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The existence of an isosinglet n'(1070 MeV) and an isotriplet n'(1016 MeV) of a presumed scalar octet
has been established recently. A simple model, essentially combining a set of triangle I'eynman graphs
and the Gell-Mann —Okubo mass formula, allows the calculation of the broken-symmetry coupling constants
for Ss-+ PePe. In particular, the anomalous value observed in the branching ratio R„(n~r/EIt) is accounted
for.

L INTRODUCTION

A LTHOUGH the possible existence of scalar mesons
has come up repeatedly in the theoretical litera-

ture, "such J"=0+ hadronic states have been observed
only recently. An isosinglet st'(1070 MeV) and. an
isotriplet sr'(1016 MeV) have been identified as peaks
in the EK amplitude near threshold. 3 Presumably, they
are members of a scalar octet with the remaining
isodoublet K'(1100 MeV) still awaiting confirmation. e

If x', E', and g' do indeed form an octet, there is an
interesting feature which needs explanation. On the
basis of an SU(3)-symmetric interaction and insertion
of actual masses in the phase-space factor, the branching
ratio R„(srsr/KK) should be 8.8. However, experiments
yield the anomalously low value E.;&~ 2.3.'

At erst one might think of using the scalar singlet-
octet mixing to explain this large effect of symmetry
breaking. However, as Evans and I'"ulton5 argue, the
nearly degenerate 0+ spectrum implies either a singlet
of very different mass, which would induce very little
mixing, or one of the same mass as the octet, which is
not observed. To account for the relative suppression
of the mw mode, they put forth an effective Hamiltonian

II,.=frt'fgrt+'nKK (2 c)n7r—j, — -.

where n=1 corresponds to the SU(3) limit. rt' is then
identi6ed as a tadpole responsible for the discrepancies
in the Gell-Mann —Okubo (GMO) mass formula for the
pseudoscalars. Such a procedure allows a numerical
determination of the parameter n.

In the phenomenological approach of Evans and
Fulton, the SU(3) deviation is chosen to be symmetric
for the EK and the xx couplings. We find this to be
an ad hoc assumption. The present paper attempts to
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Commission.
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show how a simple model based on customary dynamical
inputs can provide a successful and manifest symmetry-
breaking mechanism for the scalar mesons.

Our model is motivated by the work of Wali and
Warnocke and the subsequent paper of Johnson and
McCliment on decuplet decays into baryons and
pseudoscalars. They view the coupling shifts as due
solely to the propagation of the GMO rule in the masses.
For the case of the branching ratio Erie(Zvr/Arr), where
the SU(3) value disagrees with experiments, the above
treatments give corrections of the right order of magni-
tude. While our approach stems from one of Cutkosky's
bootstrap equations, it draws upon the successful
features of both of the above models for its simplifying
appl oxllTlatlons.

In Sec. II of this paper, our model is described and
the numerical analysis is carried out. The model has as
its basis the Cutkosky's bootstrap equation for the
coupling constants. Here the S8 states are considered
as I'8I'8 composites bound by exchanges of 58 and t/'8,

where 58, P&, and Vs denote, respectively, the 0+, 0,
and 1 octets. The general expression of the broken-
symmetry couplings is then formulated. It is done via a
first-order expansion in the mass differences about the
SU(3)-symmetric solution of the Cutkosky equation.
The mass shifts are required to obey the GMO formula.
Yet the couplings are kept SU(3)-symmetric at the
vertices. The triangle graphs involved are approximated
by the Feynrnan diagrams of standard perturbation
theory. In the context of these approximations, our
inodel makes contact with that of Johnson and
McCliment.

In Sec. III, our results for the brok. en-symmetry
couplings tabulated in terms of the Singh-Gupta
coefficients are discussed.

II. MODEL

The existence of scalar mesons is indeed a compelling
possibility in terms of our current ideas about the com-
posite structure of mesons. In fact, when the boson-

6 K. C. Wali and R. L. Warnock, Phys. Rev. 135, B1358 (1964).
7 E. M. Johnson and E. McCliment, Phys. Rev. 139, 8951

(1965).
e R. E. Cutkosky, in ProceeCings of the International Trieste

Seminar in High-energy Physics and Elementary Particles, Trieste,
1965 (International Atomic Energy Agency, Vienna, 1965).
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gbc =~~Pe 'C~P'g~V go~ i (2)

where the 6's are dynamical factors depending on the
masses and the spins of the particles indicated. We
approximate the 6's as being given by all the Feynman
triangle graphs allowed by the Lagrangians

~SPP gS~ttf'dbc I I Sa P

2 happ ', g Trfb, PbP——ct—„'U".
(3)

gs and g b. are dimensionless constants. The d's and f's
are identified as the familiar D- and F-type coupling
coeflicients in the SU(3) limit, i.e., when the masses are
taken to be degenerate within the multiplets. S;, I';,
and U;&, with t =1,2, ,8, are the Acids associated with
the respective octets.

boson forces are assumed dominant over their baryon-
antibaryon counterparts, strong attraction in scalar
states results for almost all simple models of mesons
examined. ' This assumption forms part of Cutkosky's
bootstrap rule I. It is then natural to inquire specifically
whether, when applied to the 0+ mesons, this very rule
could account for the large symmetry-breaking effect
observed in E„.

In the spirit of bootstrap rule I, a meson a of Ss is
viewed as a bound state of two others, b and c, of I'8.
cr and P, two other constituents of a, could exchange a
boson y before turning into b and c. Now, bootstrap
rule II states that the vertex abc so obtained and its
lowest-order modification are equal (Fig. 1). Thus we
have the self-consistent equation for the S,P bP,
coupling constant gb,

/

/

C

b~~
0

y

P'i
c &

Fxo. i. Self-consistent equation for the coupling constant gz,'.
Dashed, solid, and hatched lines correspond to pseudoscalar,
scalar, and vector or scalar mesons, respectively.

In restricting ourselves to only scalar and vector
exchanges, we are guided by the ensuing considerations.
In their study of scattering of 0 mesons, Hong
Mo Chan et al."found a scalar singlet and octet to be
possible bound states through exchange of both the 0+
and the 1 octets. Indeed, scalar exchange alone would
give rise to a weak repulsion in the direct 0+ channels.
Dynamical self-consistency requires the inclusion of
vector-meson exchanges which in general play so
dominant a role in strong-interaction physics. Further-
more, by the customary dynamical argument, both
scalars and vectors should be considered here since
they are mutually degenerate in mass at the SU(3)
limit and thus correspond to forces of approximately
the same range.

We denote by S;=m the mass squared of particle i,
by p; the four-momentum of the particles except for that
of the exchange boson y whose momentum is labeled q.
By use of the Feynman rules" and Lagrangians (3)
and (4), Eq. (2) takes the form

gsdb:=gsd. p'tdp"d b'(gs'/4tr)&'P'

+fp"f b'(g~'/4~)~'"], (3)
with

and

d'q
f(P +q)' —S-+ ]L(P —q)' —sp+')Lq' —s.+ ]

(Pp+P ) (P-+Pb)
(Pq

L(P +q)' —S-+t ]L(P —q)' —8 +s ][qs—S,+t ]

(6)

(7)

where A & ) and 6 & ~ correspond to the Feynman triangle
graphs without coupling constants, In the expression
for Dlv&, the omission of a term proportional to q„q„/Sr
in the intergrand should be noted. Since our later calcu-
lations involve only values of d, &~l and M ivan/ct S; at the
SU(3) limit, such a term clearly does not contribute.

We apply the standard Feynman 0,; parametrization
and. integration techniques" to Eqs. (6) and (7), to

' R. E. Cutkosky, in Proceedengs of the Oxford Internateonal
Conference on Etementary Particles, 1965 (Rutherford High-Energy
Laboratory, Chilton, Berkshire, England, 1966).

"Hong-Mo Chan, P. C. DeCelles, and J. E. Paton, Nuovo
Cimento 33, 70 (1964)."J. Bjorken and S. Drell, Relativistic Quantum Mechanics
(McGraw-Hill Book Co., New York, 1964), Appendix B.

"A. I. Akhiezer and V. B. Berestetskii, Quantum J:/ectro-
dynamics (Wiley-Interscience, Inc. , New York, 1965).

obtain

with

g„r & 3

g dn;3(1 —g cr;)1V(a;,S;),
4x p '=&

with

1

g dn;b(1 —P n;)g(n;, S;),
4~

(10)

%=Et (crt+crt) S. (3nt+crs) Sb——(3ns+trt) Se
—2( S,—Sb S.)+Es]——-'( —El.') +-', (11)

1V =$—crttrs Sa+(crt +trttxs —crt) Sb

+(&s +crrtrs —crs) So+&i Sa+o's Sp+crs Sr] (9)
and
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Tax.z I. Results for xf„ terms. with

kesona, lice

where

CoII~pone»t Threshold (MeV)

7r'0 NO
EE i000
7rE 640
Eg 1050

280
EIC 1000
7l'g iioo

+0.055
+0.082
+0.600
+0.070
+0.280
—0.555
—0.846

l. g„&' ., b, ' 0Q(S)
&b "'=

2 47r i BS;

D Dpc&Dab& gS2 a,p, v BA( )

Db, 47r ' BS;

3 g
2 a, b, c gg(v)

+— Q AS,
2 4x ' BS;

l.e.)
m = S,{1+&Ll(I+1)——;I"$},

(So)s.i, v=m„. ,m„,mp .2 2 2

(12)

Thus we have

g» p:=gsD-u LD~"D-p'(gs'/4~)~o"'
+Pp vP pv(g P/4~) Qp(vi 1 (13)

where the D's and F's are now the coupling coefficients
of SU(3). Do&8 v& is the SU(3)-symmetric value of

v) and g v=g, , with the latter defined through

(14)H,.=g„.y„(pp&(r7„pp).

Moreover, it can be shown' that if

D p D p' (5/3)8. p, ——

PaP FaP —38g b )
(15)

Dap Dpc Dab 2Dbc (16)

E =(n +n n ) S +(ni +ninp) Sp —ninpSp

and L2 is a momentum cutoff.
Equation (5) is known' to have a SU(3)-symmetric

solution for 6( ) and 6( ' evaluated at the central
masses (So)s,i*, v of the octets. (Sp); is given by the
GMO formula

D p I'p. 'yF b'y gv2 p ~ BA(v)
aS, , (20)

47r ' BS;Db,

gg(s, v) gg (s, v) gg(s, v) gg(s, v)

BSb BS, BSp BS
(21)

where Xb, is the ratio of the coupling constant to its
degenerate limit. This ratio corresponds to a renor-
malized Singh-Gupta coefficient as defined by Wali and
Warnock. To simplify the notation in Eq. (20), we
delete the fact that the 86~ vi/oj S; terms are evaluated
at the SU(3)-symmetric limit. We note that the second
and fourth terms get their simple forms through the use
of Eqs. (16) and (17). Equation (18) is used along with
the above-mentioned identities to obtain the first term
in Eq. (20). It is through this renormalization condition
that the cutoQ-dependent term 60( ' is absorbed into
the symmetric coupling. The resulting expression for
Xp, , Eq. (20), involves only M &v&/8S, terms which are
cutoff-free. This particular feature insures a better
chance of quantitative success in the calculation of
coupling and mass shifts than in the computation of
absolute couplings and masses obtainable via bootstrap
constraint relations such a,s Eq. (18).

By inspection of Eqs. (8) and (10), it is clear that

(17) It is also found that 86' v'/8 S, can be written as sum
of integrals of the form

p pp Vp bT 2Db

Hence, using Eqs. (16) and (17), we obtain from

Eq. (13)
dx A(x, So,) dylVp "B(x,y, So,), (22)

-'(g v'/4~)~o'v' —pi (gs'/4~)ao'" =1. (18)

This relation corresponds to a renormalization condition
on the symmetric coupling constant gsDb, .

If the masses within the octets are now taken to be
nondegenerate, the coupling constants are shifted from
their symmetric values by amounts calculable from
Eq. (5). We consider only a first-order expansion of
Eq. (5) about the symmetric solution in the mass
diff erences 6 S,= S;—So;. All external and internal
masses associated with the triangle graphs correspond-
ing to A(s v' are perturbed from their symmetric values.
However, the vertices are kept SU(3)-symmetric. In so

doing, we get the general form for gb, .

where x and y are related to the n s by

n3 ——1—g.ny=p) n2=x —g)

Xo denotes the SU(3)-symmetric value of the 1V already
defined in Eq. (9) and r=1,2. A and 8 are simple
polynomial functions in x, y, and So,. While the y inte-
grations are done analytically, the x integrations require
numerical evaluation (Guass method).

III. RESULTS AND DISCUSSION

gbc gSDbc Xbc

Our results for the Xb, 's are presented in Table I. In
(19) these calculations, we chose g v'/4m = 2.15, which



186 BROKEN —SYM METRY COUPLE NGS FOR Ss —+~s&s 1473

corresponds to F, =110 MeV. gss/4sr is determined
from the observed width Fq z'pz'p 80 MeV and the
formula

(23)F„~,x, = e(g s'/4n)(Xxrc"')'I',
with

The resulting cubic equation for gs/Q(4sr) has a single
real root giving gs'/4sr=9.

From Table I, we obtain E„.=2.25, in agreement with
the experimental upper limit E„~&2.3. A choice of
g'/4sr) 2.15 results in an even stronger suppression of
the x~ mode of g'. As to the remaining 58I'8I'8 couplings,
no precise experimental data are yet available. Qualita-
tively, however, in the case of m-', the predicted ratio
(Xsrsc '/X „')'=2.2X10' concurs with the fact that
E+E' is the only mode seen.

A priori, our model does give a rather simplified
dynamical picture of the 0+ mesons. Thus, it could be
expected to offer little more than a suppression mecha-
nism for the p decay, and it is successful in this respect.
Hut, in addition, we find remarkably close agreement
with experiments.

However, the validity of our results is sensitive to at
least two kinds of dynamical effects not included in our
simple model. First, the large deviations in the coupling
shifts indicate that we should consider not just the mass
shifts but also the coupling-shift feedback terms,
certainly in the scalar-exchange part of the model.
Second, the higher-order effects of nonlinear mass
differences could either significantly alter our results or
leave them intact through the same compensating
mechanism which saves the decuplet equal-spacing
rule. "The second alternative may possibly explain why
the GMO rule in particular works so well in accounting
for experimental facts. The study of such phenomena
should be part of any future effort to improve on the
present model.
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An attempt is made to estimate the contribution to Res for the E-E system from the existence of CP
nonconservation in the

~
AI

~
)$ IC ~ 2n amplitude. In doing so, we have used as input three parametrisa-

tions of the S-wave I= 2 m-m scattering phase shift B2. These, in turn, were used to calculate the self-energy
contribution to the complex-mass matrix for the E'-E' system. It is found that the contribution of the
above amplitude to Res, although an order of magnitude larger than previous estimates by Truong and
Barshay, is smaller than experimental measurements of Res by at least a factor of 2.

I. INTRODUCTION

HK discovery' of El.' —+x+x established CI'
nonconservation. When the mode El. —+~'~

was first detected s the ratio F(Es,' —+ sroso)/F(E&o —+

sr+sr ) strongly suggested that the source of CP non-
conservation was in the

~

DI t )-'„Eo—+ 2sr mode. ' Such
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a model of CI' nonconservation was erst put forward
by Truong. 4 Some of the consequences of this model
were worked out by Truong, 4 and subsequently by
Barshay. ' One of the predictions of this model was that
the ratio F(Its,'~ sr'sro)/F(Er, '~ sr+sr ) be close to 2.
This was borne out by the original experiments' on
El, —+ + w', but more recent experiments' suggest that
this ratio is somewhat less than 2, but still large
enough to indicate the presence of CI' nonconservation

the phase of Z so that the amplitude for X' -+ 2sr (I=0) is real,
apart from the phase bp due to the final-state interaction, then the
amplitude for E' -+ 2s (I=2) is complex, apart from the phase
82 due to the final-state interaction.
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