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We make use of partial conservation of the axial-vector current and the finite-energy sum rules to investi-
gate poles at the wrong-signature points in 7V scattering amplitudes, and show that a wrong-signature
pole at =0 appears only in the helicity-flip amplitude.

SE is made of the partial conservation of the axial-

vector current (PCAC) and the finite-energy
sum rules (FESR)! to investigate poles at the wrong-
signature points in 7V scattering amplitudes. Our use
of PCAC follows closely Adler’s derivation of the con-
sistency condition? on the 4™ amplitude.® We apply
this method to the charge-exchange amplitudes. This
allows us to show that a wrong-signature pole at a=0
appears only in the helicity-flip amplitude. This result
is in accord with what one would expect from the
Gribov-Pomeranchuk* argument.

1. WRONG-SIGNATURE FESR

Let us start with an explanation of the concept of the
wrong-signature FESR. A general scattering amplitude
G() is real analytic in the complex » plane cut along the
real axis. In general it will have both a right- and a left-
hand cut (RHC and LHC). In order to apply to it
Regge behavior, we have to separate G into its sym-
metric and antisymmetric parts:

GE)=GOE)+GD(), G20)=3[G()EG(—r)] (1)

Let us now define g¢:)(») as real analytic functions in
the complex » plane with a cut that is equal to the RHC
of G+, Moreover,

G“‘-“)(V)=g(s'“)(V):1:g(‘*'“)(—V)- (2)

A Regge pole contributing to g®(v) (g (»)) is said to
have positive (negative) signature. A Regge representa-
tion is equivalent to an asymptotic expansion:

(e-z‘lr )az

sinmo;

g~y —Cr—— 3)

We write the individual Regge poles in (3) in a form that
exhibits a RHC from 0 to « with an imaginary part

* Research sponsored by the Air Force Office of Scientific
Research Office of Aerospace Research, U. S. Air Force, under
AFOSR Grant No. EOOAR-68-0010, through the European Office
of Aerospace Research.

!R. Dolen, D. Horn, and C. Schmid, Phys. Rev. Letters 19,
402 (1967); Phys Rev. 166, 1768 (1968).

2S. L. Adler, Phys. Rev. 137 B1022 (1965).

3 Pion-nucleon amplitudes as defined by V. Smgh Phys. Rev.
129, 1889 (1963); G. F. Chew, M. L. Goldberger, F. E. Low, and
Y. Nambu, 2bid. 106 1337 (1957)

+V. N. Gribov and I. Y. Pomeracnhuk, Phys. Letters 2, 239
gggg)), S. Mandelstam and L. L. Wang, Phys Rev. 160, 1490

186

equal to Ca* above the cut. Now one can prove FESR
for both positive and negative moments of Img:

1 N CiN
S»= / v Img(v)dv~2y” ————
N1 Jguc 7 aitnt1’
N Img®) CiN%  Nmgrgtm(0)
S_mi=N™ / dv~ ! .
ruc ¥™t! T og—mMm m!

Although Img®®(»)=ImG®*(») and the FESR in
(4) are a direct consequence of (3), still only half of them
can be proved directly from G*(») and its asymptotic
expansion. This corresponds to the fact that a Regge
pole at a wrong-signature point will appear as a pole in
(3) but as a regular term in the expansion of G.> More-
over, there exists complete freedom in adding an odd
(even) power series in » to g*(v) (g (»)), thus changing
the corresponding derivative of g at the origin that
appears in the negative moment FESR. We distinguish
therefore between right-signature FESR, namely, the
even (odd) moments of ImG@() (ImG®(»)) and
wrong-signature FESR that involve the respective odd
(even) moments. In Eqs. (4) one can replace Img by
ImG. For the right-signature FESR one finds 2g®(0)
=G®(0). In the wrong-signature case, g™(0) is
arbitrary.

In the wrong-signature FESR we have to distinguish
between non-negative and negative moments. In the
first case the FESR can be evaluated from direct
experimental data and Regge parameters can be ex-
tracted from the sum rule. We might encounter here
wrong-signature fixed poles that are not observed in the
scattering amplitude.’ The case of negative moments
S_m—11s still more complicated since g™ (0) is arbitrary.

The evaluation of the first wrong-signature FESR
for the B¢ 7N amplitude, namely, JSrucy ImB ) (v)dy,
has shown! a very strong wrong-signature pole near a= 0
for a wide range of £ Since that happens to be a nonsense
point for B, this pole cannot affect B itself.

Note that this sum rule reads
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5 At a wrong-signature point of g4 (g5), « is even (odd). For a
discussion of the appearance of these poles in superconvergence
relations, see J. H. Schwarz, Phys. Rev. 159, 1269 (1967). The
wrong—51gnature FESR turn in the limit N —« into Schwarz
superconvergence relations.
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The Born term contributes to the usual »B¢ amplitude
an additional factor of vg= —u?/2M+1/2M that dis-
appears in the FESR (5). Therefore the Born term in
(5) is unusually large and dominates the left-hand
side. In the Regge expansion, one has therefore to add
a pole near a=0 with C~a such that it compensates
the effect of the Born term.

If we want to ask ourselves whether a pole at a=>~0
shows up also in 4 or 4’4, we have to evaluate
S_1 for these amplitudes. Constructing the correspond-
ing ¢, @’ amplitudes .S_; reads

N Ima -) (V) A7 aj
/ Y sy e tra(0).
RHC

v z o;

However, ¢©(0) is undetermined since A©(»)
=a(») —a)(—»). Hence we encounter an ambiguity
in the definition of the amplitude that we want to
investigate.

This ambiguity can be overcome by a suitable defini-
tion of the 7V amplitudes. We will define them as those
amplitudes that describe the pseudoscalar component
of the axial four-vector current scattering off a nucleon.
This definition allows us to construct an unambiguous
sum rule and to investigate the point in question. It is
done within the usual PCAC framework that we
review and use in the next section.

2. ADLER’S CONSISTENCY CONDITION

Let us consider the amplitude
Toi= lim (gt~ (g —)(~gr) / e (N (p)|
2

X{0(x0)[$°(x),5,+(0) ]— S, ()}
X|N(pr))dtx=grT,*. (6)

N denotes nucleon states, ¢ the pion field, &,% the
axial-vector current, and S,*¥ the seagull term. T,*#
describes a four-point function involving an axial four-
vector, and 7'*f is its pseudoscalar component. Its
absorptive part is given by

18 = ].%mz (‘]22 _Mz) (912 _M2) ( - qu)
e >p

X / i< (pa) | (2, 5,52(0) 1| N (p))d*s, ()

where a and 38 are isospin indices and g is the pion mass.
Note that pion number two is on its mass shell, whereas
g1 was left free. Choosing ¢,®= u?, we obtain an expres-
sion that we identify with the T matrix for =N
scattering:

outdV (p2)ms(g2) | N (p1)Ta(qr) Yin= 8is+3(2m)*
X (pr1t+q1—pa—qo) (guw«/Muga) T8, (8)

a=0 WRONG-SIGNATURE POLE IN N CHARGE EXCHANGE
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The assumption of PCAC states that the amplitude
T*# is smooth in the variable ¢;. Therefore, even if we
choose ¢:2=0, which we are going to do now, we still
get the same value for 7*# with good accuracy (on the
order of 10-159%).

Our independent variables are v=(s—u)/4M, t and
¢:2. Let us go to the limit ¢:>=0 and ¢=pu2. Then T'*#
reduces to a simple form whose analytic structure is
known to us. In order to understand this point we note
that 7,*f defined in (6) can be expanded in terms of
eight invariant amplitudes:

Tpaﬂzﬂ(P2)[‘é1 Riaﬂ(”)t7q12>ovi]u(P1) ’ (9)

where
Or=3[q1v], 0= (pr+pa)s, 0= (g2),
Ot=Mv,, 05=qi(prtp2)s, 0°=qi(gs)s, (10)
Ov7 = (ql)v, Ov8 = ql(QI)v .

On the other hand, 7*# can be expanded as

(gNer/Ml/'2gA) Tf= ﬂ(P2)[A “ﬁ(V,t,qf)
+B8(v,,01%)3 (q1+gq2) Ju(py) -

The connection between A4,B and the various R;*# can
be readily established. In the limit ¢;2=0 and t=pu?, we
have ¢1-¢g2=0 and

AB(»,0,0)= 2gnw=/12ga)v
X[Rlaﬁ(V;“2’0)+R2aﬁ(V;“2,0)]E vGeP. (11)

Both the amplitudes 4 and G are free of kinematical
singularities. We will choose G*# as the amplitude for
which we write our FESR. Above threshold, we have,
of course, ImG*¥(v)=»"1 ImA*¥(v); however, G might
have an additional singularity at »=0. Moreover, we
know the structure of G*# in terms of a RHC and LHC
as defined in Eq. (7). Therefore we can define the func-
tions g with only the RHC.

Let us now treat separately the cases of symmetric
{oB} and antisymmetric [a8] combinations, to be
denoted by (4) and (—), respectively. 4 &) is symmetric
in », and therefore G is antisymmetric in ». g has a
pole (the s-channel Born term) at »= 0 that corresponds
to a pole in G and a low-energy limit in 4 ), This is
the famous Adler consistency condition:

AD (=0, t=p? ¢>=0)=gyn.2 /M. (12)

For the (—) combination we encounter the same Born
pole in g, however, since G is symmetric in »,
it gets canceled out in G. Therefore we find an asym-
metric situation for 4 as well as for G, whereas both®

lim ¢ () =lim g6) =guws?/2Mv.  (13)

¢ Note that for (v — 0, t— u?, ¢:2— 0) the values limg,0,
XR:*8(vt,1?) are ambiguous. Nevertheless, the amplitude
A*f(042,0) that is a well-defined combination of the g¢:i*0/*
X R*8 (v,4,q1%) is independent of the limiting process. This is true
also for the amplitude with one cut only
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TasLE 1. Numerical results for S_;,
Integral

N (BeV) (mb BeV) P r’
2.0 71 45 66
3.0 103 67 75
4.0 133 89 82
5.0 162 111 87

6.0 189 133 92
16.0 444 353 125
22.0 592 486 138

R. AVIV AND D. HORN

The FESR can be used to restore the symmetric situ-
ation encountered in Eq. (13).

3. USE OF FESR

Let us evaluate S—_1 of 4@, which is also Sy of g,
We assume that

ImA =y ImG — Y Bw®. (14)
Then Sy of g reads
N ﬁi(Jr)Afui
/ Img® )dv>y" — , (15)
RHC 4 g
whereas S_; of A is
N ImA @ () Ly HNei
/ o> FLed (). (16)
RHC v i a;

Note that the left-hand side of (15) includes, in ad-
dition to the left-hand side of (16), the Born term
—mgnn+2/2M, which equals —wa™(0)= —irA4 )(0).
Therefore the two equations are consistent. To evaluate
the sum rule, it is simpler to apply it to 4’ amplitude
defined as A’=A4-»B/(1—t/4M?). A’ is the amplitude
corresponding to no helicity flip in the ¢ channel. We
see that at t=pu?, 4’(0)=A4(0). We note that B contrib-
utes a Born term too. If we designate now the high-
energy behavior as Im4’ — Y~ vy, we find

TEN N N ImA’®
— dv
IM(1—p2/AM?)  Ju v
1\'7“" 7I'gNN7,2
S (17)
7 o 2M

To evaluate it, we make the approximation that

ImA’ @, t=p?, g*=0)=~ImA" Dy, t=42, g:*=p?)
~ImA’ D (, 1=0, gP=p?) (18)

for » above threshold. The great advantage of the point
1=0, ¢:>= p? is the possibility to use total cross sections
in the calculations. The first step in (18) corresponds to
the usual PCAC approximation which we already men-
tioned before, and which we expect to hold within
10-15%. A similar off-mass-shell correction is expected
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for the Born terms. The second step can be judged from
phase-shift solutions. The CERN phase shifts” imply a
variation of about 10-15%, in the value of 4’ below
2 BeV. We conclude that within 259, the following
equality should hold:

7I'g1\/N,r2 1 N/B
| L@ p)Fo'(@tp) Jdv
2M 2 th V
Nt mgyng?
Ay (19)
A oy 2M

The numerical results for the finite integral and the
Regge part® are given in Table I. The errors for the
Regge terms are 5%, for the Pomeranchuk trajectory and
309, for the P’, whereas the off-mass-shell corrections
for the Born term are of the order of 20 mb BeV.
Within these errors the sum rule is verified.

In a similar fashion we can treat .So of g¢. Denoting
its Regge expansion by

» Img™ — 3 B, (20)
the analog of (15) is
N Jai
/ ImgO ()dv=3" 8, )—. (21)
RHC i Qg

The integral involves a Born term below threshold and
can be rewritten as

mguny® N ImAC (v, 1=p?, g2 =0)

_— dy

2M th v

Ta

3 B ——.
7 .

Qg

(22)

Alternatively, from (13) we have ¢ (0) =ngyn.2/2M,
and (22) follows.

If one uses only the conventional p Regge pole in the
sum on the right-hand side, then the equality fails
badly. The situation is very similar to what happened
in Eq. (5) to the B&) amplitude. The value of wgyn-2/
2M is much bigger than the integral (at N=2 BeV) and
this calls for a term at =0 and 8™)=ya. 5 will be
roughly equal to —wgyn.2/2M. This is once again a
nonsense wrong-signature pole. We note that if we
consider the amplitude 4’ instead of 4, then we
find a linear combination of (22) and (5) leading to

7rgNN,.2 NImA4’' )
dy
IMA—p2/4M?)  Ju v
N 7rgNN,.-2
Yy O—+ (23)
z o 2M

7 A. Donnachie, R. G. Kirsopp, and C. Lovelace, Phys. Letters
26B, 161 (1968).

8 We use the semiexperimental high-energy fit of K. J. Foley
et al., Phys. Rev. Letters 19, 330 (1967).
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This equality is verified at /=0, neglecting terms of
order u2/M?:

o [ ot
Yy zﬁhva(rp a'(m™p) jav

N* wgnna?

~F 7 (24)

Qg

The numerical comparison given in Table II is
based on the assumption that the Regge sum can be
given by one effective p pole.® The error of the p term
is of 20-309, for 2<N <20, whereas the Born-terms
off-mass-shell correction is of the order of 20 mb BeV.

4. DISCUSSION
In his calculations Adler used two methods:

(1) Fixed momentum transfer at »p=0 (I=2u?)
dispersion relations with phase shifts for 4.

(2) Forward dispersion relations for A4’. Both dis-
persion relations included subtractions on the physical
cut, thus enhancing the relevent part of the spectrum
which was always near threshold (below 700 MeV lab
energy). In the second method almost all the contribu-
tion to ma™(0) came from the nucleon Born term. By
using the FESR we take the other extreme, namely, we
enhance the Regge part of the sum rule. Therefore we
can look for the validity of the sum rule for different
cutoffs and we have the following phenomena:

(i) In S_1® the integral on the physical cut, the
Born term, the Regge term, and ma*(0) are of the same
order of magnitude for N>3 BeV. The sum rule (17)
is just a requirement

’

N

1 k
2 / ~Lo(rp)Fo(rtp) JdBr
2)wm v ap

Nap NaP

+/3P’ RE)

apr

(25)
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Tasre I1. Numerical results for S_; (.

Integral
N (BeV) (mb BeV) p
4.0 1.9 7.2
6.0 4.5 9.5
8.0 6.8 11.5
10.0 8.8 134
14.0 12.4 17.0
18.0 15.7 20.0
22.0 18.8 23.2

which is experimentally valid. For small cutoffs, both
the integral and the Regge part are small (relative to the
Born term). We see that even for NV — threshold, the
sum rule (17) is fulfilled, in the approximated form

TENN 7r2
rat(0) ~ ———. (26)
2M(1—t/4M?)

(ii) In S_1© the integral and the Regge part are
small (relative to the nucleon Born term) even for high
N. (For N=600 BeV the p pole would give half of the
Born term.) Remembering the off-mass-shell error of
the Born term as well as of the 7¢¢ term, the sum rule
(23) is verified for all N. There is, therefore, no room
for a strong fixed pole at =0 for the 4’&) amplitudes.
[By “strong” we mean of the order of magnitude of the
Born term or so, as was found in B¢.] This makes
sense, since a=0 is a sense point for the no-helicity-flip
amplitudes. In other words, one can say that our analy-
sis shows that the wrong-signature pole at a=0 is
necessary only when a=0 is a nonsense point [as in
B©)]. This is, of course, in agreement with the Gribov-
Pomeranchuk mechanism for fixed poles in the partial
waves.t



