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The liquid structure factor S(k) and velocity autocorrelation function ¥ () of classical systems
of particles interacting by two-body potentials have been computed by Monte Carlo and molec-
ular dynamics techniques. The two-body potentials were chosen with two features which
might be present in the effective ion-ion potential of some simple liquid metals: a “soft”
repulsive core of Born-Mayer type and long-range oscillations of the form A cos 2kF'r/1’3.
Comparison is made with S(k) and ¥(¢) corresponding to a Lennard-Jones potential: The soft-
ness of the core increases the damping of the oscillations of S(2) and the oscillatory behavior
of ¥(t); the effect of the Friedel oscillations on S(k) and ¥(#) is very small if their amplitude
A is of the order of that predicted by theoretical calculations. If A is two to three times
larger, Friedel oscillations increase the height of the first peak of S(k) and the oscillations
of ¥(#). The dependence of the effect of Friedel oscillations of “realistic” amplitude upon
their wave vector 2k is investigated in a simple model: In that model the height of the first
peak of the structure factor, Sk, is maximum when 2kp=Fk(. The possibility of observing
such a resonance effect by neutron or x-ray scattering on a liquid Li-Mg alloy is briefly
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discussed.

I. INTRODUCTION

The interest in considering simple liquid metals
as classical fluids received a strong stimulation
in 1963 through a paper by Johnson, Hutchinson,
and March! (JHM): These authors, using approx-
imate relations between the radial distribution
function g(») and the interparticle potential V(r)
in classical fluids attempted to extract the inter-
particle potential from the experimental structure
factor of liquid sodium and liquid argon near their
respective triple point. For sodium they obtained
an ion-ion potential with marked oscillations
whereas in the case of argon the potential obtained
was of the expected van der Waals type. These
results, although now somewhat controversial,
drew attention on the eventual possibility of ob-
taining, through x-ray or neutron scattering ex-
periments, information on the effective interac-
tion between ions in liquid metals.

Further progress in this direction was made in
1966 through two investigations, one by Ashcroft
and Lekner? (AL) and the other by Paskin and
Rahman® (PR). AL reached a conclusion nearly
opposite to that of JHM by showing that a reason-
ably good fit of the experimental liquid structure
factors (up to the second peak) of seventeen met-
als near their triple point could be obtained by a
zero-parameter model, namely, the Percus-
Yevick (PY) structure factor of hard spheres at
a packing fraction of 0.45. As to PR, they in-
verted the JHM results, by use of the molecular
dynamics technique of Rahman*: Assuming for
liquid sodium a potential with oscillations analo-
gous to those found by JHM and with a repulsive
core of Born-Mayer type, they obtained a radial
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distribution function in reasonable agreement with
experiment. Furthermore, they obtained the in-
teresting result® that the velocity autocorrelation
function corresponding to such a potential shows
marked oscillations, in contrast to the Lennard-
Jones case.?,®

It thus seems that the problem raised by JHM,
of extracting from experiments information con-
cerning the interactions between ions in a liquid
metal, has to be divided in the following two ques-
tions: (a) if the ion-ion potential presented some
characteristic theoretically founded features,
e.g., Friedel oscillations and, in the case of the
alkalis a “soft” Born-Mayer core, would these
features have any measurable effect on the quan-
tities accessible to experiment and especially on
the scattering of x rays and neutrons? (b) does
the ion-ion potential in liquid metals present these
features? Obviously, one of the only hopes of
answering question (b) is that the answer to ques-
tion (a) be affirmative. The aim of this paper is
to study question (a) using computer “experi-
ments”; it turns out that in the region of tempera-
ture and pressure where experimental data exist,
namely, the neighborhood of the triple point, and
with the current accuracy of the x-ray and neutron
scattering experiments, the answer to question
(a) is partly negative. This is so because, as
noted by AL and, in the case of a Lennard-Jones
potential, by Verlet,” most of the structure fac-
tor of a simple fluid near its triple point can be
quantitatively interpreted as stemming from geo-
metrical, excluded volume effects, and is unaf-
fected by the details of the interaction. Some de-
tails do, however, show up in certain cases, as
we shall show, and it is not impossible that accu-
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rate experiments will give unambiguous answers
to question (b), regarding some features of the
potential.

In Sec. II, after some brief numerical details
about the techniques of computer “experiments”
used, Monte Carlo and molecular dynamics, we
discuss the potentials which we have used to de-
scribe two liquid metals: sodium and aluminum,
Regarding the reliability of these two-body poten-
tials the philosophy underlying the calculations is
different from the one in the rare-gas case in two
respects. Firstly, from a theoretical viewpoint
the use of classical statistical mechanics is, of
course, much less founded in liquid metals, due
to the presence of the conduction electrons, than
in rare gases. The ion-ion pseudopotential which,
in a certain way, takes into account the effect of
these electrons is unable to describe correctly the
volume-dependent effects and should therefore not
be expected to describe accurately the very low
k behavior of S(2). [The fact that the AL model fits
the isothermal compressibility of liquid alkalis?s 8
correctly is partly a coincidence due to the use of
the PY approximation: The inverse compressibil-
ity B(8p/8p) of a hard-sphere fluid of packing frac-
tion 0.45, obtained by deriving the Padé 3,3 ap-
proximant of the pressure® is 35, whereas the PY
approximation yields a value of 39.5, closer to
the experimental values for liquid alkalis close to
their triple point (41.7 for liquid sodium, 45 for
liquid rubidium).] It is indeed unlikely that any
reasonable state-independent potential could give
rise to an inverse isothermal compressibility
B(8p/8p) of 100 as observed in lead. The second,
less fundamental, difference is the absence, for
liquid metals, of any potential as reliable (for
volume-independent quantities) as, say, the Len-
nard-Jones potential for rare gases.

The potentials were therefore constructed in the
following way: In a first step the hard-core diam-
eter o and depth of the well € were chosen so that
the density and temperature of the liquid metal at
its triple point, when expressed in units of 0”3 and
€, be of the order of the reduced density and tem-
perature of argon at its triple point. This ensured
that the thermodynamical properties of our arti-
ficial fluids were not too unreasonable; an inde-
pendent check on the value of o was given by the
position %, of the first peak of the experimental
structure factor. In a second step, several po-
tentials were constructed with the same € and ¢
but with different core steepness and with or
without long-range oscillations.

Results concerning the effect of the steepness
of the core are given in Sec. II; a soft Born-
Mayer core gives rise, when compared to a
“hard” core, say 1/7'2, to the following two dif-
ferences: on the one hand a stronger damping of
the oscillations of the structure factor S(#) and on
the other hand marked oscillations of the velocity

autocorrelation function (), as already observed
by PR.?®

In Sec. IV are given the results concerning the
effect of the Friedel oscillations for two liquid
metals - sodium and aluminum. In the case of
liquid sodium, oscillations analogous to those
predicted theoretically!® have no clear-cut effect
on S(2): By this we mean that the structure fac-
tor corresponding to the same potential with and
without these oscillations can be fitted equally
well by two slightly different hard-sphere models.
As to the velocity autocorrelation function, it is
practically unaffected by the presence of these
oscillations., We have also studied the effect of
oscillations of amplitude two to three times
larger: The height of the first peak of S() is
then increased by 20-30% and the oscillations of
¥(t) slightly enhanced. In the case of aluminum,
two potentials were successively used: one sug-
gested by Harrison!! and Pick, *° with a narrow
bowl and large oscillations, and one suggested by
Ashcroft and Langreth'? with smaller oscillations.
The large oscillations have an effect on the struc-
ture factor which is most apparent in terms of a
deviation from a hard-sphere model. An analo-
gous though smaller deviation can be seen on the
neutron and x-ray results; the accuracy of these
results is, however, probably not high enough
and the parameters of the potential not established
well enough to use the experimental results as a
test on the potential.

The last section (Sec. V) is devoted to a simple
model: For a two-body potential consisting of a
hard-sphere repulsion followed by damped Friedel
oscillations of “realistic” amplitude, the liquid
structure factor is computed for several values of
the wave vector 2k around k,. The height of the
first peak shows a maximum for 2kp=%k,. This
result indicates that Friedel oscillations might be
easier to detect if their wave vector 2kp were
allowed to vary around k,. A brief discussion is
made of the possibility of observing such a reso-
nance by x-ray or neutron scattering on a liquid
Li-Mg alloy, which seems to be the best candi-
date: The equivalent hard-sphere diameters of
pure liquid Li and Mg are almost equal and 2kp
can be made to vary, assuming a free-electron
model, between 0.9 %, and 1.1 &,.

II. DESCRIPTION OF COMPUTER “EXPERIMENTS”

We have used both standard methods of “exact”
machine computations: the Monte Carlo®® method
when we were interested only in time-independent
quantities and the molecular dynamics**%!5
method when we were interested in computing
time-dependent quantities. In the latter case,
the technique used was the one devised by Verlet
to study the Lennard-Jones fluid and the reader
is referred to Ref. 15 for technical details.
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864 particles were enclosed in a cubic box with
periodic boundary conditions; the length of one
run was of 500000 configurations in the Monte
Carlo case and 1200 steps in time in the molec-
ular dynamics case. The extrapolation of the
radial distribution function g(») to large 7, neces-
sary for the Fourier transform of g(»), was done
in the same way as in Ref. 7 by assuming that,
for 7 larger than some distance 7, g(r) satisfies
the PY equation, The validity of this procedure
was tested empirically by choosing several values
of the distance 7, and checking that the resulting
S(%) never differed by more than a few percent,
and, in one case, by making also a direct calcu-
lation of

s(k)zj%( IPAMIRLIUY
i#j
The uncertainty of our results, for instance for
the height of the first peak, is believed to be
+0.1.

We now come to the description of the two-body
potentials which we have used. In the case of
sodium, the units of length and energy chosen are
0=3.24A, €=599 °K. In these units, the density
and temperature of sodium at its melting point
are p=0.83, T=0.62. (The potentials given in the
literature usually have diameter and depth differ-
ing from these values: The potential of Pick'®
has 0=2,TA, €=1880°K and the LRO2 potential of
PR has €=276 °K,) Calculations were made suc-
cessively with four potentials, the parameters of
which are gathered in Table I:

(i) A potential constructed to fit the oscillations
given by Pick!® and with a repulsive core 1/77,
intermediate between the Born-Mayer soft core
and the Lennard-Jones hard core., It is shown on
Fig. 1 and has the form

V1 (v)= [(cos2kF17)/73](A1 +B1/'rz+ Cl/r“)
+ [(sinZI:aFlaf)/af"](E1 +F1/1fz).

(ii) The LRO2 potential of Paskin and Rahman

cos(Zszfr + BZ)

Volr)=A,—— 55— +E, exp(F2 - GZTI> .
]

TABLE L.

Parameters of the different two-body potentials used in the calculation.
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FIG. 1. Interionic potential V() for liquid sodium.

This potential has oscillations of wavelength 2k
exactly equal to &, the position of the first peak
of the structure factor, whereas the value 2kp
appropriate for liquid sodium is 0.9 2,. This
comes probably from the fact that PR fitted the
oscillations of their potential to the ones found by
JHM which, in turn, were not completely sepa-
rated from the oscillations of the potential of av-
erage force. ¢

(iii) A potential with the same Born-Mayer re-
pulsive core as V, but with a deeper bowl and
still larger oscillations

V,y(r)=[(cos2k po)/7°(Ag + By /r?) +

sin2k FSr
1,4
X (C3 +D3/72) + Eq exp(Fy— Gy /7).
(iv) Finally, a potential with the same oscilla-

tions as the preceding one but with a hard 1/»?
core

V4(1f)= (cosZkF41’/1f3)(A4+ B4/72)
+ (sin2kF4V/r“)(C4+D4/1’2) +E4/1f 1z

Of these four potentials, only the first one has
oscillations of “realistic” amplitude; the remain-

For an explanation of the units

used, see text.

A B C D E F G 7y 2kp
Vi 0.19 —1.02 —-0.08 —0.43 ~2.54 5.987
Sodium 2 —0.78 0.57 15.11 5.07 10.79 1.15 6.82
V3 -0.42 —0.56 -2.96 1.46 15.11 5.07 10.79 1.15 5.987
|/ 0.32 —5.24 -5.39 5.76 4.06 5.987
Aluminum Vs 0.66 4.22 —2.61 —-0.54 0.67 1.49 8.97
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ing three have oscillations which are a caricature
of reality, being at least two to three times larger
than the eventual oscillations in liquid alkalis.

In the case of aluminum, the units chosen are
0=2.56 A, €=1198 °K. In these units the melting
point of aluminum is p=0.89, T'=0,78. Calcula-
tions were made with the two potentials shown on
Fig. 2:

(i) A potential with a hard 1/7'? core and con~
structed to fit the potential calculated by Pick!®

r)= v /y3 2 4

V5( ) (cosZkF5 /7 )(A5+B5/1’ +C5/r )
+ (si v/v? 2 12
(s1r12kF5 /7 )(D5+ E5/7f )+F5/7 .

(ii) The potential calculated by Ashcroft and
Langreth'? (taken to be zero for »>2.24).

III. EFFECT OF THE SOFTNESS
OF THE REPULSIVE CORE

In this section we present the results of a molec-
ular dynamics calculation done with the potential
V,(r) taken to be zero for »>1.5. The calculation
was done at p=0,83, T'=0,64 and the results are
compared with results obtained for the structure
factor by Verlet” and, for the velocity autocorrela-
tion function, by Levesque et al.,® with the Len-
nard-Jones potential at p=0.84, 7'=0.73. Table
II shows a comparison of the thermodynamical
functions: No striking difference appears. The
main difference in the radial distribution func-
tions g(7) is the one expected by intuition, namely,
that the rise in g(») around =1 is less sharp for
a soft potential than for a hard one. This, in
turn, has the effect on the structure factor S(z),
also intuitively understandable, that the oscilla-
tions corresponding to a soft potential are more
damped. This is shown on Fig, 3: While both
first peaks have the same height, the third peak
corresponding to the soft potential is nearly three
times smaller than the one corresponding to the
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FIG. 2. Interionic potentials for liquid aluminum:
(solid line) V5(); (dashed line) potential of Ref. 12.

TABLE II. Thermodynamical functions obtained with

two potentials of different core steepness: For an ex-
planation of the units used, see text.
0
r U 9
Core P ok T B 90
Lennard-Jones 0.84 0.73 0.25 —-6.08 24
Born-Mayer 0.83 0.64 0.5 —-4.2 20

hard potential, Also shown on Fig. 3 by triangles
and crosses are experimental neutron results
[maxima, minima, and points where S(2)=1].
While both potentials give a first peak of 2.75 the
experimental value seems to lie between 2.5 and
2.6. As to the height of the third peak, it is hard
to know what the accuracy of the experiments at
large angles is and whether the better agreement
with a “soft” potential is significant or not.
Before giving the results concerning the velocity
autocorrelation function, let us make a little de-
tour and introduce a way of analyzing structure
factors derived from the AL model and which will
prove convenient in this section and Sec. IV. Let
a,, be the amplitude of the nth extremum of the
structure factor to be analyzed, and consider a
hard-sphere fluid of packing fraction 7, such that
the PY structure factor for such a fluid has an
nth extremum of amplitude equal to a;. To each

S(R)

FIG. 3.

Structure factors obtained with two potentials
of different core steepness: (solid line) V3 (cut at »=1.5)
p=0.83, T=0.64; (dashed line) Lennard-Jones (cut at
2.5) p=0.84, T'=0.73; & experimental values [extrema
and values for which S(2) =1] in liquid sodium according
to K. S. Singwi and G. Feldman, in Proceedings of the
Symposium on Inelastic Scattering of Neutrons, Bombay,
1964 (International Atomic Energy Agency, Vienna,
1964), Vol. II, p. 85; X experimental values in liquid
sodium according to H. Oehme and H. Richter, Natur-
wissenschaften 53, 16 (1966).
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peak and valley is thus associated the packing
fraction of a hard-sphere fluid, (If, instead of
the PY structure factor, one uses the “exact”
one, " one assigns to each peak and valley a
slightly different value of 7 but the variation of
n,, with # is practically unchanged.) The result
of such an analysis for several experimental and
theoretical structure factors is given in Table II.
The first line corresponds to a Lennard-Jones
fluid not far from its triple point. The successive
1’s decrease roughly monotonously as expected,
due to the fact that the rise of g(») around »=1 is
less abrupt than in the hard-sphere case. The
faster decrease of the #’s in the case of a soft
potential can be seen on the fourth line. In the
lower half of Table III are given the 7’s corre-
sponding to several experiments: some neutron
data on sodium, *® not very recent, and some re-
cent data on potassium, !° lead, ?° aluminum, ?*
zinc, #* and copper.®® If one believes the data on
sodium and potassium, one is tempted tc inter-
pret the fact that the 7’s decrease more rapidly
than for the other metals by saying that the ion-
ion potential in the alkalis is softer than in the
other metals. Such a view is partly supported by
inspection of the hard-core diameters corre-
sponding to several elements shown in Table IV,
The hard-core diameters ¢ are those calculated
by AL from the densities of the liquids at their
triple point (po®=0.86). Another estimation of
the equivalent hard-core diameter o, possible
whenever experimental structure factors exist,
is to equate the position &, of the first peak of
S(%) to the value it has, in reduced units, for ar-
gon at its triple point,” namely, k,0=27/0.93.
The two estimates never differ by more than 5%.
In the case of the rare gases, the values given
are those determined by second virial measure-

COMPUTER “EXPERIMENTS” ON LIQUID METALS
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TABLE IV. Hard-core diameters according to AL

(in A).
He Li Be
2.6 2.7 2
Ne Na Mg Al Si
2.8 3.3 2.8 2.5 2.6
Ar K Ca Cu Zn Ga Ge As
3.4 4.1 3.5 2.2 2.4 2.5 2.8 2.7
Kr Rb Cd In Sn Sb
3.6 4.3 2.7 2.9 2.9 3
Xe Cs Ba Hg Tl Pb Bi
4 4.7 3.9 2.8 2.9 3.1 3.1
ments, It can be seen on this table that the effec-

tive hard-core diameters of the alkalis (except
lithium) are 0.5-0.7 A larger than those of the
corresponding rare gases. Thus, although an
isolated Na* ion has a diameter, equal to that of
Ne, of 2.8 A (and even a little smaller due to the
extra nuclear charge), the effective ion-ion hard-
core diameter in liquid sodium is 3.3 ;\, presum-
ably because of the Coulomb repulsion between
ions, But the 0.5 A thick “skin” between 3.3 and
2.8A is presumably soft since it is not until 2.8A
that the hard Pauli-principle repulsion acts. The
fact that the elements of the following columns
have again smaller hard-core diameters could be
linked to a stronger screening of the Coulomb
repulsion by the electrons, and explain the slow
decrease of the 11’s. Obviously, before such an
analysis can be taken seriously, some accurate
neutron or x-ray data on the damping of the oscil-
lations of S(&) in the liquid alkalis are necessary:
Coupled with computer “experiment” results, they

TABLE III. Analysis of several theoretical and experimental structure factors in terms of hard-sphere model.
The number 7, in the nth column characterizes the amplitude a,, of the nth extremum. It is the packing fraction of a
hard-sphere fluid which has a PY structure factor such that its nth extremum has also an amplitude a;,. For an ex-
planation of the units used, see text.

n 1 2 3 4 5
o Lennard-Jones, T=0.78, p=0.85, 0.47 0.46 0.44 0.45 0.42
Zo: Vi cut at 1.53 0.47 0.47 0.41 0.41 0.38
& Vi cut at 3.20 0.44 0.43 0.38 0.37 0.3
V3 cut at 1.5 0.47 0.46 0.41 0.36 0.28
Vs cut at 1.51 0.45 0.47 0.49 0.5 0.5
Vs cut at 3.3 0.43 0.52 0.48 0.49 0.49
s Sodium (Ref. 18), neutrons 0.45 0.44 0.41 0.3 0.25
g Potassium (Ref. 19), neutrons 0.46 0.45 0.41 0.4 0.32
E; Lead (Ref. 20), x rays 0.47 0.47 0.44 0.42 0.41
£ Aluminum (Ref. 21), x rays 0.45 0.49 0.43 0.40 0.36
= Zinc (Ref. 22), neutrons 0.44 0.43 0.42 0.37
Copper (Ref. 23), neutrons 0.44 0.45 0.43 0.42 0.41
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might give insight on the steepness of the ion-ion
repulsion,

Let us now come back to the results of the mo-
lecular dynamics calculations concerning the ve-
locity autocorrelation function and the diffusion
coefficient, The velocity autocorrelation function

W(t) = (m/3kT)(‘7i(0) . ir'i(t»

has been computed by the same technique as in
the Lennard-Jones case.® Figure 4 shows the re-
sults compared to the Lennard-Jones one. Marked
oscillations, analogous to the ones obtained by
PR® with a long-range oscillatory soft-core po-
tential, are obtained here with a soft potential
with no oscillations., Although the physical reason
for which a soft core should give rise to a deeper
bowl, followed by oscillations in the velocity auto-
correlation function, is not clear to us, we think
that it might be linked to the following two facts:
On the one hand, the diffusion coefficient, which
is equal to the integral of ¥(¢) is, as we shall see,
rather insensitive to the steepness of the core;
the small ¢ behavior of #(¢), on the contrary is
governed by the quantity

p [AV(r) glr)ar,

which is twice as small in the case of a soft po-
tential as in the case of a hard one. The extra

FIG. 4. Velocity autocorrelation functions obtained
with two potentials of different core steepness: (solid
line) V; (cut at »=1.5) p=0.83, T=0.64; (dashed line)
Lennard-Jones (cut at »=2.5) p=0.84, T=0.73.

FIG. 5. Fourier transforms of the velocity autocor-
relation functions of Fig. 4: (solid line) V3 (cut at
7=1.5) p=0.83, T=0.64; (dashed line) Lennard-Jones
(cut at »=2.5) p=0.84, T'=0.73; (dot-dashed line) ex~
perimental curve in sodium (Ref. 24).

positive region under () in the case of a soft po-
tential has to be compensated by a larger negative
region, Figure 5 shows the Fourier transforms
of the curves of Fig. 4,

Flw)= foocoswtzp(t) dat,

together with the experimental®® curve. Again,
the soft potential seems to be in better agreement
with the experimental curve but the accuracy of
the latter, obtained after extraction of the “self”
part of S(¢, w), and a # -0 limit, is probably not
very high.?® As to the diffusion coefficient D, it
seems to be rather insensitive to the steepness of
the core: the soft potential yields D=4.4x 1075
cm?/sec and the Lennard-Jones one D=4.9 x 1075
cm?/sec, whereas, the experimental?® value in
liquid sodium is D= 4.3 X10"% cm?/sec.

IV. EFFECT OF FRIEDEL OSCILLATIONS

The structure factor S(2) and velocity autocor-
relation function (¢) have been computed using
the potentials described in Sec. II successively
with and without oscillations. In the case of so-
dium the computation was done in the first place
for the potential V,(r) which has oscillations anal-
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ogous to the oscillations calculated in solid alkalis
at zero temperature, !® and which are therefore an
upper bound to the oscillations one can expect in
the liquid. The effect on S(&) is very small as
can be seen of Fig, 6 and on line 2 and 3 of Table
III: The 7’s corresponding to V, with and without
oscillations decrease in an analogous way. As to
the effect of the oscillations on ¥(¢) (Fig. 7) it is
negligible. Since realistic oscillations seemed to
give no clear-cut effect, we then used potentials
with stronger oscillations. We find that the oscil-
lations of the LR02 potential of PR do have an ef-
fect: The height of the first peak is increased by
30% and reaches the value 2.95 for the potential
with oscillations. This is in contrast with the re-
sult obtained by Paskin® who obtained with the
same potential a height of 2.4 for S(%,), in better
agreement with the experimental value 2.5. This
difference comes probably from the fact that, in-
stead of truncating g(r) at »=2.5, we prolongate

it through the PY equation. On (¢), the oscilla-
tions of the potential have the effect of enhancing
the oscillations due to the softness of the core.
The potentials V, and V,, in which the oscillations
are still larger, yield the same effects: anomal-
ously high value of the height of the first peak
S(%,) and enhancement of the structure of (¢).

In the case of aluminum, only the structure
factor was computed; the oscillations of the po-
tential V; have the effect of lowering the first peak
and deepening the first valley. This is shown on
Fig. 8 and also on Table IIl: For the potential V,
the 7’s are not monotonously decreasing as for the
Lennard-Jones potential, but start by increasing
1,=0.43, 1,=0.52, and so on. Looking at the lower
half of the table, it can be noticed that, among
all the experimental data gathered there, the re-
sults on aluminum are the only ones to show a
similar (though less marked) nonmonotonous be-

s(s)
3
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O L ‘L ) . ) &0"
5 10 15 20

FIG. 6. Structure factors obtained with potential
Vi), p=0.83, T=0.97: (dashed line) cut at »=1.53
(no oscillations); (solid line) cut at »=3.20 (oscillations).
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FIG. 7. Velocity autocorrelation functions obtained
with potential V;(#), p=0.83, T=0.97: (dashed line) cut
at r=1.53 (no oscillations); (Solid line) cut at »=3.20
(oscillations).

S(k)

ko

FIG. 8. Structure factors obtained with the potentials
of Fig. 2: (dashed line) V;(#) cut at »=1.2, p=0.89,
T=0.78; (solid line) V() cut at »=3.3, p=0.89, T=1.08;
(dot-dashed line) potential of Ref. 12 p=0.89, T=0.78;

O experimental x-ray results (Ref. 21) on liquid alumi-
num [extrema and values where S()=1]; & experimental
neutron results (according to K. E. Larsson et al., in
Proceedings of the Symposium on Inelastic Scattering

of Neutrons, Bombay, 1964 (International Atomic En-
ergy Agency, Vienna, 1964), Vol. II, p. 117, on liquid
aluminum.
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havior of the 7’s: 7,=0.45, 7,=0.49, and so on.
This is, however, not enough to conclude to the
existence of oscillations in the ion-ion potential of
liquid aluminum, especially since the experimental
x-ray results, ! shown on Fig. 8, seem in better
agreement with the structure factor obtained by
the potential with no oscillations.

We have also made a Monte Carlo calculation
with the potential proposed, for liquid aluminum,
by Ashcroft and Langreth (dashed curved of Fig.
2). The resulting S(£), shown on Fig. 8, has too
much structure. One possible explanation for this
might be the following: Since the potential has a
large negative region, it is possible that the cor-
responding melting point is higher than the melting
point of liquid aluminum, The structure factor
which we have computed would then be that of a
metastable supercooled fluid.

V. FRIEDEL OSCILLATIONS
OF VARYING WAVELENGTH

The results of Sec. IV indicate that Friedel os-
cillations of the type that might be present in liquid
alkalis are probably very hard to detect by a mea-
sure of the structure factor of the pure liquid. A
more sensitive way might be to compare the struc-
ture factors obtained by varying the wavelength of
the oscillations and leaving the rest of the poten-
tial unchanged. Such an experiment might be
feasible by mixing two liquid metals of equal hard-
core diameters and of different valence. Lithium
and magnesium are the best candidates since they
have nearly equal hard-core diameters: The ex-
perimental structure factors of the pure liquids!®s*
have first peaks at the same position, and of
equal height. Since we were interested only in a
qualitative estimate of the effect, we made the
following two approximations: (a) The repulsive
part of the potential was represented by a hard-
sphere potential (with a diameter 0=2.7A); (b)
the structure factor was computed in the PY ap-
proximation., The amplitude of the Friedel oscil-
lations was chosen to be of the order of the ones
predicted for solids at 0°K (see Table V). A very
crude estimate of the mean free path of electrons
in a Li-Mg alloy can be made using the experi-

TABLE V. Amplitude A of the asymptotic form of
the interionic potential A(cos2kg7)/ ¥®, in units & B
X melting temperature, for several simple metals, ac-
cording to two calculations.

Li Na K Be Mg Al

Pick? 0.7 0.04 038 13 0.6 0.8
Schneider-Stol1® 0.002 0.05 0.2 0.15

aReference 10.
bT. Schneider and E. Stoll, Solid State Commun. 5,
837 (1967).
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FIG. 9. Model potential hard-sphere and damped
Friedel oscillations for two values of 2kp: (solid line)
2kp0=6.8; (dashed line) 220 =6 (note that the scale in
energy is 5 times larger than in Figs. 1 and 2.

mental®® resistivities of dilute solutions of Mg in
Li and yields A=13 A~5 0. The oscillations were
accordingly damped by a factor ¢=?/5, The PY
equation was then solved for a potential of the
form

V(r)—e, r<1

_7/5/1’3, ,oil

=C cos(ZkF1f+ d)e
with & adjusted so that V(1)=0, C/kT,,=0.4 (see
Fig. 9), at p=0.86, T,,=0.62, for several values
of 2kp varying between 5.9 and 7.4 (the values of
2k in pure liquid Li and Mg, respectively). The
resulting height S(,) is shown on Fig. 10 as a

S(ko)

25|

atomic %Mg
0 | [ | 1 |
| | 1 [

6 6.5 7.0 7.5 2keo

FIG. 10. Maximum value of the PY structure factor
obtained, at p=0.86, T'=0.62, with the potential of
Fig. 9, as a function of 220 or of the atomic concen-
tration of Mg in a Li-Mg liquid alloy.
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function of the atomic concentration calculated on
the basis of a free-electron model, A maximum
occurs at 2kp=kp=6.8, i.e., around 60% Mg.

It might be interesting to investigate whether such
a “resonance” is indeed observed in Li-Mg alloys.

VI. CONCLUSION

We have studied by computer experiments the
effects on measurable quantities of two features
which might be characteristic of the interionic
potential in liquid metals ~ soft core and Friedel
oscillations. A soft repulsive core of Born-
Mayer type shows up clearly in a strong damping
of the oscillation of the structure factor and in
marked oscillations of the velocity autocorrelation
function. The steepness of the ion-ion repulsion
in liquid alkalis might thus be investigated by ac-
curate measures of the structure factor up to the
third peak, together with as accurate as possible

experimental determination of the velocity auto-
correlation function. On the contrary, Friedel
oscillations of the type of those predicted by theory
do not give rise to any qualitative effect. How-
ever, using a simple model we have shown that,

if one were able to vary the wavelength of the os-
cillations, their detection might be possible by

a comparative measure of the maximum of the
structure factors. A liquid Li-Mg alloy seems to
be the best candidate for such an investigation.
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