
plies to all the Regge amplitudes and not just the spin-
flip components. We may therefore expect di ps in the
cross sections at these places. This is indeed borne out
experimentally. Such dips are well known for m-E
charge-exchange processes; the important remark from
our point of view is that m-Ã ~ gX also appears to show
such dips at even-signature positions.

(c) In the forward direction, we expect to reproduce
the predictions of Carter et al. ,

's since SU(6) s is con-
served in this limit. Thus, I'Ã —& I'D vanish owing to
the 3', nature of the coupling to DX of the Ichor and
also the tensor trajectory.

7. TOLLERIZATION OF AMPLITUDES AND
KINEMATIC SINGULARITIES

Before we compare our results with experiment, we
must consider the t —& 0 limit where kinematic singulari-
ties make their appearance whenever spins are involved.
This is shown quite clearly in the characteristic pro-

' J. Carter, J. Coyne, S. Meshkov, D. Horn, M. Kugler, and
H. J. Liphin, Phys. Rev. Letters 15, 373 (1965).

A
A(i)
A(ii)
3

Embedding non-
compact group

O(3, 1)
U(2, 2)
U(3, 1)
U(6,6)

Rota tioil
functions

Cst'(cosh f)
Cst'I'(cosh' )
(cosht )~
Cst""(cosh/) .

(49)

An alternative solution —and one not as general as
Toiler s—is to introduce conspiring trajectories follow-
ing Gribov. ' This is the solution most suited to the
multispinor formalism for hadrons. It arises from the
natural possibility of doubling afforded by quarks and
pseudoquarks within a multispinor framework (this is
the doubling first introduced by Gribov).

"V.N. Gribov, I,. Okun, and I. PoIneranchuk, Zh. Eksperim.
i Teor. Fiz. 45 1114 (1963) LEnglish trsnsl. : Soviet Phys. —JETP
18, 769 (1964).

which is not an analytic function of 1, near t= 0. As is
well known, two types of mechanism have been pro-
posed to remove these singularities: the first eva-
sion—the statement that P(1) must have a compensating
zero; the second is the addition of conspiring trajec-
tories. The most elegant formulation of conspiracies is
the one proposed by Toiler where one expands scatter-
ing amplitudes not in terms of a complete set of rota-
tion functions of the rest group G, but in terms of the
covariant embedding group g )in Toiler's case, 6=0(3)
and g= O(3, 1)j.A Tollerization procedure then replaces
Reggeization; this, as is well known, leads to the parent
and daughter phenomena.

For the quark-excitation model, Tollerization was
studied in detail in Ref. 8. The rotation functions of the
embedding groups for models studied here are the
following:
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For mesons, for example, one is led to consider two
trajectories coinciding at M = t=0 with identical res-
idues but otherwise distinct, which correspond to (6,6)
and (6,6)', the primes indicating the pseudoquark
composites.

In accordance with these ideas, we must therefore
add to the amplitudes (43) extra terms with the sign of
M reversed, corresponding to (6,6) —+ (6,6)'. For the
3M scattering amplitudes, then, we typically meet the
combination

-I 1+ I 1+—p(M)r(1--) =
2k M i& 2tr)

1 2m' f Mq
y— 1—

I 1——~P'(M)r(1 —o.')s ' '.
2 M i k 214) (50)

Taking rr(0) = ~'(0), p(0) =p'(0), the M =gt singularity
disappears. In fact, if we suppose that for moderately
small spacelike t, rr'(t) =rr(t) and P=P'=const, the com-
bination of terms20 could sum to"

f m)
i
1+—IPr(1 —)s

Before applying our formalism to elastic processes,
one has to make up one's mind about the Pomeran-
chukon. In the absence of any fundamental understand-
ing of vacuum exchange, it is probably fair to regard the
Pomeranchukon as a Lfixed, SU(3) scalar?g pole with
n(0) = 1 which occurs in elastic processes to describe the
background effects of inelastic channels via unitarity.

The remaining problem is symmetry breaking. We
know it to be very important as far as trajectory shifts,
which govern high-energy behaviors, are concerned.
Failing a reliable theory of mass splitting between mem-
bers of a supermultiplet, the only course open at present
is to take the positions of the trajectories as empirical
input (most significantly for the pion). With regard to
the residues, one may hope that they do not change
drastically, and this is what seems to be borne out by
our preliminary analysis of data (Ref. 4). If this had not
worked, our erst prescription would have been to use
physical masses in place of mean Inasses in kinematic
factors.

VL REGGEIZED MESON-BARYON SCATTERING
AND COMPARISON WITH EXPERIMENT

We now list the anal formulas and their main features
for charge-exchange scattering processes that are domi-
nated by the vector (C= —1) and tensor (C= +1) lead-
ing trajectories; namely, those in which both the initial

"There is the familiar problem of existence of particles on the
Gribov-doubled trajectories. We have no new ideas on this except
the conventional one that possibly the relevant residues vanish.

"The di6'erence between Toiler and Gribov conspiracies lies in
that Toiler would demand, in addition to Gribov doubling, the
trajectories corresponding to (36,1)+ and (1,36)+.

and final meson are pseudoscalar. We shall, here, make
an assumption outside the supermultiplet schemes

proper —that of exchange degeneracy, i.e., a+= 0. ,
P+= P . The final expressions are as follows:

Tp~„I~. Flip amplitude is

and the nonRip amplitude is

s
2'=A+ 1——

i
8

2mt4 4msi

f
~(Ear),pr(1- )]

4mtr) 'amp, )

XLs(1—e'-)(») ~+a(1+e'-)(»)nj (51b)

which enter in the differential cross section as

do 1

dt 167rs' E 4m'

and give

t f tq' sb

4m' 5 4m') 2mt4
(52)

fdo Ipr(1 —o.) I'f t ) f s

(et ~~ p~ 16m s k 4m i &2mt4)

gn+&si» r m)
&& l1+ -[- — 1+—

~

4mt4) 4m' gp t4 )
X I-;(1—.'-)h, +-,'(1+.'-)h. l', (»)

the Ii and D suKxes carrying the normal SU(3)
meanings.

T» I»'. The baryon vertex is of the expected M&

type all along the trajectory, as may be seen in the
amplitude

m) 1 f s
C=( 1+—

)
e„„„,q„'q„P„D,XPr(1 —n)(

t )m'p,
"

&2mt4)

&&L='(1—e'-)(») +l(1+e'-)(») 3 (34)

Here, m is the mean of octet (1V) and decuplet (D)
masses. When this is substituted into the cross section

1 t )s't
67rs' 4m'im4p, '

m) fa=i 1+—
I 1—

tr i 4 4ms)

p f s
&& (&g'&)n+&-(» ~r(1—rr) I—

&2mt )

X&-:(1—e'-)(») ~+l(1+e'-)(»)nj (31a)
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one gets

PN~trD

(1 &wra)it +1(1+&iwa)lt
~

2

To make comparison with experiment for the V=0
charge-exchange processes

s=p ~ s-'n, E p~ E—'n, s. p —+ rtn,

~+P ~ ~'N*++, E+P ~ EsN'*++, s-+P ~ qN"++,

- for which considerable data exist, we have used mean
masses (tt)=0.45 GeV/o, (m)=1.15 GeV/c, and (m)
= 1.3 GeV/o in the kinematic factors and the exchange-
degeneracy approximation n+=n =n=0.5+(, in units
of (GeV/c)'; we also took a constant residue P. Consider-
ing these very rough approximations, the agreement
with the data is quite encouraging (Ref. 4).

In summary, the model has the following character-
istics:

(1) It is based on the excitation scheme

L&(6)S&(6)jsS &(3)N,

though for Regge exchange of meson trajectories only
the leading orbital excitation I.=E=n —1 is significant.

(2) The relativistic kinematics is provded by the
embedding group U(12) sS U(3, 1)N and produces sig-
nificant kinematic factors in the Clebsch-Gor dan
coeKcients.

(3) From the quark-antiquark nature of the mesons,
1/gt kinematic factors are encountered. A Gribov
doubling of the exchanged trajectory (6,6) and (6,6')
has been employed to eliminate these 1/gt singularities.

(4) At nonsense J values we have used the Gell-
Mann mechanism for eliminating ghosts. Perhaps other
mechanisms could be constructed, but they do not ap-
pear to fit so naturally into the excitation picture. Our
model predicts zeros in the x charge-exchange reactions
at 0,=0, 2, ~ ~, zeros in m.+ —

& g reactions at n= —1,
—3 and no significant dips in the E charge-
exchange reactions. This last fact is due to cancellations
of the signature factors in the Gell-Mann mechanism.

(5) The assumed exchange degeneracy can be relaxed

by using separate tt+, P+ and a, P for the even- and
odd-signature pieces in place of the assumed common
et=0.5+t and P.

(6) Inasmuch as we have neglected any possible t

dependence of P, our simplified model admits no param-
eters except the one constant P. When P is fixed by the
high-energy data and the Regge formula is extrapo-
lated to the vector-meson mass, one finds (g, ), ,&

=2(g...)&t,.»«. This is a failure of the model, and we
have no explanation for it.

(7) A turnover effect at small t is predicted by
the model because of the largeness of the spin Rip
relative to the flipless amplitude: (b/a) (s/2mtt)
= —(5/3) (1+m/tt) = —6. Moreover, the opposite rela-
tive sign of the two and the fact that a' is a polynomial
in t means that an extension of the model to elastic
scattering cross-section differences will give rise to a
crossover effect. However, the positions of turnover and
crossover points are incorrectly given by the model
(which uses mean masses) at t =0.05 and 0.5 GeV/c. It
is possible that mass shifts play an important role in
altering these points.

(8) Density-matrix calculations, which have not been
discussed, constitute important tests of the model.
Observe, too, that in its present form the simple pole
picture used in this section is unable to explain polariza-
tion effects as it deals with a single Regge amplitude.

(9) Reactions dominated by pion exchange, e.g. ,
T&~„z&, T~z &~, which will form the subject of a
separate note, show interesting new features owing to
the singular character of the pion residue and its near-
ness to the scattering region. For instance, in nucleon-
nucleon charge-exchange scattering, the x and p con-
tributions together give terms of the form

da/dt=Ps I'(—n,)j'+Ps pi"(1—n,)j' (55)

so that for small t and moderately large s the pion domi-
nates and gives the observed sharp forward peak, but at
larger values of t the p takes over. The reason why the
pion gives a finite nonzero cross section even in the
forward limit t —+ 0 is that the amplitude uPy, uu Passu/
p'= (4m'/t)uysuu'ysu carries a desirable singular resi-
due 1/t, even though there is Gribov doubling. "The
actual detailed analysis of pion-exchange reactions will

be treated elsewhere.

ss This 1/t singularity is of course cancelled by the t factor oc-
curring in the nucleon ~5Qxy~ piece.


