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We make use of partial conservation of the axial-vector current and the finite-energy sum rules to investi-
gate poles at the wrong-signature points in mE scattering amplitudes, and show that a wrong-signature
pole at 0.=0 appears only in the helicity-Qip amplitude.

,

~SE is made of the partial conservation of the axial-
vector current (PCAC) and the finite-energy

sum rules (FESR)' to investigate poles at the wrong-
signature points in xE scattering amplitudes. Our use
of PCAC follows closely Adler's derivation of the con-
sistency condition' on the 2 &+~ amplitude. ' We apply
this method to the charge-exchange amplitudes. This
allows us to show that a wrong-signature pole at n=0
appears only in the helicity-Qip amplitude. This result
is in accord with what one would expect from the
Gribov-Pomeranchulc, " argument.

Let us now define g&' &(v) as real analytic functions in
the complex s plane with a cut that is equal to the RHC
of G~'~&. Moreover,

G"(v) =g' '(v) +g' '(—v) (2)

A Regge pole contributing to g&'&(v) (g&~&(v)) is said. to
have positive (negative) signature. A Regge representa-
tion is equivalent to an asymptotic expansion:

sln7i 0!i
(3)

We write the individual Regge poles in (3) in a form that
exhibits a RHC from 0 to ~ with an imaginary part
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1. WRONG-SIGNATURE FESR

I.et us start with an explanation of the concept of the
wrong-signature FKSR. A general scattering amplitude
G(v) is real analytic in the complex v plane cut along the
real axis. In general it will have both a right- and a left-
hand cut (RHC and LHC). In order to apply to it
Regge behavior, we have to separate G into its sym-
metric and antisyrmnetric parts:

equal to C;v ' above the cut. Now one can prove FESR
for both positive and negative moments of Img:

S—m—i=Nm

CiS '
v" Img(v) dv

' n;+n+1RHC
(4)

Img(v) C;X ' cV"srg&"&(0)
dv P — +

Although Img&' '&(v) =ImGt' '(v) and the FESR in

(4) are a direct consequence of (3), still only half of them
can be proved directly from G+(v) and its asymptotic
expansion. This corresponds to the fact that a Regge
pole at a wrong-signature point will appear as a pole in

(3) but as a regular term in the expansion of G.' More-
over, there exists complete freedom in adding an odd
(even) power series in v to g'(v) (g& '(v)), thus changing
the corresponding derivative of g at the origin that
appears in the negative moment FESR. We distinguish
therefore between right-signature FESR, namely, the
even (odd) moments of ImGt &(v) (ImG&'&(v)) and
wrong-signature FKSR that involve the respective odd
(even) moments. In Eqs. (4) one can replace Img by
ImG. For the right-signature FESR one finds 2g& &(0)
=Gi '(0). In the wrong-signature case, gi "&(0) is
arbitrary.

In the wrong-signature FKSR we have to distinguish
between non-negative and negative moments. In the
first case the FESR can be evaluated from direct
experimental data and Regge parameters can be ex-
tracted from the sum rule. We might encounter here
wrong-signature Axed poles that are not observed in the
scattering amplitude. ' The case of negative moments
S „ris still more complicated since g' &(0) is arbitrary.

The evaluation of the erst wrong-signature FESR
for the 8& & sr/ amplitude, namely, Jano~ ImBi (v)dv,
has shown' a very strong wrong-signature pole near n= 0
for a wide range of t. Since that happens to be a nonsense
point for 8( ~, this pole cannot aQect 8' & itself.

Note that this sum rule reads

~gNN7r
——+2'

A '
ImB&—'(v, t)dv Q C;

s At, a wrong-signature point of g" (g ), n is even (odd). For a
discussion of the appearance of these poles in superconvergence
relations, see J. H. Schwarz, Phys. Rev. 159, 1269 (I967). The
wrong-signature FESR turn in the limit E —+~ into Schwarz
superconvergence relations.
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The Born term contributes to the usual vB(—' amplitude
an additional factor of v»= p'/—23f+t/23II that dis-
appears in the FKSR (5). Therefore the Born term in

(5) is unusually large and dominates the left-hand
side. In the Regge expansion, one has therefore to add
a pole near o.=0 with C n such that it compensates
the effect of the Born term.

If we want to ask ourselves whether a pole at o.~0
shows up also in A( ' or 3'& ), we have to evaluate
5 ~ for these amplitudes. Constructing the correspond-
ing a' &, u'& ) amplitudes S I reads

Ima&—
& (v) @Tots

dv~Q C, +~u&—
&(0) .

The assumption of PCAC states that the amplitude
T & is smooth in the variable q~. Therefore, even if we
choose q~'=0, which we are going to do now, we still
get the same value for T ~ with good accuracy (on the
order of 10—15%).

Our independent variables are v= (s—I)/4M, i and
q&'. Let us go to the limit q&'=0 and t= p,'. Then T &

reduces to a simple form whose analytic structure is
known to us. In order to understand this point we note
that T„~& defined in (6) can be expanded in terms of
eight invariant amplitudes:

T'= (P)Lr. R"( ~ ')o'3 (P)
RHC i o i

where
However, a' &(0) is undetermined since A & &(v)
= u& &(v) —a& &(—v). Hence we encounter an ambiguity
in the definition of the amplitude that we want to
investigate.

This ambiguity can be overcome by a suitable defini-
tion of the ~Ã amplitudes. We will de6ne them as those
amplitudes that describe the pseudoscalar component
of the axial four-vector current scattering off a nucleon.
This definition allows us to construct an unambiguous
sum rule and to investigate the point in question. It is
done within the usual PCAC framework that we
review and use in the next section.

2. ADLER'S CONSISTENCY CONDITION

Let us consider the amplitude

T~~= 1&m (q
2 p2)(q 2 p2)( q v) eiqs ~ z(+(ps)

I

@22~@2

X{0(*,)$yv(x) p„' -(0)j—S„-v(x))

&& I
E(pt))d4x= qt"T„v. (6)

X denotes nucleon states, p the pion field, 5„' the
axial-vector current, and S, i' the seagull term. T„~
describes a four-point function involving an axial four-
vector, and T & is its pseudoscalar component. Its
absorptive part is given by

~'= »m (qs' —p')(qt' —p')( —qt")
q 2~~2

~'"'P'(P ) I L@'(*),~ "(0)3
I &(P ))d4~, (7)

where n and. P are isospin indices and p is the pion mass.
Note that pion number two is on its mass shell, whereas
q~ was left free. Choosing q~'= p,', we obtain an expres-
sion that we identify with the T matrix for
scattering'.

-«&&(Ps)~~(qs) I &(pt) ~-(qt))'. = &;f+s(2~)'
&& ~'(P~+ qt Ps qs) (gN~./~p'g~) T—&'. —(8)

0~ = 2Lq2)v~lt 0~'= (Pt+P2)~7 0~ = (qs)»
O„4=~&„, o,s=q, (p,+p,)„O,'=-q, (q,)„

o.'=(q, )„, 0,'=q (q), .
On the other hand, T I' can be expanded as

(10)

lim g&+&(r ) =lim g' & (v) =gN~ '/2'Jvlv.
v v0 v —&0

(13)

6Note that for (v —&0, t~ p2, q12~0) the values limq1'0v'
&&8; i (v,t,qP} are ambiguous. Nevertheless, the amplitude
A~v(0, p', 0) that is a well-de6ned combination oi the q~"0„'
&E; &(v,t,q12) is independent of the limiting process. This is true
also for the amplitude with one cut only

(g~~„/Hap'g~)T v=u(Ps)/A P(v, t, q, ')
+~"'(v, i,qt') l(qt+e)IN(pt)

The connection between A,B and the various R; i can
be readily established. In the limit q&'= 0 and t =p', we
have g» q2=0 and

A'(v, 0,0) = (2g»-/p'g~) v

&&[Rt ~(v,ps, 0)+Rs &(v,ps, O)J=vG S. (11)

Both the amplitudes A and G are free of kinematical
singularities. We will choose G l' as the amplitude for
which we write our FESR. Above threshold, we have,
of course, ImG t'(v)=v ' ImA s(v); however, G might
have an additional singularity at v=0. Moreover, we
know the structure of G l' in terms of a RHC and LHC
as defined in Eq. (7). Therefore we can define the func-
tions g with only the RHC.

Let us now treat separately the cases of symmetric
(nP) and antisymmetric LnPj combinations, to be
denoted by (+) and (—), respectively. A &+& is symmetric
in v, and therefore G&+ is antisymmetric in v. g(+~ has a
pole (the s-channel Born term) at v= 0 that corresponds
to a pole in G&+& and a low-energy limit in A'+&. This is
the famous Adler consistency condition:

A &+&(v=0, t= p, ', qts=0) = g~~ '/3E. (12)

For the (—) combination we encounter the same Born
pole in g( ~, however, since G& ) is symmetric in v,
it gets canceled out in G& ~. Therefore we And an asym-
metric situation for 2 as well as for G, whereas both'
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X (neV)
Integral

(mb SeV)

2.0
3.0
4.0
5.0
6.0

16.0
22.0

71
103
.1 33
162
189
444
592

45
67
89

111
133
353
486

for S (+)TABLE . uI. Numerical results for 5 I

66
75
82
87
92

125
138

P)+ '( 'f)3«
2

2M 2 „, v E' g
(19)

. s. The second step can be judiced from

p "''

2 BeV. We conclude that within q e
equality should hold:

3. USE OF FESR

of A (+~, which is also Sp 0 gf (+)I.et us evaluate S ~ o
We assume that

(14)ImA =i Imo-++P, p '.

Then Sp of g(+' reads

ed to restore the symmetric situ-The FESR can be used to restore
a,tion encountere~ q.

(20)

and theresults for the finite integral and
bl I Th . f. hRegge part are ge iven in Ta e

re 5 for the Pomeranc uhuk trajectory and
off-mass-shell corrections

fol '

In a simi ar asf hion wecan treat po g
its Regge expansion bo-

p Img&
—) —+ Q P;(—)i *,

RHC

whereas S ~ of A(+' is

' .(+)g~'
Imgi+)(v)d)

i 0!i

HC

A '
Img( )(v)ding P, ~

—)

'b &i

the analog of (15) is
(15)

(21)

. , (+)gg-a,IrnA '+'(v);, '+'i%

i 0'.iHC

2&gNNx

235(1—p'/4M')

N Imw'(+)
dv

v
27rgKNv

2M
.(+)

&i

make the approximation thatTo evaluate it, we ma e t e a

hold. The great advantage of the pointfor v above thresho . e gr
total cross sectionsthe ossibility to use o a
18) corresponds tos. The first step in

hih 1 d""'"'"'""'"P'"
h 1

~ ~

10—15%. A similar off-mass-s e corre

R

left-hand si e ole — d f (15) includes, in ad-Noet
ditio n to the left-

e
' . tent. To evaluatee uations are consis

1 3 ld
M 3 h 1 d

is sim ler toappyit o
vB, 1—t4

h h 1 Wto no helicity fiip in e

(0). W ot h t 8 o
If d t th h'

t= ' A'(0)=A . eno
i h-a Born term too. I we esi

energy behavior as Im

a Born term below threshold andThe integral involves a Born erm
can be rewritten a,s

7t- 2

2M

~ ImA' )(i, t=p', qi2=0)

th
g'ai

g P, (—) (22)

' 2M13) we have a& )(0) =x.g~~~ 2&V,Alternatively, from
and (22) follows.

1 Regge pole in theonl the conventiona p e
d th n the equality fails

'1 to h th d
i ht-hand side, t en e

d. h of /
ation is very simi ar o

2

'/23/I This is once again a
1 W ot tht if

d of A(-) th
-si nature poe. e

m litude A'( ~ instea oo()And a linear combination of

27I gNNm

+
23II (1 p'/43II')—

N Imd'( —
&—dv

v
2SV KgNNm

2'&i
(23)

irso and C. Lovelace, Phys. Letters~ A. Donnachie, R. G. Kirsopp, an . ov, . ers
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~gNNw
~pp, (—) +

n, 2M
(24)

The numerical comparison given in Table II is
based on the assumption that the Regge sum can be
given by one effective p pole. ' The error of the p term
is of 20—30% for 2(E(20, whereas the Born-terms
off-mass-shell correction is of the order of 20 mb BeV.

4. DISCUSSION

In his calculations Adler used two methods:

(1) Fixed momentum transfer at ps ——0 (t = 2y')
dispersion relations with phase shifts for A.

(2) Forward dispersion relations for 2'. Both dis-

persion relations included subtractions on the physical
cut, thus enhancing the relevent part of the spectrum
which was always near threshold (below 700 MeV lab

energy). In the second method almost all the contribu-

tion to 7ra&+&(0) came from the nucleon Born term. By
using the FESR we take the other extreme, namely, we

enhance the Regge part of the sum rule. Therefore we

can look for the validity of the sum rule for different
cutoffs and we have the following phenomena. '

(i) In S &~+' the integral on the physical cut, the
Born term, the Regge term, and n.a+(0) are of the same

order of magnitude for E)3 BeV. The sum rule (17)
is just a requirement

i Nk
$a (7r p)+0 (7r-+p)]d—v Pp +Pp —,(25)

2 h P n~ n~l

This equality is verified at t=0, neglecting terms of
order p'/M':

~gNN '
—Lo'(~—

p) —0'(a+p) jdp

2M 2 hp

TAaLx II. Numerical results for S I& ).

N (BeV)

4.0
6.0
8.0

10.0
14.0
18.0
22.0

Integral
(mb BeV)

1.9
4.5
6.8
8.8

12.4
15.7
18.8

7.2
9.5

11.5
13.4
17.0
20.0
23.2

which is experimentally valid. For small cutoffs, both
the integral and the Regge part are small (relative to the
Born term). We see that even for E—& threshold, the
sum rule (17) is fulfilled, in the approximated form

7f gNN~
2

~a+(0) =
2M (1—t/4M')

(26)

(ii) In S q' ' the integral and the Regge part are
small (rela, tive to the nucleon Born term) even for high
E. (For %=600 BeV the p pole would give half of the
Born term. ) Remembering the off-mass-shell error of
the Born term as well as of the xa( & term, the sum rule

(23) is verified for all cV. There is, therefore, no room
for a strong fixed pole at n= 0 for the 3'(+~ amplitudes.

)By "strong" we mean of the order of magnitude of the
Born term or so, as was found in 8& &.j This makes
sense, since n= 0 is a sense point for the no-helicity-flip
amplitudes. In other words, one can say that our analy-
sis shows that the wrong-signature pole at n=-0 is
necessary only when n=0 is a nonsense point [as in
8& &j. This is, of course, in agreement with the Gribov-
Pomeranchuk mechanism for fixed poles in the partial
waves. '


