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The most divergent terms to all orders in Gr for AS=0 nonleptonic transitions are considered in a model
of weak interactions. The analysis confirms and extends the conclusions of an earlier study of the model
which showed that although terms of higher order in Gr diverged, they were compatible with a value of

a cutoff A such that GpA2~1.

INTRODUCTION

NE of us! has recently proposed a model of weak
interactions, which obeys, in lowest order, all the
usual selection rules and predicts rates in agreement
with experiment. The mediators of the weak interaction
are three intermediate vector bosons W%, Wi, W 00
with their respective antiparticles. The model also con-
tains, in addition to the usual leptons, two neutral
massive (mass 2500 MeV) leptons A, and ..
Denoting by J,* the hadronic V—4 current with
SU(3) transformation properties indicated by the
superscript, by 7, the V—A leptonic current, and
by j,+ the V—A4 lepton current obtained substituting
Ney Ay fOr ve, v, in j,*, we consider the following weak-
interaction Hamiltonian:

Heyeae=g[J ™ Wa,s+T KW+ (T KAy VOW e, o0
+ 5ot (Wa,s cosf+W s, sinb)
+7H(—Wa,o sind+W, .~ cost) ]+H.c,, (1)

where V0 is the baryonic number current and, assuming
all the 7 mesons have the same mass, g2/Mw?=Gr/V2.

As was shown in I, the model predicts the correct
rates and selection rules for leptonic and semileptonic
processes; in addition, the matrix elements for semi-
leptonic strangeness-changing decays, resulting from
higher-order weak interactions (such as Kp°— utu™)
are more convergent than in the usual theory, being
proportional to Gp?m,? rather than the usual Gp?A%
where A is a cutoff.??

Now leptonic strangeness-changing decays clearly
have octet transformation properties since V0 is an
SU(3) singlet, and their magnitude is determined by
adjusting the free parameter v (y=1 corresponds to an
enhancement of nonleptonic over semileptonic rates
because of the absence of the Cabibbo angle in the
hadron currents). In addition, the fact that V° com-
mutes at equal times with the SU(3) currents and their
divergences, makes higher-order strangeness-changing
nonleptonic processes more convergent than in the
usual theory.?

* Supported in part by the U. S. Atomic Energy Commission.

1 G. Segre, Phys. Rev. 181, 1996 (1969). We will refer to this as I.

2B. L. Ioffe and E. P. Shabalin, Yadern. Fiz. 6, 603 (1966)
[English transl.: Soviet J. Nucl. Phys. 6, 828 (1967) .

3R. N. Mohapatra, J. Subba Rao, and R. E. Marshak, Phys.
Rev. Letters 20, 1081 (1968).
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Nonleptonic AS=0 processes are, however, qua-
dratically divergent, the coefficient of the quadratic
divergence being determined by the equal-time
commutator?

(07 ()00 & (0) JegmoH[J " (),057 £57(0) Jupo
H[T o (@),007 2°(0) Jagmo=R(x)5(x) .  (2)

Assuming the Gell-Mann model for SU3)XSU(3)
breaking,® namely, that

H=H+HB=FI+€0’M0+€8M8, 3)

where H is invariant under SU(3)X.SU(3) and uq, us
are scalar densities belonging to the (3,3)+(3,3) repre-
sentation of SU(3)XSU(3), we calculated in I, the
divergences of the current and evaluated the commu-
tator, finding

R(0) =4[ eono(0)+esus(0) ], 4)

so that, to lowest order, we had no parity or isospin
violation and in fact found that the weak divergence
just corresponded to a redefinition of the strong
breaking. The matrix element for a transition 4 — B
was given by

T 4-5=(Gr/V2)(A%/47?)
X (B|4[eoto(0)+esus(0)]14), (3)

where A is a cutoff of the momenta integral.

In this paper we wish to explore the possibility of
extending this result to higher orders. The question is
whether in #th order the most divergent part of the
A — B transition matrix element preserves its attractive
lowest-order features. We shall explore a free-quark
model, along the lines of the recent work of Gatto,
Sartori, and Tonin.® In Sec. IT we will give a general
treatment of the problem, leaving to the Appendices
some of the technical details. In Sec. III, the question
of coupling to leptons will be considered.

I. QUARK-MODEL CALCULATIONS

In studying the most divergent diagrams, one can
neglect altogether the current V°; furthermore, the
breaking of SU(3)XSU(3) is simply due to the quark

4 M. B. Halpern and G. Segré, Phys. Rev. Letters 19, 611 (1967).

5 M. Gell-Mann, Physics 1, 63 (1964).

6 R. Gatto, G. Sartori, and M. Tonin, Nuovo Cimento Letters
1,1 (1969); Phys. Letters 28B, 128 (1968).
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F1c. 1. Self-mass graphs in the
quark model interacting weakly
\ with W mesons.

£ -q £4-9-k L-q 2

masses, so we have
H=H~+my(@C+T)+ma(A\), (6)

where ®, 97, and A are now taken to be the three quark
fields. Neglecting the lepton coupling to W’s for the
moment, we see that the most divergent diagrams are
of the types shown in Figs. 1(a) and 1(b). In Fig. 1(a),
@, 8, and v are quark labels and /, ¢, and % are momenta.

Diagrams like 1(c) are forbidden by the conservation
principles in the theory when we neglect V. Now the
graphs of 1(a) and 1(b) are diagonal, namely, they only
connect @ to @, 9T to 9T, and A\ to N\. Furthermore, the
vs invariance of the W couplings ensures that the
graphs of Figs. 1(a) and 1(b) depend only on the mass
of the external particle. For instance, the most divergent
part of the graph in 1(a) goes as

diqdth 1—q+img l—q—ktim, 1—q+img
A g1y k(1 45) R(1-7s) 1 ) , 7
//W(ﬂ Ys) o (147s) (—at)® (I4s) (l—g);_q( +y5) Ju (7

but of course (1+47s)M(1—7vs) equals zero. So what we find, to nth order, is that the most divergent
diagrams contribute mass shifts proportional to the masses of the external particles, i.e., are of the form

an(GrA) [y (BE+TI)+mr(AN) ], ®)
which is proportional to the breaking of SU(3)XSU(3) in (5). Diagrams like those of Fig. 1(b) are just itera-

tions of the diagrams of Fig. 1(a).

II. GENERAL HIGHER-ORDER WEAK DIVERGENCES

In general, the leading divergence to nth order in Gr is obtained by keeping only the g.g, part of the » W
propagators involved in the process. The matrix element for the nth-order contribution to a nonleptonic

transition is proportional to”

(iGp)"/~ . /ﬁ et4i (wi—y7) 9i.ws9i5
=i ¢+ M

4

(2m)* (3

n % @i—yi)

d4q]' a d

where we have for the moment neglected diagrams in-
volving lepton loops. (We shall, however, return to
these later.) In the above summation over the SU(3)
indices of the currents, we have gone over to a Cartesian
labeling of the currents, i.e.,

W =W1—il2,
Wy =W4—iWs, (10)
W O=Ws—iyT.

This allows us to write the hadron current part of
H ook as

Hweakhadron =g Z (] a'ini)

1=1,2,4,5,6,7

VW O+He, (11)

7 See J. Tliopoulos [CERN Report No. Th. 981 (unpublished)]
for a discussion, among other points, of what factors are necessary
to write such an amplitude.

d'q;
dtsdty e 3 (B T )Tt n) -+ T i) T2 (3} | A)

=GR [ o+ | TI ————dbadty;—— B| T{J @) T (1)« - T in(@n) Tonin(ym)} | AY, (9
oy [ [ Lttt o D BITUH L) e IO} A), O

where of course we neglect the term involving V¢ in
calculating leading divergences. The summation over
an arbitrary 4 in (9) then runs over the SU(3) indices
1,2,4,5,6,7. Alternatively, one may introduce fictitious
fields 3 and W8, so that

8
S W= JAW =T MW A—T WS, (12)

©=1,2,4,5,6,7 i=1

Let us begin our analysis of (9) by considering the
term obtained when all but one of the differential
operators act on the time ordering. The result of this
is a chain of equal-time commutators

X X [[L--[8TsmTo ] 1T0"],

< all permutations

(13)

where all the commutators are taken at equal time. The
divergence of the current must appear in the innermost
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commutator, since terms of the form

- [JomJo*] -] (14)

are canceled by terms obtained from the permutation
that interchanges 7, and 4, leaving all other indices
unchanged.

If we assume that the Schwinger terms are ¢ num-
bers, we may calculate the commutators of the inte-
grated current densities,

(41Su|By=% X (BI[-+-[F-mF_]---]]4), (1)

{7} perm

where F '=Fi+F; are the generators of the SU(3)
XSU(3) algebra. Each one of these multiple com-
mutators, involving » indices, #;-- -4, leads to a di-
vergent term proportional to (GpA2)”, since the ex-
pression in (9) reduces to

O "%
(iGr) /:I;Il (27r)4(l]f2+MW2)(B|5n|A>
=<iGFA2)n<Blsn1A>. (16)
1672

What we want to show now is that the lowest-order
result, in which we found R(x) proportional to Hp(x) as
given in (2), (3), in fact carries through to higher order;
namely, .S, is proportional to Hp.

To do this, it will be convenient to use (12) to rewrite
the weak-interaction Hamiltonian. We see, then, that
there will be three types of terms in S, with S,=Sx1
+Sua+Se 1 Sa1, terms where indices run over
1---8; Sp,11, terms with only F3 and F8; and S, m,
terms with even number of F? and/or F8, others being
Fi where i=1---8. Consider first S,,1. Hp transforms
like a member of an irreducible representation of the
SU(3)XSU(3) generated by F.¢; for generality let us
say it is the o member of the irreducible representation
labeled by @ so that Hz=0,. Then we have

F_i= [F_f,Oa(“):I=Z, (@’ | F_ilaa)0 @  (17)
and )
[F_*[F_3,0,9]]= Z’I(aa’]F_f]a@
N X{aa!' | F_*| ac/ YOr+

= (g | P3| aa)0nr @, (18)

so that it becomes clear that for S, we must consider
the operator

C=Y Y F_inf_in..

{7} perm

-F_#f_u, (19)
We shall now show that this is either equal to zero or is

a Casimir operator of the SU(3) X SU(3) group, thereby
implying that S, 1 is in fact proportional to matrix
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elements of Hp, since the whole sequence of commuta-
tors then merely rotates Hp back into itself. To show
that the operator in (19) is either zero or a Casimir
operator, we need only consider its commutator with
an arbitrary F_%, since of course [71* commutes with
all F_2:

[FAC]=X ¥ (4P o] 1o

{7} perm
—f-F_i"[F_k,F_i"]' B 2 T
FF_in - [F_RF_5T). (20)

Now each index #; occurs twice, and the corresponding
commutators cancel each other:

o -[F*F ] F_deeoteo F oo .[F_kF_i]---

=2ifbim(«..F Mo .F doeodr F_doo . F om0
=2ifkim(...F_m...F_J ....... Fm ..F_i...)
=0, (21)

where the interchange of j and m necessary to obtain
the cancellation was made possible by the fact that
both indices run from one to eight. The cancellation
does not depend on the ordering of the generators and
must therefore be true for all terms obtained by
permutations. This, then, shows that C is either zero
or a Casimir operator and, hence, that if S, 1 is non-
vanishing, it is proportional to Hp.

For S, 11, one must consider commutators of the form

LF_LF S -[FO[F8Hp]] -], (22)

which can be reordered using the fact that F_3 and F_3
commute as

LF3(F8 - -[FOF3Hp]]- - ]. (23)
An explicit calculation shows that
LF2[F 5 Hp |+ [F-8[F 8 Hp]]=4Hp. (24)

Using this relation, we can then easily show that S, 11 is
also proportional to Hp. The same can be said for
S,,11, though the arguments involved are considerably
more complicated and will be left to Appendix A.

Let us now turn our attention to the other terms
arising from (9), obtained by letting more than one
differentiation be applied to the currents rather than
to the time ordering. There is a whole set of other terms
which diverge like (GpA%)” in nth order. They are of
the form

: d*q;
‘ " ———— - | d%y- - - d
(i) [El (27r)4(qj2+MW2)f -/ ®1- - - A4,
k
X(BIT{Sm(w) - Smle)}|4), X my=n, (25)

where Sn; are the operators we determined previously.
Since each of the Sn;’s transforms like Hp, this corre-
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I56. 2. Contribution of lepton loops
to weak 4 — B transitions.

sponds to terms of higher order in the breaking of
SU@B)XSU(3) as would be obtained, for instance,
taking Hp to act as a spurion, by having % spurions act
on the strong amplitude. Graphically, these terms are
described in a free-quark model by diagrams such as
those of Fig. 1(b), while S, corresponds to a diagram
like that of Fig. 1(a). In coordinate space one may
envision the first type of terms as those for which

TI=YI=Xy=Ya="+* =X, =Yy, (26)
and the second as those for which
X1=Y1=X2=* Xmy =Yy,
Cmpt 1= Ympb 1= = Ympbmy, (27)
Tt 1= Yn—mp41= " * * =%n=Yn.

Both diverge like (GrA?)?; finally, we have terms for
which the argument of the W propagators in coordinate
space do not vanish, and we assume these to be less
singular. As an example, consider a matrix element to
first order in G, keeping only the ¢,q, part of the W
propagator. It is given by

d'q
Tasn =%’i2GF f —
(2m)* ¢P+Mw?

X X

e ((B| [T oi(x),,7 wi(3) ]| 4)8(0—0)
HBIT{0T, )87 )} | 4)}

The first term in the curly brackets leads to what we
would call S3, and the second we assume to be only
logarithmically divergent by making use of a Bjorken?
limit technique. The validity of this last assumption® is
admittedly highly questionable, particularly when we
go to higher orders and assume their analogs for time-
ordered products of 2% currents.!0-11

el (-'c-il)

dxdty

(28)

III. LEPTON CONTRIBUTION

In this last section we would like to discuss briefly
the heretofore neglected contribution of leptons.

8 J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

9 R. Jackiw and G. Preparata, Phys. Rev. Letters 22, 975
(1969) and S. Adler and Wu-Ki Tung, sbid. 22, 978 (1969) have
shown that the results of a Bjorken-type analysis do not coincide
with those of perturbation theory in certain cases.

10 P, Olesen, Phys. Rev. 175, 2165 (1968).

1 1n Ref. 6 it is pointed out that certain other types of diver-
gences may appear, which could be canceled by extended version
of current-algebra commutation relations, such as those proposed
by R. Brandt and J. D. Bjorken, Phys. Rev. 177, 2331 (1968).
This neglect is a serious shortcoming and corresponds to not
keeping derivatives of § functions, or, as the authors of Ref. 6 say,
only @0/ terms.
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Diagrams such as the one in Tig. 2 also contribute
divergences of the form (G rA2)™ in nth order and hence
may not be neglected. Since W, couples to hadrons and
not to leptons, a nontrivial extension of the theory is
involved. We shall proceed in evaluating a graph, such as
that of Fig. 2, by first doing the divergent integral over
the lepton loop momentum, keeping fixed the momenta
of the W mesons coupled to the hadrons. This essen-
tially reduces the problem to the one treated in Sec. 1T,
except that there is no longer the symmetry between
coupling to W,, Wy, and W,; it also, of course, intro-
duces a factor GpA? coming from the lepton loop or
GrA2(GrA?)™ if the lepton loop has m W mesons inside
it. The symmetry between W, and W, still persists,
however, and in fact, as was shown in I, a transition
W22 Wy via an intermediate lepton loop only occurs
to order Gpma,? and not to order GrAZ, so we neglect it.

One might worry then about the possibility of a
parity-violating term being present in the maximally
divergent graphs, but as we shall show in Appendix B,
there is none. The proportionality of these maximally
divergent terms to Hp does not however hold any
longer; in fact a term of the form #; appears. Consider
the simplest set of graphs for 4 — B involving a lepton
loop, namely, those of order G#* obtained by inserting
a lepton loop in the IV propagator of the lowest-order
diagram for 4 — B. The matrix element for 4 — B is
given by

GrA? GpA?
—— | dx(B|
2

472 167

1

GFA2 2
=——<——*—> <B | {(8€0+\[Z€8)%0
12\ 472

+[(V/6)eot+V3es Jus+[ (\/6)eot+Tes Jusy | A)

so, although there is a #; term, the violation of isospin
conservation, due to the presence of us, is quite small.
As stressed in I, just as the natural expansion parameter
in electrodynamics is

> [:]oi(x,O),BF]Mi(O)] I A)

=1,2,3,4

(29)

a 1 e
7r~1r 4r’
here it is
1 g A2 GrA2?

rdr My? VI(dr?)

so that even if GpA2~1, we still only get at most 19,
effects; in this case the violation of isospin conservation
appears to be considerably smaller than 19.

IV. CONCLUSIONS

We have extended the analysis of the model of weak
interactions presented in I to higher order in Gr con-
tributions to AS=0 hadronic transitions. We have
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shown that the maximally divergent terms, behaving
like (GrA%)", do not lead to any parity violation in this
model, and, furthermore, that the rather surprising
feature of the GpA? term being proportional to the
symmetry-breaking part of the strong Hamiltonian
carries through to higher-order terms for diagrams not
involving lepton loops.

The assumptions made are, of course, rather drastic,
chiefly with regard to the validity of the analysis of
degree of divergence of the various integrals. The spirit
of the model, as stated in I, was really only to see
whether, within the framework of using cutoffs, it was
possible to construct a model for which A~1/4/Gr did
not lead to any obvious contradiction with experiment.
The results of this paper confirm and extend the con-
clusions of I, in providing an affirmative answer to that
question.

We should add in conclusion that there are several
other models in existence at present which address
themselves to this question of divergences in weak
interactions, either with cancellations or counterterms,!?
or extra fields,'3'* or an indefinite metric,'s or new
analyses of the underlying field theory!®:!7 abandoning
altogether the underlying V—4 fundamental cou-
pling, 82! or giving the IV mesons strong interactions.??

APPENDIX A

In this appendix we want to show that the term
Sy, s still proportional to Hp. We assume the follow-
ing transformation properties for the scalar and
pseudoscalar densities:

LEH8)u#(0) Jemo =i f #*u*(0) (A1)
LE(),07(0) Jimo=if #0%(0), (a2)
LE5(#),07(0) Jemo=1d"*u*(0) , (A3)

[F5(0)u9(0) Jimo= —id**(0). (A4)

Hence, from Eq. (17), we know immediately the coeffi-
cients {e¢| F¢|b) and (a| F5'|b), where a,b=u* or v*; e.g.,
from Eq. (A1), (u*|Fé|ud)=ifi#* (v*|Fi|ui)=0. First
of all, we wish to show that there is no mixing between
SU(3) singlet and octet. Consider the commutator

12N, Cabibbo and L. Maiani, Phys. Letters 28B, 131 (1968);
see also Refs. 6 and 7.

13 M. Gell-Mann, M. Goldberger, F. Low, and N. Kroll, Phys.
Rev. 179, 1518 (1969).

14 C, Fronsdal, Phys. Rev. 136, B1190 (1964).

15T, D. Lee, Columbia University Report (unpublished), and
references contained therein.

16 M., Veltman, Orsay Report, 1968 (unpublished).

17 A, T. Filippov, in Proceedings of the Topical Conference on
Weak Interactions, CERN, 1969 (unpublished).

18Y, Tanikawa and S. Nakamara, Progr. Theoret. Phys.
(Kyoto) Suppl. 37-38, 306 (1966).

19 W, Kummer and G. Segré, Nucl. Phys. 64, 585 (1965).

20 N. Christ, Phys. Rev. 176, 2086 (1968).

21 E. P. Shabalin, Yadern. Fiz. 8, 74 (1968) [English transl.:
Soviet J. Nucl. Phys. 8, 42 (1969)].

22 R, E. Marshak, R. N. Mohapatra, S. Okubo, and J. Subba
Rao, in Proceedings of Topical Conference on Weak Interactions,
CERN, 1969 (unpublished).
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of F? with terms with only one pair of currents summed
over 3 and 8:

[Fi(---F3--F_%]
=...[F*F3.--F 3 --+--.F_ 3 ..[FiF %] --.

All other commutators cancelled for the same reason
as Eq. (21). Similarly, we have
8
Z I:F—i,[F—ja(' <eF_3...F_3.. '):D
=1

Me

(-« [F_i[F_iF_3]]-«-F_3 ..

4 F3 . [F_[F_iF_3]]--
42 [FiF_ 3] [F_iF_3]--)
F_3...F_3...)

=1

I

=12(--
—4 IZ: (fiz)?- - -F_t---F_t. (AS5)

The second term follows from the fact that
fi:ilfi?»m % Oym

A similar formula follows for terms involving F_8 in-
stead of F_3. Then we have

X LFALF X (ke F]]
=1 k=3,8

=12 % (-+-F_F--

k=3,8

F_¥)

4 % [Ga) ()P B0, (A6)
From explicit calculation we obtain

5 [Gad+(ad=1 (=124567).
We can rewrite Eq. (A6) as

S [FAFS T (Bt n )]

=16 > (+--F_k--F_%...)

k=3,8

_428: (-« F_t- F_l-.). (A7)
=1

Let By, be the term with % pairs of indices summing
over 3, 8. Equation (A7) can then be written as

8

S [F_i[F_i,B,.]]=16B,.1—4B..0,

=1

where By, is the term with all indices summing over
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1,--+,8, which is then either a Casimir operator or zero,
as we have shown.
Tt is then clear that, for general B, ;, we have

Z [F_TF_ By ]]1=CiBn—Cx'Bur-1, (A8)

where Cj, and C; are some constants depending on %
only.
The vector charge F? is given by

Fi=g(Fy4-F).

Then by using the fact that F,¢ commutes with B, s,
we have

8
2 [Fi[FiBa i ]]1=1CiBun—1Ci'Bai—1. (A9)
i=1

Since {(n|Fi|uo) =0=(uo| Fi|n), we get from Eq. (A9)

(um[F"F"Bn,kluo) =7}Ck<uman,k|%o>
—31C¥/(tm| Bn,p—a| 10,

<7)m|FiFiBn,kluo>=iCk<vmI.Bn,kIM[))

(A10a)

—1C¥ (wn| Baio1|uo), (A10D)
(uo|FiF"Bn,k[um)=4le(uo|B",kium)
—1C¥/Cto| By pa|ttm) ,  (A10c)
0=%Ck('voan,k[%o>
—1C¥'(vo| Bn,i1]u0), (A10d)
where m=1,---,8.
From the fact that
(| FIF | ) = 0| FPF?| 0) =381 ,
(| FF?| v0) = (0m| FIF?| 1) =0,
we can deduce from Eq. (A10a)
%(Ck'—s)(uman,kI%O>=%CIc/<MmIBn,k_1|M0>. (All)

Equation (A11) shows that the matrix element of B,
is proportional to B, ;1. Therefore, by induction, we
have from Eq. (A10a)
(4] B | 40)
oc(”man,k—lin>°c e Oc<um‘Bn,0|uO>. (AIZ)

Because B, is either a Casimir operator or zero, we
have
<’Mm|Bn'o|%o>=O, m;éO.

So, from Eq. (A12), we conclude that
(thm| B | 0)=0, m>=0. (A13)

We can apply a similar argument for (A10b)-(A10d) to
get

('l)man,klM()):(uoan,k | 'Um>= (Woan,Icl%()): 0. (A14)

This proves that there is no mixing between singlet and
octet under B, and there is no parity violation for
the #, term in Hp. So we have left to show that for the
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ug term the only nonvanishing coefficient will be
<%s|Bn,k|’l¢3>.
By the same reasoning as Eq. (21), it is easy to see
that
[F% Bk 1=[F5Bn ]
=[F33Bu]=[F:5Bnr]=0. (A15)
Since (n|F3|us)=0 for all n, from the first equation

we get

2 (| F*[m)(m| B i us) =0, (A16a)

> (| F3|m){m| By,i|usy=0. (A16b)

From the value of (#|F3|m), Eq. (A16) becomes
Satm(ttm| B k| us)=0, (A17a)
Sstm(Vm| Ba, x| us)=0. (A17b)

For m#0,3,8 there exists an / such that f5.,50; thus

we have

(thm| Bui|us)=0 and (vm|Bar|us)=0

for m#0,3,8. (A18)

The equations for the axial charges are somewhat more
complicated. However, by wusing the fact that
[Fs%, uo—2us]=0, then {n|F:3|uo—2us)=0 for all #,
and we get

Y (vo| Fs®|m){m| Bu,i|no—V2ug)=0, (A19a)

> <“0|Fﬁglmxman,kWo—\/ZMs):—O, (A19b)

> lus| Fs?|m){m| Bn,i| wo—V2us)=0, (A19c)

3 (vs| Fsd|m)(m| B x| o—V2us)=0. (A19d)

By substituting the values of (n|Fs3|m), we get the
following equations:

V2{uts| B, | ) = (43| B, | t40)
V2(vs| B, ts) = (3| Bu,i|40) ,
'—\/2—@3[ Bn,klus>+ﬁ<uo[3n,kluo>
=2tto| B | ts) — (43| B | o) ,
—V2{vg| By,i| t4s) =V2{vo| Bn,i| 100)
+2(v0| By, 1| s) —(vs| B, 1| 100) .

However, the terms on the right-hand side are zero by
Eq. (A14), so we have

<’143 I Bn,kl%é;) = <7)3|Bn,k|'l/ts>= <‘U8an,kIM8>=0 (AZO)

and
<M3|Bn,]CI’lt3>=<M0|Bn,k’M0>. (A21)

Thus Eqgs. (A20), (A21), and (A14) all together imply
that
S, 111 & €qttot€stis.
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APPENDIX B

Here we want to prove that there is no parity
violation in the diagrams involving lepton loops. In
this case, the operator considered is of the form

B= % b

4=1,2,4,b all permutations

R SR -

We now want to show that B commutes with F_3, i.e.,

[F_3,B]=0. (B1)
This can be illustrated as follows:
o r[F3F_]-« F_i -t F i .[F3F_i]. -
=2if¥2(.. . F 2. F 1.4 .F_1...F_2...)
for =1
=2if21(-+ - F_1...F 2.4 .F_2..F_1...)
for 1=2.

These two terms cancel each other when we sum over
i=1,2. The same thing happens for 1=4,5. Thus, Eq.
(B1) is true. Similarly, we can prove that

[F_8,B]=0. (B2)

It is trivial to see that B commutes with F_° and all
F.% Then, from Egs. (B1) and (B2), we have

LFs",B]=[F:*B]=[Fs*B]=0. (B3)

From the first equation we get
2 (| Fs|m)(m | B|u;)
=2 (| Blm)(m|Fs|u). (B4)

Substituting the value of {a|F:°|b) into Eq. (B4), we
have

(v Blusy=—(uj| B| ;). (BS)
The Hermitian conjugate of each term in B is of the
same form but in reverse order, because each F_? is
Hermitian. Since B contains all the different orderings

of generators, B is Hermitian. Hence we have
(us| Blog) = (oj| B|us)*. (B6)

But every term in B contains an even number of
generators; therefore, (a| B|8) must be real, i.e.,

(vi| Bui)* = (v;| Blus). (B7)
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Combining (B3)-(BS5), we get
(o] Blus) = —(v;| B|uj)
or
(v;| Blu;)=0 for j=0,---,8. (B8)

By taking an appropriate basis, we get from the second
equation of (BS),

> {us| Fs®|m){m| B|uo—V2us)=0, (B9a)
> (vs| Fs*[m)m| Blvg—V2u5)=0,  (B9b)
> (uo| Fs®| m)(m | B|luo—V2ug)=0, (B9c)

% (0| F®|m)(m| Bluoy=—i(/3){uo| Blvs). (B9d)

By substituting the value of {(a|F:3|b), we get from
Egs. (B7a) and (B7b),

(vs| B |0} —2{vo| B|us)

=V2(vs| B|us)—V2Z{vo| Bluoy, (B10)
(us| B|vo)—2{uo| B|vs)
=ﬁ<uslB]vs>—Vj<uo[Blvo> (Bll)

The right-hand side of these equations vanishes because
of (B8). So from (B10) and (B11) we obtain

(vs| B| o) =2{vo| B|us)=2{us| B|vo)=4(uo| B|vs)
=4<1)slBIMO>=> <7)3[Bl%o>=0
=(v|Blug), (B12)

where we have used the facts that B is Hermitian and
(a| B|b) is real. From Eq. (B7d) we get

(vs| Bluo)y=—(uo| B|vs).
By the same argument as Eq. (B8), we have
(vs] B|uso) = (0| B|v5)=0.
From Eq. (B7c), we get
(o3| B|aso—V2us)=0=> (v3| B|uo) =V2(v3| B|us),

but the left-hand side vanishes because of Eq. (B13);
hence we obtain

(B13)

(5| B us)=0. (B14)

Equations (B8) and (B12)-(B14), together with
Eq. (A18), imply that there are no » terms, because
(vi| B| o) and (vx| B|us) all vanish.



