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In the context of the free-quark model, we discuss the validity of the naive Ward identities (WI’s) for
arbitrary regularized n-point functions of scalar, pseudoscalar, vector, and axial-vector currents. In a
simple version of the regularization procedure described by Pauli and Villars, we find that the naive vector
WZI’s are all automatically satisfied, and that there is a compact necessary condition for the existence of
an axial-vector anomaly. Subsequently, this version leads to a large number of anomalous axial-vector
WT’s (corresponding to the cases #=2, 3, 4, and 5). It is shown that this number cannot be reduced, for
example, to Bardeen’s “minimal” solution without additional counterterms beyond those possible in the
general regularization framework—in spite of the framework’s well-known ambiguities. We discuss other
minimal sets, as well as a symmetry-breaking model in which no further anomalies are found. The explicit
forms of the WI anomalies for the general minimal solution is given along with the necessary counterterms.

I INTRODUCTION

ECENTLY it has been ascertained!? that in the
o model and in spinor electrodynamics the axial-
vector divergence equation implied by a naive manipu-
lation of the field equations is not satisfied in pertur-
bation theory due to the presence of triangle diagrams.
Accordingly, Adler? has given a modification of the
naive divergence equation; the aforementioned manipu-
lation involves ill-defined field-operator products and
hence must be done carefully, a fact pointed out years
ago by Schwinger.? Careful field-theoretic calculations
have since been given which are consistent with
Adler’s result.* Further work with respect to arbitrary
orders of perturbation theory® and with respect to
reduction-formula modifications® has also been done.
Specifically it has been seen that the Ward identity
(WI) relating the axial-vector-vector-vector (4VV)
and the pseudoscalar-vector-vector (PVV) three-point
functions (3-pf’s) in electrodynamics must be modified
since the AVV triangle graph is superficially linearly
divergent. No modification in the way of acceptable
counterterms could remove the “anomaly.”? This thus
carries over to the hard-pion calculations’ involving
the (AVV) and (PVV) vertices. Wilson® has studied
another set of WI’s relating the 3-pf’s (4AV), (PAV),
and (PPV) and found that these identities can be
satisfied by redefining the ingredient vertices with
appropriate counterterms. Examining the general set
of 3-pf’s for scalar, pseudoscalar, vector, and axial-vector
currents in a free-quark model, Gerstein and Jackiw®
(GJ) found only (44 A4) and (AVV) to have anomalous
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Energy Commission.
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WD’s. In dealing with divergent momentum-integral
representations of the 3-pf’s and 2-pf’s, they prescribed
a certain recipe which was used to determine whether
or not two infinite quantities were equal. On the strength
of this procedure they then argued that #o n-pf’s for
n>4 were anomalous. In another spinor-field calcu-
lation by Bardeen,! in which an e separation of the
interaction Lagrangian was used, the S matrix was
carefully defined by counterterms and some WI’s
involving 4-pf’s and 5-pf’s were also found to be anoma-
lous. Since GJ utilized a regularization argument in a

- portion of their work, their disagreement with Bardeen

raises an interesting question concerning regularization
and its relation to the general counterterm procedure.

This last remark brings us to the purpose of our paper.
We consider a generalization of the framework described
in GJ. In it we define general #-pf’s by the regularization
described by Pauli and Villars'! and employed in closed-
loop perturbation calculations by Steinberger.1? In this
way, all of the pertinent symmetries of a given #-pf
are carried over unambiguously to its momentum
representation, which is now well defined. Furthermore,
no infinite quantities arise in the computation; there is
no need to equate one infinity with another. Finally,
this approach yields a simple prescription for locating
and calculating WI anomalies.

The outline of this work is as follows: In Sec. II, we
define our model and notation and discuss the corre-
sponding naive Ward identities (NWI’s). A universal
regularization in which all of the #-pf’s are regularized
in the same way is introduced in Sec. ITI. There follows
an enumeration of those universally regularized n-pf’s
which have anomalous WI’s. In Sec. IV we enlarge the
freedom in the definitions of the #z-pf’s to include general
local mass and momentum polynomials and describe
which additional NWI’s are consequentially satisfied.
Section V shows how some of those local polynomials
can be identified with ambiguities in the regularization

10 W, A. Bardeen, Phys. Rev. 184, 1848 (1969).

11'W, Pauli and F. Villars, Rev. Mod. Phys. 21, 434 (1949);
see also S. N. Gupta, Proc. Phys. Soc. (London) A66, 129 (1953).

12 T, Steinberger, Phys. Rev. 76, 1180 (1949).
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1492 BROWN,
scheme. In an effort to make a more realistic calculation
of possible anomalies, a symmetry-breaking model in
which the strangeness-changing vector currents are not
conserved is employed in Sec. VI. Conclusions and
discussions comprise Sec. VII.

II. NAIVE WARD IDENTITIES IN
A SPINOR MODEL

We begin by defining in the interaction picture the
SUB)®SU(3) currents!'?

>\u
ji“(x)Euﬁ(x)—z-I‘al/(x) . (1

The free spinor field ¥ is also a column matrix in the
internal space which, for our present purposes, repre-
sents states with a common (degenerate) mass m. Later
on, in Sec. VI, a symmetry-breaking model is considered
which admits nondegenerate masses. In (1) we have
Gell-Mann’s SU(3) matrices A\* (=),), where a=0, 1,
- -+, 8. The Dirac matrices I';=1, 4ys, v,, and v,y imply
the scalar, pseudoscalar, vector, and axial-vector
currents ji4(x)=S%x), P(x), V,*(x), and A, (x),
respectively.

It follows from the free-spinor equation of motion
that the divergence equations for the vector and axial-
vector currents are

*V,2(x)=0, 9*A4,%(x)=2mP(x). (2)

With the neglect of Schwinger terms, we find for the
equal-time commutators that

I:Voa(x),jib(y)]zo=y0= ifabcjic(x)a(x—Y) )

Vub(y) A ()
Oa , — fabce — , 3
[A (x) <A ub(y)):':to=yo v (Vuc(x)>6(x Y ( )

o)), oo

The #n-pf for our currents or, strictly speaking, its
Fourier transform is

(j1%(k1) jab(k2) - - - ju®(kn))
E/d422d423~ . .d4zne—ikzzz. .. g~ tknzn

XO|T(r*(0) 2 (z2) - juc(za))[0),  (4)

in which we have factored out the four-momentum-
conserving 6 function. Thus

13 Our basic notation and conventions are those of J. D. Bjorken
and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill
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is left understood. The general first-order (single-
momentum contraction) vector WI is, by naive use of

(2) and (3),
k1(V (k1) 72+ - - juy=n—1 of the (n—1)-pf’s. (5)
Also we find, for the axial-vector case, the NWI

kyt(A yo(kr) o - - jny= —2mi(P(k1) fa- - - fu)
+#n—1 of the (n—1)-pf’s. (6)

The coefficients of the (n—1)-pf’s in (5) and (6) are
determined by the commutation relations in (3).
Higher-order WI’s can be found if other currents in
J2, *++, ju are vector or axial-vector ones.
Unfortunately, life is not so simple and (5) plus (6)
is hardly the whole story. When one substitutes an
explicit momentum-integral representation'* for (4),
the ultraviolet-divergence difficulties prevent an im-
mediate verification of these identities. This is due to
the lack of the freedom needed for translating inte-
gration variables when there are linear or quadratic
divergences present. For the same reason, Bose sym-
metry or even the more general invariance of (4) under

the exchange
Ji¥ks) > jio(ks) ™)

does not always hold in such representations. Thus,
displacement invariance in the four-momentum inte-
gration variable is indeed expected to be crucial.

In order to proceed, we wish to redefine our #-pf’s
by using regularization. This will remove not only the
infinities present in (4) but also the displacement
surface terms.

III. UNIVERSAL REGULARIZATION AND
WARD-IDENTITY ANOMALIES
The regularized #n-pf is defined as

(jla(kl> e jnc(kn)>regularizcd

=5 ) ke (8)

=0

Here the C/’s are functions of the set of masses m; and
the subscript #; on an #-pf refers to the mass of that
n-pf’s loops. Also,

C():l,

Such an z-pf [Eq. (8)] is free of ultraviolet divergences
and integration-displacement ambiguities provided
that

Mo=m.

N
Z Cimi"‘=0, a=0, 1, 2, 3. (9)

=0

Book Co., New York, 1964); Relativistic Quantum Fields (McGraw-
Hill Book Co., New York, 1965). In particular, ep1o3= — €123= 41
and p=+#p,. Other more specific notation often follows that of GJ.

14 We are talking here about closed-loop Feynman diagrams.
The usual omission of the disconnected graphs is made.
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This can be seen by considering the integral and surface-
term calculations in Appendix Aj; the efficacy of (8)
and (9) will also be more transparent as we proceed in
the main text. Note that the IV in (8) and (9) may be as
large as one wishes and that in the end the limit

1#0
is left understood [albeit constrained to satisfy things

like (9)]. In view of such a limit, we demand that the
sums

mi;— 0,

N
Z Cim®lnm?2=K,

=0

(10)

are either finite or consistently redefined as part of
renormalization constants. Lastly we ask that

v |Gy
Z“——-'_)Oy

=1 m;

(11)

which is a stronger condition than is needed in electro-
dynamics of vector currents.! The condition (11) im-
plies, for example, that for #>5, the regularized n-pf
(8) reduces to our original amplitude (4).

We shall consider here a simple version of regulari-
zation in which the same set of C; and m; are used for
all of the #-pf’s and are such that

Ko=0, a=0,1,2,3. (12)

We call this “universal regularization” (UR). It will
be seen that the employment of a common set of C;leads
to a simple determination of WI anomalies. The ambigu-
ities present in the general regularization scheme (e.g.,
nonzero K,) are fully considered later in Sec. V.

Before addressing ourselves directly to the vector
WDI’s of the UR #-pf’s, let us recall the difficulties in
verifying NWI’s with unregularized loop amplitudes.
One is that upon contraction of a momentum with its
corresponding vector or axial-vector current, the
(n—1)-pf’s that result are usually not in “standard
form.” Their integration variables have to be translated
in order to attain the agreed-upon form for a given
(n—1)-pf. Another difficulty is the unsatisfactory situ-
ation of dealing with infinite quantities (i.e., #-pf’s for
n<4). Thus our UR procedure is to the point and the
use of a common set of C; assures us that the (#—1)-pf’s
arising in a WI calculation will be consistently defined.

We may immediately say that the first-order vector
NWI’s (5) are satisfied by the UR #n-pf’s, since the
integral representations of (#—1)-pf’s which arise on
the right-hand side can now undergo any desired
change of integration variable. This, as with other
assertions presented here, will be clearer when specific
examples are given later.

The axial-vector case is much different, however.

15 There the condition need only be Eq. (11) with m; replaced
by m;? (see Ref. 11). The mass parity is even if there are only V
currents (cf. Ref. 20).
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With UR we find an anomalous term on the right-hand
side of (6)6:

A(A (k1) jaga -+ Ju)

=-—2 ‘E Cilmi—m){(P*(k1) j2" - * fuyms- (13)

=0

Even though the constants in (10) are set equal to
zero in UR, m;! terms in (P7s: - * ja)m; imply a non-
vanishing A. On the other hand, (13) does restrict the
anomalous (first-order) axial-vector WI’s to those
involving only #<5. This follows from the integral
expressions for the Feynman loops in Appendix A, viz.,

(jljz‘ . 'jn)M: 0(M4_"), n>35.

We thus write down the loop-momentum represen-
tations for #<35 only, and thereupon list the corre-
sponding anomalous axial-vector identities according
to (13). Charge-conjugation invariance is assumed in
our model, so that our #-pf’s remain invariant under
Ae— ¢\ T for each current 7%, where ¢; is +1 for the
S, P, and 4 currents and —1 for V.

For the 1-pf,

N
(71%0))vr= —1% Tr(\o+craT) 2 C:B1*(0)
0

1+C1 N
=—i(})——62 3 C:B:'(0), (14)
wherel” ’
Bli(a)E/ Tr[T1S:(I+a) ], (15)
1
S,(k)E (k—mi)”l . (16)

Since only the current with the vacuum properties
(i.e., 71%=S5%) gives a nonzero 1-pf, there are ob-
viously no WI’s (5) and (6) with #=1. For the same
reason the charge-conjugation information in (14)
yields no new restrictions. The momentum integral of
(15) is calculated in Appendix A utilizing a finite
integration region; it can thus be seen that the UR
version of the scalar one-point amplitude vanishes.

We continue with the two-point amplitudes

(712(p) 72*(— p))ur =% Tr(AahotcrcanaNs7)

N
X322 CiD12¥(0,p)
0

14-cica N )
=1lgab— 2 CiDw'(0,p) ,
0

(17

16 We have performed—but shall not give here—a general
3-pf calculation in which the limit m; — e, %0 is taken before
the k* contraction. The result for the anomaly is the same but
this procedure requires extensive use of the mass expansion and
displacement formulas in Appendix A and is much more tedious
than that outlined in the text.

17 We use the notation Sz= S'd*k/(2x)* after Brandt (Ref. 4).
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in which

Dui(a,b)= / T T3S (+a)TaS:(+5)].  (18)

The n=2 WI’s for (AP)yr and (VV)yr are naive.
That is, they agree with the formal manipulations on (4)
and are termed nonanomalous. For instance,

PV BV (=) om = —%sabz’: CiBr,i(p), (19)

since

Sil+p)pS:(D) = Si() —S:(+p).

The right-hand side of (19) is zero because regulari-
zation allows us to shift integration variables, and so
this identity is naive—as expected since it is a vector WI.

In the case of (4P)yg, the freedom in shifting inte-
gration variables can be used to obtain

P A ()PP (—p))ur= —2mi(P*(p)P*(—p))ur

(20)

+6%(S(0))vr+-A(4P), (21)
using
Si(+p)bvsSi(D) = 2m.Si(1+p)vsSi(0)
Fv5S:(0)+S:(l+p)vs.  (22)

Here we have employed the reduced 1-pf

S (O»UREZI:: CiBs¥(0). (23)

The anomaly is, from (13),
BUP)==2 . Clm—m) P PP~ P (24

Since (PP), has no ™! term in its mass expansion
[see (A16)7], we have A(AP)=0. Therefore, within the
framework of UR we say that the (4P) WI has no
anomaly.

Doing the same sort of things, we go on to find that

P4 (P)As*(—p))ur

= —2mi(P*(p)A,*(—p))vrt+A(44), (25)
with the nonvanishing anomaly
A(44)= —(1/247%)p?p,. (26)

One must go beyond UR in order to satisfy the (44)
NWI. Obviously, (25) implies that the second-order
WI for p#p*(A4,4,) is anomalous also. Before continuing
with the three-vertex loops, we remark that (4V),
(4S), (VP), and (SP) are zero by the usual pseudo-
tensor argument!® and that (V.S) vanishes due to charge-
conjugation invariance.

18 That is, the lack of available independent momenta prohibits
the construction of the necessary tensor forms.
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The three-vertex loops are
(71%(%) j22(p) js°(9) ) um
i N
=—3 Ci[Tr()\axb)\c+5162C3)\aT)\bT)\cT)F123i(PJ 0, —‘])
16 °
FTr(AaAeNsF-cicacsha™\"N6T) F132¥(g, 0, —p) ],
with &4 p+¢=0 and

Flgai(d,b,c)

@7

_ / T3S (a) TS (-5 TsSi(l+0)].  (28)

We refer to GJ for a list of all the (first-order) 3-pf
NWT’s. Of these, the vector ones are all satisfied auto-
matically by our UR amplitudes.

For example,

ke(V (k) A4 (p) Axe(g)) ur= fo*[{4:,(— @) Ar(q))ur

—(4,(p)Ax(—p))vr], (29)
where we have introduced the reduced 2-pf
N
(1) jo(—p))vr=}% % CiD12%(0,p). (30)

But the counterpart axial-vector WI by (13) and
(A18) is
PV (k)4,5(p) Ar°(9)) ur
= —=2mi(V (k) P*(p) Ar*(9))ur
+ fLVu(B) VA(—F))or—(4u(—9)4Ax()) vr]

+A(V44), (31)
with the anomaly
A(VAA) = (1/247%) f¥L2p,pr+3pug
+aur =8B+ +3p-9) 1. (32)

As a consistency check, the second-order identity for
krp*(V,A,A\)ur can be obtained equivalently from
(29) or (31) after taking note of (25) and its anomaly.
The remaining anomalous #=3 first-order axial-vector
WD’s are

2/(S(k) A,5(p)Pe(q) yur= —2mi(Se(k) P*(p) P*(q))ur
+d*[(P(—9)P(9))vr

—(S(k)S(—=k))vr]+A(SAP), (33)
where
A(SAP)=(1/24n%)d>(p*+¢*—p-q),  (34)
k(A2 (R) V2 (p) Ve(g)) ur
= —2mi(Pk) V.2 (p) V() )ur+AAVY), (35)
wher
e AAVV)= —(1/872)d* e, appg (36)
and
k(A4 ,2(R) A5 () Ax(9))ur
= —2mi(P(k)4,*(p)Ar°(9))ur+A(444), (37)
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where

A(AAA) = —(1/24n%)d5epnappo®.  (38)

We thus obtain anomalous second- and third-order
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WT’s for (VA A4)ur and also an anomalous second-order
identity for (SAA)uxr, since it involves (33).

The momentum-integral representation for the
general 4-pf is

N
(719(R) 722(p) 73°(@) j4%(1) ) vr = —3% § Ci{ Wabed[ Hiz34(p, 0, —gq, —g—1)+c(4)H1152°(t, 0, —q, —q— )]

+WabchH1243i(P7 07 —t, —¢—4)+C(4)H1342i((1, 07 -1, _t“‘lb)]

+M/Mbd[H1324i(g’ 07 —p, _P—t) +6(4)H1423£(t7 01 _Pr _P—Q)]} )

in which 2+p+4¢+¢=0and

Hiandi(a,b,c,d)= / Tr[ T3S i(14-0) oS (4B TaS (-0 TaSi(+d)],
1

Wabed= TI‘[)\,J\ b>\c)\d+c(4)>\aT>\ bT)\cT)\dT] ,

c(4)=cicocscs.

(39)
(40)

(1)
(42)

By an explicit calculation of (13) utilizing (A20), we find seven anomalous first-order axial-vector WI’s here.!?
Since it is cumbersome to write the anomalous equations here, we merely list the corresponding 4-pf’s [which
occur on the left-hand side of (6)]in Table 1. For completeness we also list the UR 2- and 3-pf’s that are associated
with anomalies. The anomalous higher-order 4-pf WI’s are many, and we shall not enumerate them here.

We come now to the last loops which can give us trouble, those corresponding to the 5-pf

(712(k) 42(p) 7(q) 74*(1) 75° () Yy um

i N
= _6—;2 CAZb T1a3ss'(p, 0, —¢, —q—1, —g—1—1)+c(5) 1542w, 0, —t, —t—¢, —i—q—P)]
0

+Zabced[J12354i(P; 07 —q, —4—u, —g—u—t)+c(5)]14532"(t, 07 —U, —U—q, —M—q—j))]

+10 further permutations of 2345 synchronized with bcde} ,

with &+ p-+¢+4-t+u=0 and

]12345i(a,b,c,d,e) = / Tr[F1Si(l+ a) FzS,(l—i“b)
14

XT3S:(140) TaS:i(4d)T5S:(1+e)], (44)
Zebede=Tr[ AoAshehaho

Fe(BNTNINTNINT],  (45)

c(5)=c1cacsCaCs- (46)

Although the 5-pf’s remain unchanged under it, the
regularization in (43) which leads to (13) for n=3 pro-
vides a simple way of calculating the anomalies. One
should remember that any anomaly in a 5-pf (first-
order) WI is simply a consequence of the UR of the
4-pf [Eq. (39)].

Again it is cumbersome and unenlightening to do
more than list those UR 5-pf’s which lead to anomalous
WD’s. There are 11 that do so [inspection of the trace
in (A22) leads immediately to this result] and they are
given in Table I also. We shall not list the large number
of higher-order anomalous WI’s that arise for the
S5-pf’s,

(43)

An examination of Table I shows how the tensor
structure of our 7-pf’s gives a clear picture of what is
happening. For #<5, a necessary condition for the
existence of an m~! term in the Appendix-A mass
expansions is that the number of P and S in Eq. (13)

Tasre I. Universally regularized #-point functions which have
anomalous first-order axial-vector WI's. The boldfaced ones are
of abnormal parity and represent Bardeen’s minimal set.

One-point None

Two-point (4A4)

Three-point  (AAA), (4AV), (AVV), (4PS)

Four-point  (A4A44), (AAAV), (A4AVV), (AVVV), (AVPS),
(AAPP), (AASS)

Five-point (AAAAA), (AAAAVY, (AAAVV), (AAVVV),
(AVVVV), (AAAPS), (AAVPP), (AAVSS),
(AVVPS), (APPPS), (APSSS)

Six-point None

and higher

191t is a simple matter to find which 4-pf’s have anomalous
first-order WI’s: We need only determine whether or not the trace
in (A20) vanishes.
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be 0dd.?® Since one P is the result of the axial-vector
contraction, the #-pf’s in Table I all have an even
number of P and S. This condition is also sufficient for
the normal-parity #-pf’s—those that have an even
number of 4 and P.

Other than to say that n-pf’s for #>6 can have
anomalous higher-order WI’s as soon as they involve
the amplitudes shown in Table I, we have come to the
end of the UR picture. To remove any of the existing
anomalies, one must consider either a more general
version of regularization, or the addition of ad hoc
counterterms. Since it turns out that the regularization
ambiguities cannot be of any help in removing any of
the anomalies yet present in UR, we find it simpler to
present the results of the ad koc modifications first.

IV. GENERAL COUNTERTERMS

In Sec. III we found all the UR #-pf’s which do not
satisfy first-order NWI’s and listed them in Table I.
The existence of their corresponding anomalies cannot
be taken seriously, however, until all of the freedom in
defining the #-pf’s is exhausted. This freedom includes
adding local polynomials (in # and the momenta).
Therefore, we now consider as a more general definition
of our 7-pf, the UR one plus possible counterterms, the
object, of course, being the removal of as many anomalies
as possible. The form of these counterterms is quite
restricted from the start.

Since each polynomial must have the same dimension
and tensor structure as the associated #-pf has, it
attains a definite mass parity; the even and odd powers
of m cannot be mixed.2® One notes that the dimension
of an 7-pf is (mass)*~™. Therefore #-pf’s for n>5 cannot
be modified without introducing kinematic or mass
singularities (i.e., cannot be redefined by polynomials).
Also, with €445, g4, and constants as the only dimen-
sionless counterterms, the 4-pf’s which are rank-1 or
rank-3 Lorentz tensors may not be changed by local
quantities. An additional remark is that the normal and
abnormal (space) parity #-pf’s (those which have even
and odd numbers, respectively, of 4 and P) are not
mixed by the WI’s and hence give rise to two separate
“chains” of related #-pf’s. Finally, we note that the
anomalies A of (13) are independent of .

Taking the previous comments into account and
remembering crossing symmetry, we concoct the most
general counterterm for each n-pf, n<4. Let us define
this in terms of the “new”” n-pf

“Urger - ju)"=(Gger - - fudort8(igas -+ ju) . (47)
For convenience, we define [see (41)]
WlEI/V“de, Wo= W/'abdc’ W= T acdd (48)

[evaluated at c¢(4)=-+1], and the W; as counterparts
to (48), but with ¢c(4)=—1
Wi=Wered [¢(4)=—1], etc. (49)

% From the momentum-integral representations in Appendix
A, it can be seen that the mass parity of a given amplitude is
(—1)ns*ms, where #, (n,) is the number of S (P) present.
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Further, let

y=1/24x%, (50)
By straightforward (but tedious) algebra, we find that
all of the normal-parity NWI’s can now be satisfied

if there are certain relations between the counterterms
in the normal-parity chain. The normal-parity set is?!

1) n=1:

8(S) = —6%ia:5°°m3; (51)
(2) n=2:
S(VV)=ad"*(p*gur—Pupy),
8(AA)=58(VV)+8°0(ypgu+dasme,,)
3(AP)= —2iaz5*mp, (52)

(P P)=8%(asp>+aim?),
3(88) = 0" (as—y)p*+am*];
3) n=3: '
S(VVV)= arf**[guslk—phrtgun(g—FR)tgn(p—9).],
S(VAA)=8s(VVV)+yfere[3gukr—3gukstgn(p—q)uls
S(VAP)= —2iasf**mg,,,
8(AAS)= i(4das—06y)d*bemg,,
8(VPP)=asf***(p—q)u,
8(VSS) = (as—3) f***(p— ),
8(APS)=d *Las(g—p)ut3ypul,
o(PPS)=Lti(as—ar)d*>m,
3(SSS) =%i(as—a1—4y)d*rem;
4) n=4:
S(VVVV)=§as[ guwgrne(—W1—Wo+ 2 3)
+guxgva(2Wv1—W2*‘”/a)
T+ Guogn (= W14 2W,—W3) ],
S(AAAA)=(VVVV)+ 5y gure(—W 1 —W+W5)
+g,‘>\gw(VV1-W2_PVs)
F guegr (=Wt Wo—Ws)],
S(AAVY)=0(VVVV) 45y gutro(—W1—Wo+2W3)
+ 208 BW1=3W))
F Guogn (—=3W131y) ],
S(VVPP)= —%asgu(Wi+W,—2W5),
S(VVSS)= —#(as—y)gu(Wr+W,—2I5),
S(AAPP)= —§asgu(W1+W o+ 2W )+ 3vg,, (W 1+ W),
3(AASS)= —3}asg, (W i+W,+2W5)
+ 38 (Wi Wot W),
8(AVSP)= —}igul as(W1—W,—2W )+ 3y(Wot-W3) ],
S(PPPP)=5(a1—a) (W +W+W3),
O(SSPP)=+5(as—ar) Wi+ Wo—W3)—3y(W + W),
3(SSSS) = 3(—16y+a1—ay) Wi+ W+ W3).
7?he notation is the following: The momenta and SU(3)
indices are consistent with the #-pf definitions of Sec. III, and

from left to right in a given #-pf the Lorentz indices are g, », A, 7,
and p when needed.

(53)

(54)
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All of those §’s which are not listed are necessarily zero.

It is interesting that there are still four arbitrary
constants a; in Eqgs. (51)-(54). Thus the normal-parity
n-pf’s still have some ambiguity in their definitions even
after demanding that they satisfy the vector and
axial-vector NWI’s. However, we notice that a number
of UR #-pf’s had to be changed even though they origi-
nally led to no anomalies (see Table I). This shows the
interlocking relationship arising from the imposition
of NWD’s.

The abnormal-parity series is a different story. For
example, the (44A4) amplitude cannot be modified
in a crossing-symmetric way at all, and any modification
of (AVV) will ruin its vector NWI’s. The latter result
turns out to be an example of a general problem:
Fixing up one abnormal-parity WI often spoils another.

Explicitly, the only nonzero §’s in the abnormal series
are!

S(AVV)=b1d**euna(p—9)*,
S(AAAV)=by(Wr+W2—Ws)ewno,
S(AVVV)=by(W1—W3s—W3)euno-

(55)

Hence the abnormal-parity anomalies will depend on the
constants b;. Taking the redefinitions (55) into account,
we find that the abnormal axial-vector anomalies now
are?!

- A(AA44) = —yd*enaspe®,
A(AVV)=(2b1—3y)d**erappe®,
A(AAAT) =%im.m{Wl[bl(q+21)a+8ib2ka+y(z— 2]
+ W b1(3t—k)*+8ibsk+y(3t—k)*]
+ W[ —bi(p+20)=—8ibsk+y(g—1)=]},
AAVVV)=tieroa
X{W1[0:1(3¢+k)=—8ibsk*—3y(p+1)]
+W ol —b1(3t+E)=+8ibske~+3y(p+q)*]
WL —b1(3p+k)*+8ibsk+-3y(14+¢)* 1},
A(AAAAA) =3 (y—16ib2) e,
X > e(bede)Zabede [¢(5)=1],
all perm. of bede
(56)
AAVVIVV)=—353y—16ibs) e,
X X e(bede)Zevede [¢(5)=1],

all perm. of bede
A(AAAV V) =15 enool (y+81b2—8ib3)
X (Zubcde+Zabdce+Zacbed+Zacebd)
+@By—16ibs)Zebdec+(y—16ib2) Z%* ] (31
—(@ee),

where e(bcde)=1 (—1) for even (odd) permutations of
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bede. We emphasize that the above anomalies refer to
WTD’s obtained by contracting on the first (left-most)
axial-vector current.

If the &;’s introduced in (55) are nonvanishing, there
results abnormal-parity vector WI anomalies as well.
We define Ay as the vector analog of A. So, boldfacing
that vector current which is contracted, the possible vector
anomalies are?!

Av(AVV) = b1d“b°e“)\aﬁﬁ"qﬂ ,
Av(AAAV)=boenad* Wi+ W,—Ws),
Ay(AVV V)= %ieuxmﬁ"‘[Wl(bl—'&ibQ

+ W o(—b1+8ibs)+ W s(—2b1+8ibs) .

All abnormal-parity WI’s not referred to in (56) and
(57) have no anomalies. In particular, the set of modi-
fications (55) still leave us with no 5-pf vector WI
anomalies.

It follows that we cannot avoid anomalies in the
abnormal-parity series. Depending on the choices for
the b;, we may have a number of minimal possibilities.
One can choose to eliminate all of the vector anomalies
by setting

(7

b1:b2:b3:0. (58)

This and the redefinitions (51)-(54) comprise the
“minimal” solution found by Bardeen.!® The only
anomalous first-order WI’s are axial-vector ones and
pertain to the seven boldfaced abnormal-parity #-pf’s
in Table I; their anomalies are obtained by combining
(56) and (58).

The choices
(59)

limit the number of axial-vector anomalies to the WI’s
involving (444), (AAAV), and (AVVV). Concom-
itantly there are vector anomalies in the WI’s for the
latter two amplitudes and for {(AVV). Here we have
only six separate anomalous WI’s (not counting the
variants obtained by crossing) embracing four
amplitudes.

Some notes are in order here. It is impossible to define
away A(AAA) and A(AAAV). Also, the fact that we
can find a set of b; which eliminates all 5-pf anomalies is
not surprising since there are no integration-displace-
ment troubles there. If we wish to minimize the number
of n-pf’s with anomalous WI’s, (59) is as good as we
can do; one can let b; be arbitrary, however, since there
are still only four amplitudes involved. This class of
solutions then includes b;=0, which revives the vector

2by=48iby= 16ib;= 3y

NWI for (AVV).

It is mathematically possible to eliminate all of the
anomalies if we introduce counterterms with singulari-
ties at m=0 (i.e., an ! series). These generally violate
the Weinberg asymptotic behavior?? of our loops and
may ruin the soft-pion extrapolation.?® For complete-
ness, however, we give the prescription for these
counterterms here. According to Sec. ITI and Appendix

22§, Weinberg, Phys. Rev. 118, 838 (1960).
23 In this regard see the discussion in Ref. 8.
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A, one can write
o A,
(Jije - jayur= 2, —, ro=max(n—4,1). (60)
r=ro m"
The general counterterm § is then
P . - - hd BT
0(f1ger - Ju) =22 — (61)
r=rg MW"
if
B,=—4, for r<n
= 0 for r>r+1, (62)

where 7, is the total number of .S and P currents in the
given #-pf. We omit derivation details and examples,
giving only some essential points which enable one to
understand how such a recipe works.

Since 7; is the same on both sides of a vector WI, the
counterterm (61) will not ruin the UR result, which is
already nonanomalous. This is because the coefficients
of a given power of m~! satisfy the vector WI also. In
the axial-vector case, we saw that the UR anomalies
are independent of m, meaning that only the zeroth-
power equation is anomalous. The 2mi(P ;- - ju)ur
term which has an extra P in it can be redefined to
include the anomaly via (61) but this feeds back into
other WI’s. Taking into account the mass parity men-
tioned earlier,?® we can convince ourselves by induction
on examples that the series does truncate. In fact, only
a maximum of three nonvanishing terms is needed in
(61) for any of the UR #n-pf’s.

Before considering in Sec. V the ambiguities involved
in the Pauli-Villars regularization, let us categorize
briefly what has been found:

(a) The UR #n-pf’s satisfy all (first-order) NWI’s
except for the 23 axial-vector ones implied by Table I.
All of these amplitudes vanish as m—o.

(b) The UR #-pf’s plus the local counterterms
(explicitly given in the preceding discussion) represent
redefined amplitudes which give rise to only a few
unavoidable abnormal-parity anomalies. These ampli-
tudes include polynomials in #; hence there are a
number of nonvanishing (and even divergent) ampli-
tudes at m= .

(c) An ‘“‘unphysical” solution with no anomalies
whatsoever can be constructed via (61). The corre-
sponding #-pf’s would vanish at m=  but have bad
behavior at m=0.

V. AMBIGUITIES IN PAULI-VILLARS
REGULARIZATION

The logarithm sums (10) represent an ambiguity in
our UR procedure. This is a special case of the general
situation in which different sets of C; are used for dif-
ferent n-pf’s. We ask here whether the corresponding
ambiguities in these individually regularized (IR)
n-pf’s might yet include the polynomial counterterms
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of Sec. IV. This thus takes into account the full un-
certainties in the Pauli-Villars regularization for
our problem and determines whether, for example,
Bardeen’s minimal solution can be obtained in such a
framework.

The answer is that some of the polynomials can be
swallowed up into the regularization definitions but that
none of the anomalies in Table I is so removed. A
sketch of the path to this answer follows.

The IR #n-pf’s are

(e Jahr=20 Cilga- - g1 f)ms
= gnyort2 Ci(fa - )
XZ fa(jl' . 'jn)m.-“ Inm?. (63)

The quantities f* are calculated from the integral
representations and the resulting mass expansions in
Appendix A. We note that these vanish for #>5 and
also, as detailed calculations show, for all abnormal-
parity loops. Let us now consider some of the remaining
cases.

We have, as an example,

<VV>IR=<VV>UR+yaab(p2g#v_’PuPV)

Ity 3> Ci(VV) Inm?= a,, we see from (52) that indeed
the counterterm 8(VV) can be included in the regu-
larization definition. On the other hand,

(AA ) =(AA4)vr+y8**(p*gw—pups) 22 C(A4) Inms?
—6y6°°gu Z Ci(AA)mInm:?, (65)

which shows that §(44) cannot be incorporated into the
logarithm sum ambiguities. The quantity > ; C;(44)m?
Xlnm? can only be a multiple of m?. Another example
with this same trouble is

(APS)r=(APS)ur—3iyd®**(p—q),
XE CA(APS) lnm?.  (66)

It can be shown that the remaining cases in which the
logarithm terms do not have the same momentum and
tensor dependence as the &’s are (VAA), (44A44),
(AAVV), (AASS), (AAPP), (AVSP), and (SSPP).
Therefore, the ambiguities in regularization are of no
help in removing any of the anomalies referred lo in
Table I. We must include counterterms ancillary to the
regularization ones in order to obtain the minimal sets
discussed earlier.

There are some interesting sidelights that result from
the calculation of f*s. The f*’s all vanish whenever
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the corresponding §’s are necessarily zero. Furthermore,
all of the arbitrary constants a; of Egs. (51)-(54) can be
absorbed into the logarithm sums. Thus the arbi-
trariness of the §’s is a partial measure of the ambiguity
in the regularization procedure.

In any event, we conclude that universal regulari-
zation provides an accurate gauge of the minimal
number of anomalous WI’s present in the general
Pauli-Villars framework.

VI. ANOMALIES IN SYMMETRY-BREAKING
MODEL

So far we have discussed WI anomalies for the case
of exact SU(3) symmetry where all of the vector cur-
rents are conserved. However, in the real world, the
strangeness-changing vector currents are not conserved
and the exact SU(3) symmetry is necessarily broken.
Since, for example, hard-meson and K;; form-factor
calculations involve WI’s for these vector currents,
it is of importance to consider the effect of the broken
symmetry on our previous anomaly analysis.

In order to investigate this effect we employ a model
proposed by Gell-Mann, Oakes, and Renner.2* This
model can be introduced into our framework by assum-
ing that the quark masses split according to their
strangeness quantum number. The p and # nonstrange
quarks have the same mass m,, which is different than
that for the strange A quark, #,. Our spinor field

‘pp(x)
Y(x)= [y//n(x)}
Ya(x)

now satisfies

(iy-0—M)y=0, (67)
where
‘m 0 0
T | 1
M=|0 m, oJ =mI~\7§5m>\g, (68)

0 0 WA
m=3(2mp+ms),

OM=mpr—My.

The divergence equations (2) are now changed to

04V (@)= (2/V3)om f**5°(x) ,
94,2 (x) = 2[m30 — (1/V3)6md V] P(x)

=2MPY(y). (69)

Hence the vector NWI (5) is changed to

Ry (V (k1) jo- - - )= —(2/V3)omi fo¥(SP(k1) jo+ - + jin)
+n—1of (n—1)-pf’s (70)

2¢ M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev.
175, 2195 (1968).
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and the naive axial-vector identity (6) becomes
ki (A4,5(k1) fo- - » ju)= —2M¥i(P?(ky) j2- + * jn)
+n—1of (n—1)-pf’s. (71)

Of course, when ém =0, everything reverts to the exact
symmetry of Sec. II.

The unregularized momentum-integral representation
for an #-pf is now

G - jaraha))= —3(hi)LLovon on(l s, o)
~+synchronized permutations of a;, k;, and T;

for j=2,3, -+, n with (n—1)! terms in all], (72)
where we have used
L""’az"“’a"(k%ks, .. .,k")

= / Tr Ao, T1S (U4 E2)AasT'9S (DN oy I'sS (1 — E5)

l
N DS —kg— - -+ —ka)Fc1car - caha TS (1H-2)
HXNasT TS (DOhasTTsS (1 — k)
N TTWS(l kg~ -+ —ka)]. (73)

The propagator S is no longer a multiple of the internal
space unit matrix I,

_ Sp(k) 0 0

S(k)= [ 0 S,k 0 } =ApSp(R)+ArSa(R), (74)
0 0 Sak)

with

Sp(k)=(k—mp)1,

75
Sa(k)= (k—ma)™ (73
and the projection operators
Ay=2T+ (1/V3)hs,
»=31+(1/V3)s 76)

Ay=3T—(1/V3)xs;

consequently there is no simple factorization of the
internal matrix trace in (73).

In dealing with the anomalies in WI’s for (72), we
can make good use of our earlier degenerate-mass
calculations by means of the expansion2®

Sa(k)=Sp(k)+S (k) omS (k)
+Sp(k)omS p(k)omS y(k)+- - . (77)

That is, m, can play the part of m, and ém can be con-
sidered as due to a unitary-singlet scalar interaction
with zero momentum transfer. This procedure also
avoids regularization complications which would arise
if a closed loop with different propagator masses were
present. Thus, we may still use our old regularization
here. Altogether, then, the broken-symmetry #-pf’s
(72) can be rewritten via (74) and (77) as an infinite
series of degenerate-mass m, loops.

% We consider this as a proper expansion in the perturbative
sense. The quantity ém is essentially a mass counterterm.
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Since we have reinterpreted the symmetry breaking
as a mass splitting,, the results of Bardeen!® imply that
we should find no change in the mass-degeneraie anomalies
listed in Sec. IV—if general counterterms are allowed.
This turns out to be the case. A description of the
calculation involving the infinite series in dm is rele-
gated to Appendix B; we merely list the results here.

If the degenerate-mass m, loops are universally
regularized, we find that:

(i) The vector-current NWI’s (70) are all satisfied.

(ii) Al of the normal-parity 2-, 3-; and 4-pf axial-
vector WI’s [see Eq. (71)] are anomalous as well as
the normal-parity 5-pf ones listed in Table I.

(iii) No mew abnormal-parity axial-vector identities
beyond those already listed in Table I are anomalous.
These conclusions are reasonable since we have seen
that UR anomalies correspond to the existence of m~!
terms in #-pf’s, a fact that carries over to the non-

degenerate case.

Now if the degenerate m, loops arising from the use
of (77) are redefined with auxiliary counterterms as in
Sec. IV, all of the normal-parity anomalies [see case
(ii) above] are removed. This means that the non-
degenerate normal-parity #-pf’s can be modified by
polynomials in ém and #m, such that they satisfy Eqs.
(70) and (71). However, as before, the abnormal-parity
WTI’s [see case (iii) above] cannot be redefined so as to
remove all of their anomalies. But the anomalies are
still the same (independent of ) as the degenerate-case
ones in Eqgs. (56) and (57).

We remark that, in principle, it is also possible to
remove all anomalies even in this case if the patho-
logical m~! series mentioned earlier could be used.
Because of the expansion (77), this requires an infinite
number of counterterms for each #-pf.

VII. CONCLUSION

The purpose of this work has been twofold. First,
we desired to put the notion of a WI anomaly into
the language of the Pauli-Villars regularization. Second,
we wanted to find the explicit forms of the general
“minimal” set of anomalies (that set corresponding to
the WI’s relating the abnormal-parity #-pf’s for #<5)
in a quark model which includes symmetry-breaking
effects. This would give some guide to the validity of
certain hard-meson calculations.

L¥We have found that the usual regularization is not
;aequate“ for redefining #-pf’s in the free-quark model,
since acceptable ad koc counterterms can be introduced
which further reduce the number of anomalous WI’s
(however, it required a pathological #~! series to elim-

26 After the completion of this work, it has come to our attention
that C. W. Kim, W. W. Repko, and A. Sato [Johns Hopkins
Report (unpublished)], as well as J.-L. Gervais and B. W. Lee
[Orsay Report (unpublished)], have discussed the inadequacies
of the usual regularization in the ¢ model.
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inate all of them). The philosophy here is that the
NWJI’s are dynamical criteria. A simple form of regu-
larization did lead automatically to the naive forms for
the conserved-vector-current WI’s and a compact
formula [Eq. (13)] for the spurious axial-vector terms.
The former development is to be expected since
regularization was intended for gauge-invariant calcu-
lations. The latter is independent of the quark mass m
and therefore the limit s — 0 (corresponding to
9#4,2=0).

Depending upon whether one wants to preserve the
naive forms of all of the vector-current WI’s, to remove
as many as possible of the axial-vector anomalies, or
whatever else, the general minimal set of abnormal-
parity A’s has been given explicitly in Sec. IV. The
question concerning which set should be chosen is a
dynamical one and has partially been answered in that
(AVV) seems to require an anomaly in its axial-vector
WI—without any in its vector WI.2 This provides a
resolution of the w%-decay puzzle! and requires ;= 0
in Eq. (55). Additional experimental information is
needed in order to determine the specific values for the
other b;; in electrodynamics, however, gauge invariance
would require the set (58) given by Bardeen. It should
be stated that the higher-order WI’s and their anomalies
can be found by contracting on the first-order set
enumerated in Sec. IV. Generalizing the free-quark
model to include nonconserved strangeness-changing
vector currents, we discovered no change in the anoma-
lies found in the exact-symmetry case. This generali-
zation presented in Sec. VI yields no freedom with
which one could modify our A’s.

Since only the abnormal-parity #-pf’s for #<S5 enter
into anomalous (first-order) WI’s, the kinematic
structure of an #-pf seems to be at the heart of the
matter. This has been noted by Wilson in a calculation
comparing the WI’s for (AVV) and (44V).2

For a concluding remark, we mention that the
coefficients of the anomalies we found are, of course,
model-dependent. For example, the quark-model
result predicts a #9 lifetime about nine times smaller
than the accepted experimental value; a successful
prediction, however, can be obtained in the Han-Nambu
model.?

Note added in proof. C. R. Hagen has pointed out
recently [Phys. Rev. (to be published)] that the
separation method has certain inconsistencies; con-
sequently, he has advocated that a particular form
of the regularization technique is the appropriate one
to employ. We have also discovered work by W.-K.
Tung [Phys. Rev. (to be published) ] and by D. Amati,
C. Bouchiat, and J.-L. Gervais [Orsay Report (un-
published)] in which Ward-identity anomalies have
been investigated using regularization.

M. Y. Han and Y. Nambu, Phys. Rev. 139B, 1006 (1965).
In this connection see S. Okubo, sbid. 179, 1629 (1969), and
Appendix B of Ref. 2.
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APPENDIX A

This appendix is divided into three sections. The
momentum integrals which arise in our #-pf represen-
tations are evaluated in (i). The displacement “surface
terms” for the n=1, 2, and 3 cases are given next in
(ii); from which it follows that the regularization de-
scribed in the text does indeed remove these ambiguities.
Finally, in (iii) we exhibit the mass expansions of the
loop integrals singling out the Inm? and 7! terms so
vital to our work.

(i) Momentum Integrals

In momentum space, the integration region is con-
sidered to be large but finite if there are ultraviolet
divergences present. In particular, we follow the method
of Akhiezer and Berestetsky?® in which the finite
invariant symmetric region is denoted by N. The reader
is referred to Appendix III of their book for the details
but is reminded here that a change of variables also
changes N. Note that we can obtain all of the momentum
integrals needed below by taking the appropriate
derivatives of the results in Ref. 28 and that the usual
Feynman parametrization is put to good use.

The one-vertex loop [see Eq. (15)] with fermion
mass 7 is found to be??

Fu;;((l,b,(;) =
L (N)
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Bi(a)=Bi(a)= [ TS (-a) ] = (167%)

Ju,an
XTr{T1[m*(lnm?4-A o) —m* —mA s +3ima?]
AT Asmi— 10T},
Sk)=So(k)=(h—m)—!.

Here Ao=A¢(N) and A;=A,(N) are ‘“constants”
which diverge logarithmically and quadratically,
respectively, as V is expanded to infinity.

The two-vertex spinor loop, following the notation
of Egs. (18) and (A1), can be expressed as

Dm((l,b)

(A1)
where

_ / TS (a) TS (14-6)]
I, (N) L
=(167%)1 / dx Tr{T'1P.(a)sP,(b)(InD,+A4 )

+3TrvoLoy[Do(InDy—5+40) — 342+ 3p,2]
+%PlPx(a)I'2px+%PlpxP2Px(b) *%FlpxI‘pr} . (AZ)

We have introduced some convenient notation which
will also be of value later:

Pt(k)Ept+k+m, DtEAt+Pt2y
where in the case of (A2)

(A3)
=—ax—b(1—x), A=m?—a?x—b*(1—x). (Ad)

For the three-vertex loop we write the ¢=0 term of
Eq. (28) as

1
Tr[T1SUHa)T2S(+8)TsS(I4c) ] = (167%)—1 j ydydx Tr{T1P,(a)ToP,(b)TsP,(c) D,
0

F3[T1Py(a)T2valsy 4T ryal 2Py (5) Tyy e+ Tryol'ayoT's P, (¢) J(InDy+1 4 4)
F5[L1DT2velsy*+Tryal2p, Day e+ TrvaleyeTsp, 1}, (A3)

where in terms of (A4),
pyszy——c(l _y);
The four-vertex amplitude [see Eq. (40)] is

His34(a,b,c,d)=
L,

Ay=Asy+(m?—c?)(1—y).

(A6)

1
Tr[T1S(4e)TeS(I4-0)T3S (I+c)TuS(+d) = (167%) ! / 22dzydydx
0

XTI‘{ —_ F]Pz(d)Fng(b)Fst(C)I‘4.Pz(d)Dz_2+%[F1Pz(d) Fsz(b)I'3'yaI‘4’Ya+I‘1Pz(a) FQ’YQP;;PZ(QP‘{Y“
+four more perms. ]D,; 71+ (g*gte4-g¥gP g gf) vy aToyslsys Ty (InD,+24+44)}, (A7)

with
PZEPUZ—d(l __Z)’

A=A+ (m?*—d?)(1—2),

(A8)

8 A. T. Akhiezer and V. B. Berestetsky, Quantum Electrodynamics (State Technico-Theoretical Literature Press, Moscow, 1953)
(English translation by Consultants Bureau Enterprises, Inc., New York, 1953).
2 We do not require four-momentum conservation at the vertices of our loops; this enables us to examine the ambiguities due to

shifts of the integration variables.
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in terms of (A4) and (A6). Finally, following Eq. (44), the five-vertex loop is (where we may allow N — o)

1
J10345(a,b,¢,d,0) = / Tr[T1S(IHa)T2S(H-0)TsS (I4-0) TaS () TsS(i+e) ] = (167%)—1 / widw 5%dzydydx
1 0

XTr{2I'1P (@) T2Pu(b) T3P w(c) TaPow(d) T5Pu(€) Dy —3[T'1P (@) 2P u(0)T'sPow(c) Ty al'sy®
FT1P4(a) 2P u(b) Tayol'sPu(d) Tsy*+eight more perms. ]D,, 243 (g*fg? e+ goighet gegf) TP, (a) Taval'sys

XTyyslsvetTrval'2Pu(d)Tsysl ysI'sye+-three more perms.]D, 1},

where, compounding (A4), (A6), and (A8),
po=pw—e(l—w), A,=Aw+(m*—e})(1—w). (A10)

(ii) Loop Integration Displacements

We concern ourselves here with the change in values
of our loops corresponding to a change in the integra-
tion variable I but with the same integration region N.
The change ! — I+s inside the integrals of (A1), (A2),
(AS), (A7), and (A9) is equivalent to the changes
a— a+s, b— b+s, etc., as the case may be. The one-
vertex displacement ambiguity is then from (A1)

Bi(a+5) —Bi(a)= (167%3)~ Tr{3Twms- (s+2a)
+-1Tas- (s+2a) —3Tus[Ao+m? —3(s+a)?]}, (All)

which, although infinite as NV —, will be removed
under regularization.

A shift of s in the two-vertex loop (A2) results in the
surface term

Dss(at-s, b+ -“) _DIZ(a;b) = “%(16721}"1
X Tr[T1sT(:s —a+2b+-3m)+T'1(3s+2a—b-+3m)
KT8 —T1yal'syes: (S+ d+b)] , (AlZ)

also removed by regularization. For a=0, 6= p we agree
with Eq. (33) of GJ. There is also a displacement prob-
lem for the three-vertex term (AS):

F123(d+8, b+S, G+S) —F123((1,b,6) = '—1_12‘(1671'2’0—1
X Tr(T8Tvel'sy*+ Tryeal28Tsy*+T1yalyy®l'ss).
(A13)

This difference also agrees with GJ [see their Eq. (29)]
modulo a factor in their loop definition. Regularized
3-pf’s will evidently be shift-invariant.

The #-pf integrals for the cases 72> 4 have no displace-
ment ambiguities. For example, (A7) is only logarith-
mically divergent, so that one expects no shift trouble
in the four-vertex loop. Since loops with more vertices
are not even divergent, the displacement problem
associated with the linear and quadratic divergences is

fi=3(@Cryal2y T+ TrvaloToy*+ Tilzval'sy®) ,

fo=3[Trvalay°Ts(2c—a—b)+'ryal2(2b—a—c)Tsy*+T'1(2a— b—c)Tayal'sve],
fs=L(@>+b*+c2—a-b—a-c—b-¢)(T1l'eTs— f1)+15(a%af+b°bP+coch+abP+ a*cf+ becF)

(A9)

expected not to be present for > 4. In any case we may
see this quantitatively by noting, as an example, that
combinations like p.4a, p.+b, and A, +p,2 in (A7)
are invariant under ¢ — a+s, b — b+s, etc.

(ili) Mass Expansions

This section is devoted to displaying the Inm? and
m~! terms of the previously written loops which are
required in the anomaly calculations. We begin by
observing that the one-vertex loop has no #! terms,
but that its mass expansion is seen from (A1) to be of
the form

Bi(a) = (162%) 1 Tr[bymA o+ byd s+ by (Inm2+ A)

+ bamd4-bsm?+-bem+-b7], (Al4)
where the relevant coefficient is
b3=T;. (A15)

Equation (A2) expands as

D1a(a,b) = (167%) 1 Tr[ d1d o+ dom? (Inm?+ 4 )
+dsm(Inm?+ A o)+ ds(Inm2+ 4,)

+dsm*+dem~+di+-ds/m+0(1/m?)], (Al6)
with the coefficients of interest being
dy=T1 o+ 3T 1valey?,
d3=4[T1(a—b)Ty—T1T(a—b)], (A17)

dy= —g[T1(a—b)T3(a—b)+3(a—b)*Tryalv?],

ds= —%(a—0b)%ds.

Note that an expansion like (A16) automatically sepa-
rates out A, and A, since their presence is related to
m—> o divergence of our loops. That is to say, the

O(m?) terms are independent of 4, and 4.,.
Similarly, from (A5) we have

Fas(a,b,¢) = (327%)! Tr[ fim(Inm?~+ A o)+ fo(lnm?+ 4,)
+ fam+ fat fs/m4+0(1/m?)], (A18)

where we need

(A19)

X AT 1, ve} Toysls+ T1{ Teyva} Tavs+ Trvple{ Ts,va) 4 T'1@T 905+ Thal s I'sc+ T TobTsc
FT1aTo{ s,y 234 { T,y 2} TobT s+ T Tyy - 24} Tsc,
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with
2= —3(at+b+0).

Going on to (A7), the expansion is

H1234(a,b,c,d) = (96m27)1

XTr[ ha(Inm?+ A o)+ hot-hs/m~+0(1/m?)], (A20)
where
=% (gPgoetgooghet-gxegf) T ryoLyyplsyslaye, (A21)

he= '—%[}llz:m(d)"‘h2341(b)+h3412(6)+h4123(d)] )
in which

hijen(B)=Ts(p+Z) T 2T4 T —velxy*Ta
—Yal e lny®— rk’YaI‘n’Ya:l )
Sh= —2(atbtctd).

The five-vertex loop (A9) yields
J12345(a,b,c,d,e) = (384n2i)~' Tr[ j1/m~+0(1/m?)], (A22)
with

].12 2F1I‘2P31‘4I‘5—%[I‘ryaI‘z'y“I‘aI‘J‘s
+ I'ryoIeTsyeT s+ eight more perms. ]
+i(g*Pg*+g'gP+ g g% ) TrvelvvslsvsLayels
+ I'ryal'2ysTsvsTalsye+three more perms.]. (A23)

Our final remark is that the loops with six or more
vertices are O(m2).

APPENDIX B

In this appendix we shall describe the calculation
which has led us to the conclusions in Sec. VI. Equation
(77) is crucial here since the nondegenerate-mass #-pf’s
can be related through its use to a series of degenerate-
mass amplitudes, allowing the arguments of Secs.
TI-V to then be applied term by term.

The starting point is Eq. (72). This expression can be
written explicitly in terms of S, and Sx by (74); in
turn, the latter propagator is expressed as an infinite
series in the former via (77). Thus each #-pf is an infinite
series in loop integrals all with the same mass m,
circulating through them. These loops can then be
regularized according to the text discussion with, say,
UR. That is, a finite sum of regulator loops (each with
a large mass m;) is added to each m, loop and, further-
more, é is considered as an external parameter. This
can be shown to be the same as regularizing the original
nondegenerate #-pf by assigning the regulator mass m;
to m, and m;+6m to my.

Let us consider, in more detail, these ingredient
degenerate-mass loops. In order to develop some notation,
the unregularized degenerate-mass #-pf may be ex-
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pressed in the following fashion:
(jl“‘(kl)]'z“z(kz) . 'jna"(k_n)>degenerate mass
= —1(F)r{Iur02only o . n(Rayks, e+ o k)
+synchronized perms. of a,,- - «,aa; 2,+ - - ,n;
Xks,« -+ ka, such that there are

X3[(w—1)!] terms in all}, (B1)
with the internal-symmetry term
Jor.a2,0 an= TI‘D\aQ\az’ < Nap,

Fc1c2t * €l TAGT - < Na, 7] (B2)
and its loop-momentum-integral coefﬁcient
Lij,.cn(koyksy -+ k)

- / T T1S (I4-Eo) TS () TsS (I~ o)
l
s TS(U—ks—- - - —kn)Fcicar - cal1S(4-En)
XSO 01S (—Fn-1)
« ToSU—kna—+--—ks)]. (B3)

Through the help of a lemma, the description of the
NWTZ’s for the #-pf (B1) can be made in terms of these
quantities I and L. Before stating this lemma, we make
the observation that each of the (r—1)-pf’s on the
right-hand side of an #-pf NWI is always multiplied by
an f or d coefficient [see Eq. (3)]. Therefore the com-
mutation relations

2 fobene=[\e\V],  2dabene= (e \b} (B4)
imply that the internal variables on that side of the
equation can each be written as a sum of two I’s that
also occur on the left-hand side.

Now we can make good use of the following lemma:
After a momentum contraction on (B1), the coefficient
L (B3) of a given internal variable term I (B2) goes over
to the coefficient of the same I which arises on the right-
hand side of the associated NWI—aside from the pos-
sible need for a shift in the integration variable. The
proof of this statement is straightforward.

As a result of the preceding discussion, we may shift
our attention to the WI’s for the individual L’s. Indeed,
in practice the removal of an anomaly in a given WI
(see Sec. IV) amounts to the removal of the anomalies
in the individual L WI’s. The counterterms in Egs.
(51)-(55) can be looked upon as sums of I's (e.g., the
W’s of Sec. III are I’s for the case »=4), each I having
a coefficient which can be interpreted as a modification
of L.

At this point, we return to the nondegenerate-mass
n-pf and note that in its ém expansion, the internal
variables now differ from the I’s. We obtain a degen-
erate-mass #-pf plus an infinite series in

(6m)""i1,2_...,;(k2,k3,~ . ',k,,) , (BS)



1504 BROWN,
with I>n-+1. This expression (BS5) is a sum of two loops
corresponding to an original degenerate-mass pair with
the addition of [—# scalar vertices, each with zero
momentum transfer £;. A detailed examination shows
that a lemma analogous to the previous one holds for
the nondegenerate-mass case, and thus if each L in
(B5) satisfies its WI then the corresponding WI for
n-pf is also naive.

In searching for WI anomalies with respect to non-
degenerate #n-pf’s, we note that in their ém expansions,
those loops with />6 already satisfy their individual
WTD’s; those loops with /<35 can be modified according
to the Egs. (51)-(55). Our previous minimal solution
in the degenerate-mass case has been examined term

by term in L. It therefore guarantees our minimal
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solution again in the present nondegenerate case. It is
worthwhile to note that the linear independence of the
W’s and Z’s (introduced in Sec. III) makes the term-by
term balancing of individual L. WI’s easily understood.

Let us attempt to clarify what has been said so far.
In the normal-parity case, each L either satisfies its
NWI or can be modified to do so; therefore, by our
preceding arguments, the corresponding nondegenerate-
mass #-pf’s can be defined so as to satisfy their WI’.
The anomalies present in the abrormal nondegenerate-
mass WI’s are the same as those in the degenerate case.
This is true because an abnormal-parity loop with any
scalar vertices has no #~! terms, and thus the ém expan-
sion shows that no new anomalies are introduced by the
mass breaking.
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Quark Model and the Pomeranchuk Theorem*
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It has been pointed out that the quark model may not be compatible with the Pomeranchuk theorem.
We investigate one such model in more detail and discuss the implications of violation of the Pomeranchuk

theorem, if any.

I. INTRODUCTION

HE equal-time commutation relation (ETCR)

of the axial-vector currents has led to the
Adler-Weisberger sum rule,' upon using the partially
conserved axial-vector current (PCAC) assumption? and
the infinite-momentum technique.® Applying a similar
operation on the matrix element of the ETCR which
involves the divergence of the axial-vector current,
and using the subtraction method that has been
described in Ref. 4, one can derive a superconvergence
sum rule’ for the zero-mass-pion nucleon scattering
amplitude. In particular, it has been pointed out*
that the ETCR of pion fields which are considered as
bound states of the quark-antiquark system may be
incompatible with the Pomeranchuk theorem® (P
theorem). In this paper, we discuss such a possibility

* Work supported in part by the U. S. Atomic Energy Com-
mission.
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further and elaborate on its experimental implications.

In Sec. II, the model is specified, and in Sec. ITI, we
show that the violation of the P theorem is related to
the nonvanishing bare masses of quarks. Section IV is
devoted to a discussion concerning the validity of the
P theorem.

II. QUARK MODEL

We consider a quark model in which the interaction
Lagrangian respects the SU(3)X.SU(3) symmetry and
the violation of the symmetry is due only to the mass
terms. This is the model that has been discussed by
several authors.” 1t

The interaction Lagrangian may be taken as!?13
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