
1504 8 ROKVN, SFI I H, AN D YOUNG

with /) n+ 1.This expression (B5) is a sum of two loops
corresponding to an original degenerate-mass pair with
the addition of l —n scalar vertices, each with zero
momentum transfer k;. A detailed examination shows
that a lemma analogous to the previous one holds for
the nondegenerate-mass case, and thus if each L in

(B5) satisftes its WI then the corresponding WI for
n-pf is also naive.

In searching for WI anomalies with respect to non-
degenerate n-pf's, we note that in their 8m expansions,
those loops with l&6 already satisfy their individual
WI's; those loops with /&5 can be modified according
to the Eqs. (51)—(55). Our previous minimal solution
in the degenerate-mass case has been examined term

by term in I. It therefore guarantees our minimal

solution again in the present nondegenerate case. It is
worthwhile to note that the linear independence of the
W's and Z's (introduced in Sec. III) makes the term-by
term balancing of individual L WI's easily understood.

Let us attempt to clarify what has been said so far.
In the norma/-parity case, each L either satisfies its
NWI or can be modified to do so; therefore, by our
preceding arguments, the corresponding nondegenerate-
mass n-pf's can be defined so as to satisfy their WI's.
The anomalies present in the abnormal nondegenerate-
mass WI's are the same as those in the degenerate case.
This is true because an abnormal-parity loop with any
scalar vertices has no m ' terms, and thus the bm expan-
sion shows that no new anomalies are introduced by the
mass breaking.
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It has been pointed out that the quark model may not be compatible with the pomeranchuk theorem.
We investigate one such model in more detail and discuss the implications of violation of the Pomeranchuk
theorem, if any.

I. INTRODUCTION

HE equal-time commutation relation (ETCR)
of the axial-vector currents has led to the

Adler-Weisberger sum rule, ' upon using the partially
conserved axial-vector current (PCAC) assumption' and

the infinite-momentum technique. ' Applying a similar

operation on the matrix element of the ETCR which

involves the divergence of the axial-vector current,
and using the subtraction method that has been

described in Ref. 4, one can derive a superconvergence
sum rule' for the zero-mass-pion nucleon scattering
amplitude. In particular, it has been pointed out4

that the ETCR of pion Q.elds which are considered as

bound states of the quark-antiquark system may be
incompatible with the P

orner

anchuk theorem' (I'
theorem). In this paper, we discuss such a possibility

* Work supported in part by the U. S. Atomic Energy Com-
mission.' S.Adler, Phys. Rev. Letters 14, 1051 (1965);W. I. Weisberger,
ibid. 14, 1047 (1965).

2 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960);
Y. Nambu, Phys. Rev. Letters 4, 380 (1960).

' S. Fubini and G. Furlan, Physics (N.Y.) 1, 229 (1965).
4 Y. Totnozawa, Phys. Rev. 177, 2288 (1969).
5K. Igi, Phys. Rev. 9, 76 (1962); K. Igi and S. Matsuda,

Phys. Rev. Letters 18, 625 (1967);A. A. Logunov, L. D. Soloviev,
and A. N. Tankhelidge, Phys. Letters 248, 181 (1967);R. Dolen,
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further and elaborate on its experimental implications.
In Sec. II, the model is specified, and in Sec. III, we

show that the violation of the P theorem is related to
the nonvanishing bare masses of quarks. Section IV is
devoted to a discussion concerning the validity of the
P theorem.

II. QUARK MODEL

We consider a quark model in which the interaction
Lagrangian respects the SU(3) XSU(3) symmetry and
the violation of the symmetry is due only to the mass
terms. This is the model that has been discussed by
several authors. ' "

The interaction Lagrangian may be taken as" "
Z t = gvigi—y„ggi y„iver+ g~Piy„y&~iy„y&P

+ G (iJriy„hsggiy„h; iver Pip„ash;iJfiy„ash—sp)
+G'(4hA4hA NV shAPV shA—

+iJ'hoPPho4' 4''ys~~o4'4'sho4'), —(1)
7 Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961);

124, 246 (1961).
s M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
9 M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,

2195 (1968).
'0Z. Maki and I. Umemura, Progr. Theoret. Phys. (Kyoto)

38, 1392 (1967).
~~ H. Koyama, Progr. Theoret. Phys. (Kyoto) 38, 1369 (1967).
"The dummy index j runs from 1 to 8.
'3 The Fermi interaction of tensor type is not permissible.
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~r'=fv4tvAs. +f4 tv.split. ,

Combining the PCAC condition for pion fields and
Eq. (5), i.e.,

where 1P=—(1P1,&P, ,1Pp), and v„(a„) represent quark fields
and a unitary singlet vector (axial-vector) field,
respectively, and» (j=1, 2, , 8) are the Gell-Mann
spin matrices' and Xo= (Q-,')1. For massless quark
fields, both the vector and axial-vector currents,

r&pj's

tyi2 (&)= f~Pw &P~

= 2mo'pimps~&P,

(12)

(5')

where f stands for the matrix element of the 1r —+ iuv

decay, one can observe that the condition

J„;(X)=1Piy„X,&P (2) mto=C+V2=0 (13)

~,1 (*)=ktV.V0»4 j =o 1» 8 (3)

satisfy the continuity equation, and the corresponding
charges are conserved.

The breaking of the symmetry is assumed to be
entirely due to mass terms"

corresponds to the case of vanishing pion mass. The
fact that the value of c seems to be close to —W2 in
reality is, therefore, considered as a manifestation of
smallness of the physical pion mass. '

IIL EQUAL-TIME COMMUTATOR AND THE
POMERANCHUK THEOREM

(4)mo (4'l4'1+ &p240)+mo '&p3&p3 The PCAC assumption for the pion, Eq. (12), and
where mo' (i=1, 2 3) stands for the bare mass of the the requirement of the quark model, Eq. (5), enable us

h quark. Then, using the equation of motion, one can to calculate the KTCR for Pion fields as follows:
easily calculate the divergence of the axial-vector
currents:

to &+&(x,xp)d'x, 0o & &(y,xp)d'y =C.2Ip, (14)
B„J„,'(X) =

W;&Pinup'A;1P+D6p(Q

,')&Pt'yp1P—

(j not summed ov«) (5) where I0 is the third component of the isospin operator
where and

and

t/V, = 2mo'

=mo'+mo'

= -', (mot+ 2mp')

(j=1,2, 3)

(j=4, 5, 6, 7)

(j =8),

C = (2mo'/f. p ')'.
Taking the matrix element of Eq. (14) for a one-proton

(6) state, and inserting a complete set of states between
the two pion fields, we obtain the relation"

D= Q/2(mp' —mo').

If one compares Eqs. (5)—(7) with the parameters of
Ref. 9, where the definitions

2m Ipl
C =--

po 1 ~+a~'ip~ (Po +2m")

—&~= tio+&pia (4')
kpo. v& &(vr„kp')

(16)
(po k 0)o

N, =stph, g (j=G, 1, 2, ~, 8) (8)

have been used (s being a quantity that has the
dimension of mass), one obtains the relations

(po+ Wo) tl2 (p2+ m2) 1/2

vr, =k,p,/m,
v= (W' —m')/2m= vr, +kp'/2m,

ir = (Q-', ) (2mi&'+mop)

c=v2 (mp' mo')/(2—mo'+ ms') (10)
and

where m and (p,pp) denote the mass and momentum
four-vector, respectively, of the proton, and

or, equivalently,

mp'/mp' ——(1+c/K2)/(1 —V2c) . (10')

The value of the parameter c has been estimated' to be——1.25, which leads to the mass ratio

mo'/mo'=0 042,

according to Eq. (10').

'4The SU(2) symmetry is assumed to be exact, so that the
proton-type quark and the neutron-type quark have the same
bare mass (mzp'= mo').

o., ' &(v,kpo) = -,')o.-„(v,ko') —o.'„(v,kp') j.
The variable H/" stands for the center-of-mass energy

of the inserted intermediate states, ~1, is the laboratory
energy of the pr-p system, kp is the ftctitious mass of
the pion, and o +v(vr„koo) is the total cross section of
the 1r+-P reaction. For C =0, it has been shown' that
Eq. (16) leads to a superconvergence sum rule for the
antisymmetric part of the s.-p scattering amplitude, by
using an appropriate subtraction method.

"The integral should be understood as a Cauchy principal-
value integral (see Refs. 1 and 4).
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gpdgT m
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( ) (kppp/m kp')
6')

p(rwr
1d

ps (sp) m(n

(26)
(1yp /2m) j p(& (19)(k p)

where

k.„(1)=1

k.„(0)=0
(27)

(20) we rewrite Eq (
(—& ( oo )/'lr)& w (28)
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(29)

FrpIn

(—)(oo,kp) g0 ~

This imp lesl'es the viol.ationprovided that ~
tt ing of a pion wl

is not zero . ~

Ith mass

questio»cmai"

(22)(—) oo(—)(oo,p )=&~rp-
r to this queshin . We have no answer oIs 11onvanls g.

( ),~ 0)—= limo. „' & ~, p
I(:g-+0

4

l
'"y

processesses such as the E'+-p an
the PCAC assumption,

2 (+)()sjs4+is =fKPx Px

= (mp'+mps)&piysX4g;p&p,

(30)

(31)

one obtains the ETCR

(1g), assum»gU one takes the ' ' p.
d tegration is perpf the limit an in e

and
that interchange o
sible, Pne obtains"

(-) (oo,kp
dkp

k s)s
r

(p —
p7l" 0

ncluded that

'
fi d we consider thenstraint satls e,In or erd to se s o s

f the ETCR o ematrix element of t e
J'Jp(g)'(x)d'x, i.e.,

m" 2mf. 'p.'
i y i

,)I

2 22''+2m&)"' kp(ys —kp/sm ppIIx+8~ l

tio f the axial-tion constant oth renorma lza iowhcrc gg ls

24& after subtract)ng oin Eq. (24 a er o

(and a 1ngdd' it) we obtain ~t e mo
'

berger relation

7I 0

~6 I Ref. 4, the relation

(»')
~OIn e .

=-p ( &(~,0)/sp '
se u

'
p., ( &(w,kps) is constantse uationis trueif 0. „& ) ~, ohasbeenderived. Ttusequ 0 & ) ~, o

(o&r( ) (y, xp)d'y

=C&r(ls+s&), (32

which, in turn, leads to the relations

(—)Ox~ ')(~) «- ( )
gXn

2
CX = 2gXy-—

KP~
(33)

for the amplitude oof the E~ pvHere, fear stands or
(+) stand orf the mass and fieV P 0'z

o f h kaon, respective y,o eratoro t e

ment
o ld ot be the case. See q.

(23) could be diferent from"The condition nt from

limo( )(v,0) =O.

atzs, ordinary Adler-Welsberger
it 'thE . (25), h

~ ~

dkPk (, k,)O 0

as a result of Eq. (23').



QUARK MODEL AND THE POMERANCHUK THEOREM 1507

operator, and

Cx = P(mo'+moo)/fzvzsf'.

shed light on this subject, we discuss some implications
of our prediction. Equations (41) and (42) show the
following:

The quantities defined for E-nucleon scattering,

«N (PL)ko )= 2(oz N (PL)ko )—&rz+N(PL, AO )j )

«N (~ ~0 ) &rzN '(~)&XN(&o /pz'),

with

J2XN(1) =1, 4cN(0) =o,

hzN(&)
g~g =I' dx—

0 (1—x)2

(35)

(36)

(37)

(i) The SignS Of the quantitieS o „„& & (co), «P& '(oo ),
and oz„& &(co) are the same.

(ii) «.' '(")/«. ' '(~)=2.
These are qualitatively in accord with the tendency of

experimental data, 'P if significant parts of the differences
of thecrosssections, o. „' '(1), oz„& '(P), and«~& l(v),
at ~=20 GeV, are attributed to the violation of the I'
theorem.

(iii) The ratio R=o. „& &(oo)/«„& &(~) very much
depends on the parameter c or mo'/mo', as was discussed
at the end of the last section.

72 p(x) =hzp(2:) =hz„(x), (39)

are understood analogously from the case of the
sr-p scattering. Lcorresponding equations are (1'7), (26),
(27), and (29).j

We now assume an approximate SU(3) symmetry
defined as

Incidentally, we estimate the order of magnitude of
the bare masses tnp and mp by setting the dimensionless
quantities ri„o=r)XV=1 and assuming that oz„& &(co)
=2 mb, and 2=0.066 or 2. Equations (28) and (33),
then, lead to the values

and, consequently,
and

mp'=3 MeV or 9 MeV

mo'=70 MeV.

This assumption may be motivated by the earlier
assumption adopted in Sec. II that the SU(3)XSU(3)
symmetry breaking originates from the mass term
only. Then, we obtain definite predictions

Although this estimate is a crude one, it is worthwhile
to mention that such small values for bare quark masses
are qualitatively compatible with those of earlier
works. ' ""

and

z„&-)( )—2 „&-)( ) (41)
B. Real Part of the Forward Elastic Amplitude

o' v (~) C p 1& 2mo fzlsz

oz„' &(~) 2—Cxpx2 2«mo'+moo f Iz. )

Using Eq. (11) with the experimental value' fz/f
= j..28, we obtain

2=0.066. (43)

We should note, however, that R is a rapidly changing
function of c or mo'/mo'. If, for example, one changes
the value of c from —1.25 to —1, then one finds that
mo'/mos ——0.13, which in turn gives the value for R as
2. Equation (41) is a part of the Johnson-Treiman
relation" and Eq. (42) becomes the rest of it when the
complete SU(3) symmetry is assumed.

Ref& l(P) Ref& &(p,)

P Pgp

27r2

2f2(P2 P 2)

("—»')( '—»')
dP'o& &(P')

(44)
(P&2 —V2) (P~2 —P 2)1 2

The proof of the E theorem' "is based on the assump-
tion that either Ref/Imf or f/P be bounded at high
energy, where f represents the forward elastic ampli-
tude. The violation of the I' theorem, then, implies the
dominance of Ref at high energy. In order to see this,
we write down the once-subtracted dispersion rela-
tion for the antisymmetric amplitude f& '(P) of 2r-p

scattering, 2'

IV. DISCUSSION

A. Experimental Total-Cross-Section Data

A small violation of the I' theorem is hard to detect
experimentally at the present time. Since, however,
experiments at higher energy in the near future may

~ E.g., J. D. Bjorken and M. Nauenberg, Ann. Rev. Nucl.
Sci. 18, 229 (1968).

'9 K. Johnson and S. B. Treiman, Phys. Rev. Letters 14, 189
(1965).

22 K. J. Foley, R. S. Jones, S. J. Lindenbaum, W. A. Love,
S. Ozaki, E. D. Platner, C. A. Quarles, and E. H. Wilson, Phys.
Rev. Letters 19, 330 (1967).See also V. Barger, in Proceedings of
the CERN Topical Conference on High-Energy Collisions of
Hadrons, 1968, Vol. 1 (unpublished).

2' S. Okubo (private communication).
»D. Amati, M. Fierz, and V. Glaser, Phys. Rev. Letters 4,

89 (1960); M. Sugawara and A. Kanazawa, Phys. Rev. 123,
1895 (1961);S. steinberg, ibid. 124, 2049 (1961);N. N. Meiman,
Zh. Eksperim. i Teor. Fiz. 43, 2277 (1962) t English transl. :
Soviet Phys. —JETP 16, 1609 (1963)g; T. Kinoshita, in Perspec
teees en Modern Physics, edited1byl', R. E. Marshak (Interscience
Publishers, Inc. , New York, 1966).

~ S. Gasiorowicz, Fortschr. Physik 8, 665 (1960).
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where
f'= (g'/4)r) (p /22)2)2= 0.081

stands for the x-E coupling constant, and

11)=IJ, 2/22)2

The last term of Eq. (44) may be written as

P2 P 2 dv' o' '(v') —o(—)(~)
Pt2 V2 (VI2 P 2) li2

( (pp ) (p2 p 2)112 V+ (V2 p 2)1 2—ln
27r2

IIence, the real part of f' )(v) has the asymptotic form

Since, for small values of o „' )(ae), the sum rule (47)
is in practice not much different from the original ones, ""

we expect the value of f, deduced from the old sum

rule, to be affected very little.

C. Non-Regge Behavior of the Amplitude

The violation of the P theorem and the logarithmic
asymptotic behavior for the real part of the forward
elastic amplitude, Eq. (45), imply that the Regge
theory cannot be applied for the whole amplitude.
It is possible, however, to derive such non-Regge
behavior as a special limiting case of a Regge amplitude.

We notice, 6rst, that the limit o. —+ 1 in the Regge
pole amplitude with odd signature,

O
i aa—( )(1p ) a( )1

f-' )=p
(45) sin2rn (1) E v,)

o(-)(~) 2v
——p ln—.

271 p~
Reft —'(v)

p (a)1
=pLtan-', ~n(1)+2)i —,(48)

(Pp

where t stands for momentum transfer squared, leads
to a singularity for the Ref ' '. If, however, we put
o. ~ 1 in the formula

Ref.+,(v) 2o.„' )(~) 2v
rt~(v) = —+ & ln—.

Imf

The ratio Ref/Imf for 2r+P scattering is, therefore,
given by

In particular,
(iv) n~ grow logarithmically with the incident energy

and have opposite signs asymptotically.
Since the present experimental data'4 do not show

such behavior for n~, we might suspect that a „' ) (pp)
is much smaller than i mb, which is half of the difference
of the 2r+p cross sections at the highest energy available.
In fact, for o. v& )(~)=1 mb, o +v(~)=20 mb, and
P= 20 GeV, we obtain o.+——0.15. If, on the other hand,
we take the value of Eq. (43) for the ratio R and assume
orrv' )(~)=2 mb, then at V=20 GeV, n~=0.01 is the
contribution due to the (non-Regge) logarithmic term,
Eq. (46). Lo „~ )(~) thus obtained would be 0.07 rnb. j
If this is the case, we have to go to a much higher energy
in order to be able to detect the violation of the P
theorem from the measurement of the real part of the
amplitude. It might be pertinent to measure the real
part of the E-nucleon forward-scattering amplitude at
high energy to test the validity of the P theorem.

Finally, we note that the sum rule for the coupling
constant f, to be derived by taking the limit v ~ ~ in
Eq. (44) using Eq. (45), is modified as follows, for the
case o „& )(pe )40:
Ref( )(p.) 2j'

1 "dv'fo. ,1 ) (v') —o.„&
—) (~ ))

(47)
7l p (pi 2 ~ 2) 1/2

'4K. J. Foley, R. S. Jones, S. J. Lindenbaum, W. A. Love,
S. Ozaki, E. D. Platner, C. A. Quarles, and E. H. Wilson, Phys,
Rev. Letters 19, 193 (1967); 19, 662 (E) (1967).

1
f (—)—

2i

~/(& —)
P1 (—co.o,) (1—e-"), (49)

sinful 1

where the integration path is to encircle o., then we

get the asymptotic form,

f-' '=PE —(2/~)»(plpp)+2jp/pp (50)

which is identical to that of (45).
Another way of formally deriving Eq. (50) is to

take a 8 function as a weight function of the Regge
cut formula. Using the formula

2 8(rr —1) 2
tan-', 2m b(n —1)=— =—

t
8'(n —

1)+Ail�(n

—1)j,
1—Q

where A is an arbitrary constant, we have

( v) 2 P P

(tan —)r12+2)i —
i

8(n —1)dn= ——ln —+2 —,(51)
kv, i Pp Pp

2' M. L. Goldberger, H. Miyazawa, and R. Oehme, Phys. Rev.
96, 986 (1955).

which is of the same form as Eq. (50). We stress that
these formal manipulations still do not permit the
accommodation of the asymptotic behavior (50) in

the Regge scheme. Instead, we have to Reggeize the
amplitude after subtracting such an asymptotic form.
Whether such a form can be obtained from the contour
integration over an infinitely large semicircle in the
complex angular momentum plane for the Watson-
Sommerfeld formula is yet to be seen.
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dt

If(,t) I'—&-" (), (52)

where O, i and o-~,~ represent the elastic and total cross
section, respectively, and —to is the momentum transfer
below which the amplitude has a significant magnitude.
The asymptotic behavior

where
f(v, t) =P(t) v '(')(lnv) "" (53)

D. Unitarity Restriction

Does the asymptotic behavior (46) violate unitarity7
It depends on the t dependence of the elastic amplitude.
For an elastic amplitude f(v, t), the unitarity restriction
reads

and

(kopp ) kppo)" '
, 0« 1(A1)

m 1»-" ml

o „( )(kppp/m, kp') (kppp)' (ckp'
:1+I

I
&..I, (A2)

o (—)(kppp/m ti ') vp-" k m j kp '

1Vote added im manuscript .In view of the strong
assumption made in this article concerning the violation
of the E theorem, we add a remark for the opposite
case. If the quantity o „( )(oo,kp') contains a factor
(kp' —ti '), so that the I' theorem is preserved for the
physical cross section, we may proceed in the following
way. Instead of Eqs. (26) and (36), etc. , we assume that

where
n;(t) =1+a;t+ ~ for small t, p=1, 2, (54) 1.,(1)= h.„(O)=0. (A3)

clearly violates the condition (52), since the left-hand
side of Eq. (52) behaves as lnv asymptotically, while o v, oi

is assumed to be bounded by a constant.
If, however, f(v, t) has the asymptotic form, e.g. ,

f(v t) =P(t) v"'"(lnv)"'"g(vt)
+ordinary Regge amplitude, (55)

(A4)

we obtain the relations

Analogous equations apply to K-nucleon scattering.
Then, with the assumption of approximate SU(3)
symmetry,

k..()=~-.(*)=~-.(),

where

g(0) =1, a(~) = o, (56)
OX~ ~ Z~

lim --=2
v-vvo n (-) (V) p (—)

(41')

I g(s) I
'«&

—tp

0'ei P

p 2

(lnv)'
I f(,t) ('«

x
I g(x) I

'dx —+ 0, (57)

as far as the contribution of the first term of Eq. (55)
is concerned.

then the unitarity condition (52) could be satisfied:
For nonvanishing t and ~ —+ ~, the contribution of the
logarithmic term is negligible. In fact, for P(t) =ni(t)
= np (t) = 1, we have

o „( '(v) P v( ) 1 2mp' firpir '

nirv (v) Pirv 2 mo +mo fvti~

These are of a weaker form than the relations (41) and
(42), and are closer to those of Johnson and Treiman. "
The discussion of Sec. IV A can be applied in a similar
manner if one replaces Eqs. (41) and (42) by Eqs.
(41') and (42').
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