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Model for Higher-Order Weak Interactions
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The most divergent terms to all orders in G~ for d S=0 nonleptonic transitions are considered in a model
of weak interactions. The analysis confirms and extends the conclusions of an earlier study of the model
which showed that although terms of higher order in Gz diverged, they were compatible with a value of
a cuto6' A such that GyA. '~1.

INTRODUCTION

~~~NE of us' has recently proposed a model of weak
interactions, which obeys, in lowest order, all the

usual selection rules and predicts rates in agreement
with experiment. The mediators of the weak interaction
are three intermediate vector bosons H/' +, 8 q+, H/,

with their respective antiparticles. The model also con-
tains, in addition to the usual leptons, two neutral
massive (mass &500 MeV) leptons X„and X,.

Denoting by J,' the hadronic V —A current with

SU(3) transformation properties indicated by the
superscript, by j,+ the V—A leptonic current, and

by j,+ the V—A lepton current obtained substituting
)„X„for v„~„in j,+, we consider the following weak-
interaction Hamiltonian:

H„„,=g/J W. .+J.x'W, . +-(J.x'+qV. P-)W. ..o
+J,+(W —cos8+W p, sin8)

+j,+(—W„. sin8+Ws, , cos8)]+H.c., (1)

where V is the baryonic number current and, assuming
all the W mesons have the same mass, g'/M ' rrG~/v2.

As was shown in I, the model predicts the correct
rates and selection rules for leptonic and semileptonic
processes; in addition, the matrix elements for semi-

leptonic strangeness-changing decays, resulting from
higher-order weak interactions (such as Er,s~p+p )
are more convergent than in the usual theory, being
proportional to G~'mq„' rather than the usual GJ,"A',

where A is a cutoff."
Now leptonic strangeness-changing decays clearly

have octet transformation properties since U' is an

SU(3) singlet, and their magnitude is determined by
adjusting the free parameter p (y=1 corresponds to an
enhancement of nonleptonic over semileptonic rates
because of the absence of the Cabibbo angle in the
hadron currents). In addition, the fact that V' com-

mutes at equal times with the SU(3) currents and their
divergences, makes higher-order strangeness-changing
nonleptonic processes more convergent than in the
usual theory. '

* Supported 'in part by the U. S. Atomic Energy Commission.
' G. Segre, Phys. Rev. 181, 1996 (1969).We will refer to this as I.
2B. L. los and E. P. Shabalin, Yadern. Fiz. 6, 603 (1966)

/English transl. : Soviet J. Nucl. Phys. 6, 828 (1967)g.' R. ¹ Mohapatra, J. Subba Rao, and R. E. Marshak, Phys.
Rev. Letters 20, 1081 (1968).
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Nonleptonic AS =0 processes are, however, qua-
dratically divergent, the coefficient of the quadratic
divergence being determined by the equal-time
commutator 4

&Jo"( ) 8.J: (o)j o=o+LJo"'( ) 8.~. (0)].,=
+LJp" (&),8.J. '(0)7„p——R(x)8(x). (2)

Assuming the Gell-Mann model for SU(3) XSU(3)
breaking, ' namely, that

H =H+ Hg ~H +epN p+ esN s, (3)

where H is invariant under SU(3)XSU(3) and I„ls
are scalar densities belonging to the (3,3)+(3,3) repre-
sentation of SU(3)XSU(3), we calculated in I, the
divergences of the current and evaluated the commu-
tator, finding

R(0) =4(epQp(0)+epBs(0) j,
so that, to lowest order, we had no parity or isospin
violation and in fact found that the weak divergence
just corresponded to a rede6nition of the strong
breaking. The matrix element for a transition A ~B
was given by

T~ g=(GF/%2)(A'/4n')

X(B~4/eplp(0)+esses(0) j~ A), (5)

where A is a cuto8 of the momenta integral.
In this paper we wish to explore the possibility of

extending this result to higher orders. The question is
whether in eth order the most divergent part of the
A ~8 transition matrix element preserves its attractive
lowest-order features. We shall explore a free-quark
model, along the lines of the recent work of Gatto,
Sartori, and Tonin. In Sec. II we will give a general
treatment of the problem, leaving to the Appendices
some of the technical details. In Sec. III, the question
of coupling to leptons will be considered.

I. QUARK-MODEL CALCULATIONS

In studying the most divergent diagrams, one can
neglect altogether the current V', furthermore, the
breaking of SU(3) XSU(3) is simply due to the quark

4 M. B.Halpern and G. Segre, Phys. Rev. Letters 19, 611 (1967).
5 M. Gell-Mann, Physics 1, 63 (1964).' R. Gatto, G. Sartori, and M. Tonin, Nuovo Cimento Letters

1, 1 (1969); Phys. Letters 28B, 128 (1968).
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commutator, since terms of the form

[[. [~o™Jo'"]. .1
are canceled by terms obtained from the permutation
that interchanges i and ii„ leaving all other indices
unchanged.

If we assume that the Schwinger terms are c num-
bers, we may calculate the commutators of the inte-
grated current densities,

(mls-la)=E 2 (el[" Li ™F"-] "-]la) (15)
{iJ perm

where F~'=F'&F5' are the generators of the SU(3)
)&SU(3) algebra. Each one of these multiple com-
mutators, involving e indices, i» . i„ leads to a di-
vergent term proportional to (G~A.')", since the ex-
pression in (9) reduces to

zGx:A.')"
(16)

16 'I
YVhat we want to show now is that the lowest-order
result, in which we found R(x) proportional to Hxx(x) as
given in (2), (3), in fact carries through to higher order;
namely, 5„ is proportional to Hz.

To do this, it will be convenient to use (12) to rewrite
the weak-interaction Hamiltonian. We see, then, that
there will be three types of terms in 5„with S„=S,z
+S,xx+S,xxx' S~,x, terms where indices run over
1 8 j Sz zz ) terms with only P' and F'; and S„,zzz,

terms with even number of F' and/or F', others being
Ii', where i =1 -.8. Consider 6rst S„,z. H~ transforms
like a member of an irreducible representation of the
SU(3) XSU(3) generated by F~',. for generality let us
say it is the o. member of the irreducible representation
labeled by a so that H& ——0 ( ~. Then we have

P '=[F;0 '&]=P (a 'lp la )0..& ~ (17)

LP &,[F ',0.'&1]= 2 (a 'IP la )

)&(an"
l
F "

l
an')0

=P (an" lp 'F &lan)0. -& &,

elements of H~, since the whole sequence of commuta-
tors then merely rotates H& back into itself. To show
that the operator in (19) is either zero or a Casimir
operator, we need only consider its commutator with
an arbitrary Ii ~, since of course I'+~ commutes with
allP ':

. . .[p p ']
ifilm(

=2zfi', m(

=0

~ ~ oP2' ~ ~ oQs ~ ePJ'e ~ ~ I P&Pago ~ ~
I L

, p m. . .p l. . .+. . .p l. . .p m. . .)
, p m. . .p g. . . , , , p m. . .p l. . .)

(21)

where the interchange of j and ns necessary to obtain
the cancellation was made possible by the fact that
both indices run from one to eight. The cancellation
does not depend on the ordering of the generators and
must therefore be true for all terms obtained by
permutations. This, then, shows that C is either zero
or a Casimir operator and, hence, that if S„z is non-
vanishing, it is proportional to H~.

For S„,zz, one must consider commutators of the form

Lp 'Lp '[F-'[F-'»~]]-]-(22)
which can be reordered using the fact that Ii ' and F
commute as

[P '[F-' "[F--'[F-'»~]]
An explicit calculation shows that

(23)

[p '[p-l'» l]-s+[p-' [pl'»~]] = 3&-~ (24:)

Using this relation, we can then easily show that S„,zz is
also proportional to H~. The same can be said for
5„»z, though the arguments involved are considerably
more complicated and will be left to Appendix A.

Let us now turn our attention to the other terms
arising froxn (9), obtained by letting more than one
differentiation be applied to the currents rather than
to the time ordering. There is a whole set of other terms
which diverge like (Gzk')" in nth order. They are of
the form

[P & P]—Q Q ([P & P in]Pin. . .Pil
(iI perm

+P i [P zP i ].. .P il. . .

+F" "[F,p ']). (2O)

Now each index i; occurs twice, and the corresponding
commutators cancel each other:

so that it becomes clear that for S,z we must consider
the operator ~ (2zr)'(qx2+Ms ')

d'X»- . de

P imP ie. . .P ilP il

f i) perm &&(Bl T{S„,(xx) S,(xi)) lA), Q nz;=n, (25)
»

We shall now show that this is either equal to zero or is
a Casimir operator of the SU(3)&(SU(3) group, thereby where S,. are the operators we determined previously.
implying that S„,z is in fact proportional to matrix Since each of the 5,- s transforms like H&, this corre-
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1'ic. 2. Contribution of lepton loops
to weak A —+8 transitions.

sponds to terms of higher order in the breaking of
SU(3)XSU(3) as would be obtained, for instance,
taking H& to act as a spurion, by having k spurions act
on the strong amplitude. Graphically, these terms are
described in a free-quark model by diagrams such as
those of Fig. 1(b), while S corresponds to a diagram
like that of Fig. 1(a). In coordinate space one may
envision the first type of terms as those for which

(26)

and the second as those for which

S1—p1 X2 —' '
Xmas

—
/mal )

+m]+1=/m/+1= ' ' ' =Pm]+m2) (27)

~n—my+1 Pn—my+1
' ~n Pn ~

Both diverge like (GpA')"; finally, we have terms for
which the argument of the 8' propagators in coordinate
space do not vanish, and we assume these to be less
singular. As an example, consider a matrix element to
erst order in Gp, keeping only the q„q, part of the 8
propagator. It is given by

Diagrams such as the one in Iig. 2 also contribute
clivergences of the form (GpA')" in arith order and. hence

may not be neglected. Since 8', couples to hadrons and
not to leptons, a nontrivial extension of the theory is
involved. We shall proceed in evaluating a, graph, such as
that of Fig. 2, by 6rst doing the divergent integral over
the lepton loop rnornentum, keeping fixed the momenta
of the 5' mesons coupled to the hadrons. This essen-
tially reduces the problem to the one treated in Sec. II,
except that there is no longer the symmetry between
coupling to 8', 8'~, and 8'„ it also, of course, intro-
duces a factor GpA2 coming from the lepton loop or
GpA'(G&A') if the lepton loop has rn W rnesons inside
it. The symmetry between 8' and 8"& still persists,
however, and in fact, as was shown in I, a transition
fV ~~5'b via an intermediate lepton loop only occurs
to order Gl:mq„' and not to order Gj;A', so we neglect it.

One might worry then about the possibility of a
parity-violating term being present in the maximally
divergent graphs, but as we shall show in Appendix 8,
there is none. The proportionality of these maximally
divergent terms to H~ does not however hold a,ny
longer; in fact a term of the form Ns appears. Consider
the simplest set of graphs for 3~8 involving a lepton
loop, namely, those of order G+2 obta, ined by inserting
a lepton loop in the 8' propagator of the lowest-order
diagram for 2 ~B. The matrix element for 2 —& 8 is
given by

Tg~~ —~z'G p

d'g e'«' &)

-d4xd4y
(27r)' g'+M s'

GpA2 GpA2
dx(~l Z LJp'(x, o),B J '(0)]~&)

4~2 16~2 i=1,2, 3,4

t(~ I P p'(~), ~.J,'(X)j I ~)b(» —
X )

i=1,2, 4,5,6,7

+(8 ) T(,B„J„'(pp)B„l„'(y))( A}}. (28)

The first term in the curly brackets leads to what we
would call 51, and the second we assume to be only
logarithmically divergent by making use of a Bjorken'
limit technique. The validity of this last assumption' is
a.dmittedly highly questionable, particularly when we

go to higher orders and assume their analogs for time-
ordered products of 2e currents. '0 "

1 GpA2 '
(8

~ {(Sep+&2es)ep
12 4'�'

+P(+6)ep+v3esgup+L(+6)ep+7es]esj
~
A), (29)

so, although there is a u3 term, the violation of isospin
conservation, due to the presence of u3, is quite small.
As stressed in I, just as the natural expansion parameter
in electrodynamics is

III. LEPTON CONTRIBUTION

In this last section we would like to discuss briefly
the heretofore neglected contribution of leptons.

' J. D. Bjorken, Phys. Rev. 148, 1467 (1966).
9R. Jackiw and G. Preparata, Phys. Rev. Letters 22, 975

(1969) and S. Adler and Wu-Ki Tung, ibid 22, 97g (1969.) have
shown that the results of a Bjorken-type analysis do not coincide
with those of perturbation theory in certain cases.

'0 P. Olesen, Phys. Rev. 175, 2165 (1968).
1' In Ref. 6 it is pointed out that certain other types of diver-

gences may appear, which could be canceled by extended version
of current-algebra commutation relations, such as those proposed
by R. Brandt and J. D. Bjorken, Phys. Rev. 177, 2331 (1968).
This neglect is a serious shortcoming and corresponds to not
keeping derivatives of 8 functions, or, as the authors of Ref. 6 say,
only 8&JO terms.

here it is
g~ g~ Gpg~

m 4s. Ms ' v2(47r')

so that even if G+A' 1, we still only get at most 1%
eRects; in this case the violation of isospin conservation
appears to be considerably smaller than 1%.

IV. CONCLUSIONS

We have extended the analysis of the model of wea, k
interactions presented in I to higher order in Gp con-
tributions to AS=0 hadronic transitions. We have
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shown that the maximally divergent terms, behaving
like (G&A')", do not lead to any parity violation in this
model, and, furthermore, that the rather surprising
feature of the G~A.' term being proportional to the
symmetry-breaking part of the strong Hamiltonian
carries through to higher-order terms for diagrams not
involving lepton loops.

The assumptions made are, of course, rather drastic,
chiefl. y with regard to the validity of the analysis of
degree of divergence of the various integrals. The spirit
of the model, as stated in I, was really only to see
whether, within the framework of using cutoffs, it was
possible to construct a model for which A 1/QG~ did
not lead to any obvious contradiction with experiment.
The results of this paper confirm and extend the con-
clusions of I, in providing an afhrmative answer to that
question.

We should add in conclusion that there are several
other models in existence at present which address
themselves to this question of divergences in weak
interactions, either with cancellations or counterterms, "
or extra fields, ""or an indefinite metric, " or new
analyses of the underlying field theory" " abandoning
altogether the underlying V —A fundamental cou-
pling, " "or giving the 8' mesons strong interactions. "

APPENDIX A

In this appendix we want to show that the term
S„,zzz is still proportional to IJ&. We assum. e the follow-

ing transformation properties for the scalar and
pseudoscalar densities:

[F'(t),N&'(0)], s
——if'&'si'(0), (A1)

[F'(t), '(0)] =o= 'f"" "(0), (A2)

[Fs*(t),v'(0)], s =id"'e"(0), (A3)

[Fs'(t),N'(0)]i s = —id'&'"v" (0) . (A4)

Hence, from Eq. (17), we know immediately the coeK-
cients (a

~
F'~ b) and (a

~

Fs't b), where a,b =Is or vs; e.g. ,
from Eq. (A1), (I"(F'tg')=if"s (vs~p')I')=0. First
of all, we wish to show that there is no mixing between
SU(3) singlet and octet. Consider the commutator

's N. Cabibbo and L. Maiani, Phys. Letters 28B, 131 (1968);
see also Refs. 6 and /.

~3 M. Gell-Mann, M. Goldberger, F. Low, and N. Kroll, Phys.
Rev. 179, 1518 (1969).

'i C. Fronsdal, Phys. Rev. 136, 31190 (1964)."T.D. Lee, Columbia University Report t',unpublished), and
references contained therein.

r6 M. Veltman, Orsay Report, 1968 (unpublished).
"A. T. Filippov, in Proceedings of the Topical Conference on

Weak Interactions, CERN, 1969 (unpublished).
'8 Y. Tanikawa and S. Nakamara, Progr. Theoret. Phys.

(Kyoto) Suppl. 37-38, 306 (1966).
"W. Kummer and G. Segre, Nucl. Phys. 64, 585 (1965).'

¹ Christ, Phys. Rev. 176, 2086 (1968).
s' E. P. Shabalin, Yadern. Fiz. 8, 74 (1968) /English transl. :

Soviet J. Nucl. Phys. 8, 42 (1969)j."R.E. Marshak, R. N. Mohapatra, S. Qkubo, and J. Subba
Rao, in Proceedings of Topical Conference on Weak Interactions,
CERN, 1969 (unpublished).

of Ii' with terms with only one pair of currents summed
over 3 and 8:

[p-', ( p ' p-')]
. . .[p i p 3].. .p 3. . .q. . .p s. . .[p ip 3].. .

All other commutators cancelled for the same reason
as Eq. (21). Similarly, we have

2 Lp-', Lp-' ( "F-' P-' )]]

=Z ( [p-' Lp-' p-']]

+ . F-'
I
P-'[P-'»-']]. .

[F',F ]")
=12( F s Ps )

—4 P (f,si)' F ' F ' (A5)

The second term follows from the fact that

fislfism ~ elm ~

A similar formula follows for terms involving Ii in-
stead of Ii '. Then we have

=12/ ( F" F")
k=3, 8

-4 Z L(f' )'+(f':)']( "P-'"F '). («)

From explicit calculation wc obtain

P [(f;si)'+(f;si)s]=1 (/=1, 2,4,5,6,7).

We can rewrite Eq. (A6) as

2 [F-'Lp-' 2 ( P-" P-")]1
k=3, 8

=16/ ( F" P" )
k=3, 8

—4Z( I'' F ' ) (A7)

Let B,~ be the term with k pairs of indices summing
over 3, 8. Equation (A7) can then be written as

where 8,0 is the term with all indices summing over
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1, ~ ~ ~,8, which is then either a Casimir operator or zero,
as we have shown.

It is then clear that, for general B„,~, we have

P LP 'I P ',B.,.]]=CsB., ~
—C.'B.. i, (A8)

where C~ and CI,
' are some constants depending on k

only.
The vector charge F' is given by

pi —i(p i+p i)

I
P',B.,a]=l P',B.,~j

=I P,s,B., i,]=IP.-s,B„,i,]=0. (A15)

Since (nlF'I«s) =0 for all n, from the first equation
we get

P («alp'lnz)(mlB„, i, l«s&=0, (A16a,)

n8 term the only nonvanishing coe%cient will be
(us I B~,plus).

By the same reasoning as Eq (21), it is easy to see
that

Then by using the fact that F+' commutes with 8„,&,

we have

g &pi I
P'I m)(m I

B„,i, I us) =o. (A16b)

Z E~' LP'B .i,X=scsB..o—~cs'B., i, i(A9)-

&p lp'p'B„, plup&=-,'Cg(v„IB., i, lup)

—,'Cs'(~ IB., ~ iluo), (A10b)

(uo IP*P'B„,i, lu„) =-,'Cs(up
I B„,Iu„)

——,'Cs'(uplB„, i, rlu„), (A10c)

o=-;c,(.,IB„,, lu, )
—:c~'(»

I B-.~-i I »),
where m=1 ~ ~ 8.

From the fact that

&u„l p'p'Iu„) =(~„lp'p'I ~„)=3~„„,
(u IF'F'I m )=(v IF'F'Iu„)=0,

(A10d)

we can deduce from Eq. (A10a)

—(c —3)(u IB„, luo)= —'c '(u IB„, Iuo). (A11)

Equation (A11) shows that the matrix element of B„,i,
is proportional to 8,». Therefore, by induction, we
have from Eq. (A10a)

(u IB„,i, lup)

"(«-IB-.s-iluo)"" "(«-IB-.oI«o) (A»)
Because B„,o is either a Casimir operator or zero, we
have

(u„l B„.p I up) =0, mao.

So, from Eq. (A12), we conclude that

(«„IB„,pl up) =0, mWO. (A13)

We can apply a similar argument for (A10b&—(A10d) to
get

Since (u I
P'

I up& =0 = (up
I
P'I e), we get from Eq. (A9)

(u IP'P'B, slup)=-,'Cp(u IB,i, lup)

—,'Ci, '&u„l B,i, il up), (A10a)

From the value of (I IF'Im), Eq. (A16) becomes

f„„(u.IB„,, lus) =0,

fsi (p-IB-, ~ I «s) =o
(A17a)

(A17b)

For m&0, 3,8 there exists an l such that fsi NO; thus
we have

P (uplFp'Im)(mlB, alup —%2«s&=0, (A19b)

(us I
pp

I m)(m I
B,&

I
up —v2«s) =0, (A19c)

g (es I
Fp I

tn)(nz
I
B„,g

I up —&2«s) =0. (A 19d)

By substituting the values of («Ippslm), we get the
following equations:

r2(us I B,p I
'us) (us I

B,j'g
I up)

~2(»IB..~I«s)=(»IB- sluo)
—v2(~s I B..s lus)+~&(uo I B-.o I »)

=2(uo
I
B-,.I «s) —(us IB.,s Iuo)

v2(» I
B—- ~ I «s) =v2(po

I
B- sl »&.
+2(» I

B,s I u, &
(—

However, the terms on the right-hand side are zero by
Eq. (A14), so we have

(A2o)

and

for mN0, 3,8. (A18)

The equations for the axial charges are somewhat more
complicated. However, by using the fact that
fF,', uo —2«s)=0, then (e IP, sluo 2«s)=—0 for all e,
and we get

p &»I p.-sl~)&~IB-,~I«o —~2«s) =o, (A»a)

S~,rrr pc ppup+ ps«s ~

I B,x I
)=uo& lBuo, s I

)=s(» I
B & I uo) = 0 ~ (A 14) &»IB-,~I«s) =(«oIB-,~I«o) (A»)

This proves that there is no mixing between singlet and Thus Eqs. (A20), (A21), and (A14) all together imply
octet under B„i„and there is no parity violation for that
the no term in B~. So we have left to show that for the
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Combining (83)—(85), we get

('IB[u)= —(a[B[u)

APPENDIX 8

(r, I
B

I u, )=0 for J=0, ,8.

Here we want to prove that there is no parity
violation in the diagrams involving lepton loops. In or
this case, the operator considered is of the form

~ ~ o P s ~ ~ op 's
~ ~ ~

4

i=&,2, 4,5 all permutations

We now want to show that 8 commutes with Ii ', i.e.,

By taking an appropriate basis, we get from the second
equation of (85),

P (us [ Fs [ m)(m [
B

[ uo —V2us& =0, (89a)

Lp ',B]=0.
This can be illustrated as follows:

(81)
(vs [Fs [m)(ml B

[ po —&2ps) =Q, (89b)

~ ~ ~ I p 3 p sg 0 ~ 1 p ~ 0 ~ t Q 0 ~ 0 p s 0 ~ 0 f p 3 p & t 0 ~ ~

I 7 I )
—2sfsls(. . .P R. . .P 1. . .+. . .P 1. . .P 2. . .)

for 1=1

2 (uoIPs'Im)(m[B[uo —%2us) =0, (89c)

2 (usIPs'Im)(m[BIuo) = —s(v'-')(»I B
I ~s) (89d)

=2sl»'( P r P s. +. . .P s. . .P r. . .)
for i=2. By substituting the value of (a[pss[b&, we get from

Eqs. (87a) and (87b),

(r s[B I uo) —2(&o I
B

I us)
=V2(r s [B[us) —%2(r o I

B[uo), (810)
&» I B[~o)—2(usl B

I ~s)

=v2(us[B
I
"s) ~2(uo[B[~o) (811)

The right-hand side of these equations vanishes because
of (88). So from (810) and (811) we obtain

(» I
BI») =2(»I BI») =2(us[B I») =4(»l B

I ~s)

4(&s I
B

I uo& ~ (ss I
B

I uo) =0

(v [Bo[ us) (812)

where we have used the facts that 8 is Hermitian and
(a I

B
I b) is real. From Eq. (87d) we get

(r s [B[uo) = —(us[B [os).

By the same argument as Eq. (88), we have

(rs[B[uo)=(uo[B[rs)=0. (813)

From Eq. (87c), we get

(rs[B[uo—~2us&=0~ (rs[B[uo) =v2(&s[B[us)

but the left-hand side vanishes because of Eq. (813);
hence we obtain

These two terms cancel each other when we sum over
i=1,2. The same thing happens for i=4,5. Thus, Eq.
(81) is true. Similarly, we can prove that

(F 'B]=Q (82)

It is trivial to see that 8 commutes with F and all
F+'. Then, from Eqs. (81) and (82), we have

[
Fs' B]=Lpss B]=Lps'B]=0 (83)

From the first equation we get

P (u, [pso[m)(m[B[u, )

=P (u;[B[m)(m[pso[u;). (84)

Substituting the value of (a[pso[b) into Eq. (84), we
have

(85)(r, [B[u;)= —(u, [B[r,&.

The Hermitian conjugate of each term in 8 is of the
same form but in reverse order, because each Ii ' is
Hermitian. Since 8 contains all the different orderings
of generators, 8 is Hermitian. Hence we have

(u[BI~)=(~ IB[u) (86)

But every term in 8 contains an even number of
generators; therefore, (n [B[P) must be real, i.e.,

(o, [B[u,)*=(r;[B[u;).

(r s[B[us)=0. (814)

Equations (88) and (812)—(814), together with
Eq. (A18), imply that there are no s terms, because

(87) (» I
BIuo) and (&a I B[us) all vanrsh.


