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Modified Continuous-Moment Sum Rule and the Pomeranchon*
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Physics Department, Purdue University, Lafayette, Indiana 47907
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A modified form of the continuous-moment sum rule is employed to investigate whether or not the
Pomeranchon intercept np, deviates from its maximal value of unity in the forward direction. This sum
rule contains a continuously varying power of the amplitude, in addition to the usual continuously-varying
moment. Two particular cases, corresponding to the Grst and the second powers of the amplitude, are
analyzed in terms of unconstrained three-pole models. The two resulting solutions agree within the errors.
They have essentially the same value of nz, viz. , 0.988&0.01. Both give excellent fits to high-energy data
The value quoted above is favored over unity, although it is consistent with unity.

I. INTRODUCTION

w HETHER or not the Pomeranchuk. trajectory
nt*(t), where t is the negative square of momen-

tum transfer, attains the maximal intercept of unity in
the forward direction (t=0) has many important con-
sequences. If n&(0) (hereafter denoted by u&) equals
unity, then we can understand several experime'ntally
indicated features of high-energy hadron physics, such
as the constancy of all total cross sections, the equality
of the high-energy limits of all particle-antiparticle
total cross sections for a common target, and the purely
imaginary nature of all forward elastic scattering ampli-
tudes, among others. ' However, it has not been possible
to verify experimentally some of the predictions follow-
ing from the assumption of maximal intercept for the
Pomeranchon. The dynamical mechanism underlying
this assumption is also far from clear. Arguments based
on crossing matrices suggest that the Pomeranchon
should dominate all other trajectories and the Froissart
bound' prevents any trajectory above J=1 in the
forward direction, but there is no theoretical reason why
the Pomeranchon intercept cannot be less than unity. '
As a matter of fact, Cabibbo et a/. have argued that the
present experimental evidence does not rule out the
possibility of the intercept being considerably less than
unity. 4 These authors and Meshkov and Vodh' have
given two-pole models with n~=0.93. However, Olsson
and Yodh' have shown that all existing two-pole models
are inconsistent with their continuous-moment sum
rule (hereafter abbreviated as CMSR). On the other
hand, the only two three-pole models which survive
their test are constrained to have ng ——1.'

* Work supported by the U. S. Atomic Energy Commission.' For a complete discussion of this and some of the following
points, see G. F. Chew, Comments Nucl. Particle Phys. 1, 121
(1967).

2 M. Froissart, Phys. Rev. 123, 1053 (1961).' In physics "anything which is not prohibited is compulsory, "
according to Gell-Mann's principle. See O. M. Bilaniuk and
E. C. G. Sudarshan, Phys. Today 22, 43 (1969).

4 N. Cabibbo, L. Horowitz, J.J. J. Kokkedee, and V. Ne'eman,
Nuovo Cimento 45A, 275 (1965).

'S. Meshkov and G. B. Yodh, Phys. Rev. Letters 19, 603
(1967).' M. G. Olsson and G. B. Yodh, Phys. Rev. Letters 21, 1022
(1968).This paper contains a table of references to two-pole and
three-pole models.

-Interest in this question was revived recently by
Chew and Frazer who have proposed the value 0.99 for
n&. In view of the importance of this question, a
thorough investigation seems to be in order. In this
paper, we consider this question within the framework
of pure Regge-pole theory, since no reliable way of
evaluating the contribution of cuts exists.

To this end, we write down a modified form of CMSR
which contains a continuously varying power of the
crossing-even forward amplitude, in addition to a
continuously varying moment. This puts an additional
degree of freedom at our disposal. Thus, we can test the
stability of our solution by comparing two or more
independent equations, corresponding to diferent
powers.

The derivation of the sum rule, together with defini-
tions and normalization, is presented in Sec. II. In
Sec. III, we describe the evaluation of the real part of
the scattering amplitude and its error from an ordinary
dispersion relation. The calculation of the 6nite-energy
integrals and their errors are given in Sec. IV. In Sec. V,
we analyze the data in terms of one-, two-, and three-
pole models. We also discuss constrained and non-
constrained three-pole models and the stability of the
solutions. In the Appendix, we apply the phase repre-
sentation to determine the number of zeros of a given
amplitude "

II. MODIFIED CONTINUOUS-MOMENT
SUM RULE

fA. Definitions and Normalizations

Throughout this paper, F(&e) denotes the forward
crossing-even pion-nucleon scattering amplitude, while
co and q denote the laboratory energy and momentum
of the pion. The amplitude F(os) is given by

F(-)=-:LF.—.(-)+F..(-»
It is normalized so that the optical theorem is of the

s G. F. Chew and W. R. Frazer, Phys. Rev. 1S1, 1914 (1969).
'Y. S. Jin and S. W. MacDowell, Phys. Rev. 138, 81279

(1965).
v M. Sugawara and A. Tubis, Phys. Rev. Letters 9, 355 (1962);

Phys. Rev. 130, 2127 (1963).
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Fre. 1. Finite contour in the upper-half co plane.

is sufficiently large. It is usually assumed without proof
that the same expression gii(or) holds for ce real as well as
complex for ~&o~ &E. Here, we shall prove that this
equality holds for complex au also, provided it is under-
stood in the sense described below. " We assume the
following:

(1) g(co) =gii(id), where gii(~) is the Regge asymp-
totic limit of g(ie) for real id&1V.

(2) There are no poles in g(~0) in the region
fee[ &X.

form
If G(co) = g(co) —gii(co), then integration around the
contour in Fig. 2 givesI ~()=l~ --.()+ -"()j&= "'()&,

where 0. +„ is the 2r+p total cross section. Our definition
of the pion-nucleon coupling constant is

f2 g2 ( 1 2

=0.081&0.002.
42r 42r (2M

The nucleon pole term is given by

Fs(~)= 2f'&—el(~' ~e')

G(a)did+ G((u)dk)

+ G(o))d~0+ G((e)d4i =0. (4)

Now, by assumption (1), the integrals on the real axis
vanish, and if we let I" recede to infinity, the Sugawara-
Kanazawa theorem enables us to set the F' integral
equal to zero, too."So we are left with

where sos ——1/(2M); 3E is the nucleon mass. Natural
units are used everywhere, i.e., A=c= @=1. r(M)~~ fr~(~)-«. (5)

B. Modified Analytic Function and its
Analytic Proyerties

Consider the function

g(-)= '- -"-L (-)- (.)- .(-)+ -(.»r,
P&1+-,'~ (2)

C. Derivation of the Sum Rule

If we integrate g(cd) around the closed, finite contour
shown in Fig. 1, we get

g (~)d(u+ g ((o)dao =0. (3)

In order to evaluate the second term in Eq. (3), we
must know g(~) for complex cd. For real cu& 1V, we may
assume the Regge asymptotic form gii(co) for g(cu), if E

where p and X are real continuous variables. The
analytic structure of g(&o) is as follows: It has no poles.
Furthermore, the expression in the square brackets in
Eq. (2) has exactly two zeros at or = &p, as shown in the
Appendix. Since A. is a real, continuous variable, this
generates branch points in g(&d) at a&=&@. Of course,

q
'i' also gives cuts starting at ~=&p, . Thus, the phase

factor in the definition of g(~) guarantees that g(a&) is
real analytic in the cut cu plane. The restriction p(1+ 2X

comes from the threshold behavior qi 2e of g(&u), since
we want to avoid kinematic poles there.

That is, although g(cu) and gii(cu) may not be equal for
complex cu for ~~0~ &A, their integrals are. In other
words, as long as the equality is understood in the sense
of Eq. (5), g(cv) and gii(a&) are the same for all real and
complex co, provided ~co

~

&N. The rigorous derivation
of Eq. (5) does away with the necessity of deriving
finite-energy sum rules and CMSR's by assuming
superconvergence. ""The latter requires infinite con-
tours and often leads to spurious restrictions on the
continuously-varying moment.

Now we can evaluate the second term in Eq. (3),
assuming the following asyinptotic form for F(o&):

7;e '
F(a)) = —P — —

~

for M&N.
M2 sln2il iij h)01

(6)

~0———,'M and j run through all the allowed Regge
trajectories.

In the following, we shall assume a three-pole model,
unless stated otherwise. The Regge trajectories that can
be exchanged for the crossing-even amplitude F(cg) are
then the I', I", and I'". In order to evaluate the second
term in Eq. (3), we substitute Eqs. (5) and (6) into
Eq. (3), and note that the experimental data are con-

M This proof was completed with the help of Professor M.
Sugawara."M. Sugawara and A. Kanazawa, Phys. Rev. 123, 1895
(1961).

"M. G. Olsson, Phys. Rev. 171, 1681 (1968)."R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
(1968).
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X= 1 case, which is the ordinary CMSR, gives

( q)' 's pF(or) —8(or))-
f, (p) = ——

dqi
—

i
Im e'-&i

&Ni

A; iN ~i sinisrr(2P —n, ) b sinrrP
+

J N Corp 2 2p—+n; 2N(1 —p)

-R —N +N +R Rettr The X= 2 case gives
P& ,'. (-9)

FIG. 2. Contour used to derive Eq. (5).

sistent with F(li,)=0. If we define

y.g
—im0. 7't2j

(~/~p) '
COO SlI1~7l Or&

j=i 23

B(or) =Fir(or) —Fe(p),

then for all reasonable values of the I', I", I'" param-
eters, 1))iAs/A, ~))iAs/Ai~))iB/Aii. Therefore, we
can expand g(or) in a convergent binomial series. This
enables us to perform the integration around the finite
contour F. Ke are led to the following sum rule:

N (q i se

I(P,X) =—
dqi

— Im(e' &e "ifF(or) —B(or)J)

P(g+1)il x—lil l—mg m—nba

I' P —/+1) I' (l—m+1) I'(m —rs+ 1)I'(0+ 1)

(N *sin-', ~(2p —x)
&&i—,p&1y-', ~. (8)

(orp 2 —2P+x

I, m, and I are integers and

x =ni P. l)+n;(l m)+—n, (m n)—, —
&(~)= F~(~) Fe(1 ) = bq'/(~' ~e')—, —

b = 2f'~n/(1 —~~')

A, = pr/or p sin(-', rrnr), j= 1, 2, 3.

If P is fractional, the binomial series will be infinite.
However, since it is convergent, it can be terminated
after a finite number of terms to give any desired
accuracy. Our sum rule Eq. (8) reduces to many previ-
ous ones such as that of Igi, ' Dolen, Horn, and Schmid, "
and Olsson" as particular cases. Although our sum rule
is valid for all real X, the X= 1 and X= 2 cases are suffi-
cient for our purposes. So we give them explicitly. The

A; 'pN ' r sinrr(p —n, ) b'sin rrp

i N (or p 2(1—P+n ) 2Ns(1 —P)

2hrh;(N) '+ r sin-', 7r(2p —n, —n, )
+Z

'~r N' (orp& 2 2P+n—~+nr:

2bA; (N ~r sin-', rr(2p —n;)+2
N' Corp 2 —2p+n;

P&2 (10)

III. EVALUATION OF REAL PART AND ITS
ERRORS FROM AN ORDINARY

DISPERSION RELATION

The real part can be calculated from the dispersion
relation

where N= 5.03 Gev/c.
On the left-hand side of sum rules (9) and (10), the

same amplitude occurs in two different powers and, in
each case, the varying moment p weights the data differ-
ently. Thus, we are extracting informationfrom the given
data more efficiently than it was obtained from previous
CMSR analyses.

%e note that the sum rules obtained by taking dis-
crete values of p, for a fixed X, are complementary but
not independent, since all moments are not equally
effective. Therefore, it is essential to take into account
the entire range of p. For a given intercept n;, we can
find a value of X and a value of p which makes one of the
denominators very small. This emphasizes that particu-
lar trajectory. As P and X vary, different trajectories are
emphasized. A solution obtained in this way will be a
stable one.

In order to evaluate the integrals in our sum rules,
we must know both real and imaginary parts of the
amplitude. The imaginary parts can be computed from
the optical theorem. However, since the data on the
real part are scanty, we calculate it from an ordinary
dispersion relation, as described in the following section.

'4 K. Igi, Phys. Rev. Letters 19, 76 (1962); Phys. Rev. 130, 820 2f'or&q' 2q' "dq' +n( ))q
(1963l.

' ' ' ReF (q') = + P . (11)
'P M. G. Olsson, Nuovo Cnnento 57A, 420 (1968). (or —orgP) (1—oriP) 7I p



L. K. CHA VDA

Qo=8 «~/c, Q=3Qo, Qz=q/Q.

The parameters A, 8, and c extrapolate the high-energy
cross sections as follows":

gl+& = ',2+8/2.q' fo—rq& Qo. (13)

The last term in Eq. (12) comes from the series expan-
sion of the integran. d of the Q —oo integration. Since
Qz& s, the series converges rapidly and only a few terms
are needed. The 6rst integral is evaluated from experi-
mentally measured quantities by means of the piece-
wise Simpson rule.

The errors are calculated as follows. ' First of all, we
note that all data are subject to systematic errors and
that accurate estimates of these errors do not exist in

every case. Therefore, we include only the statistical
errors and treat all total cross sections as uncorrelated.
However, the parameters A, 8, and c are correlated.
Now, if X=X(Z;,S;) is a function of n independent
variables Z, and m correlated variables 5;, the error in
X is given by'~

BX ' BX BX
bX= Q —BZ; +g -(H ');s

BZ s&85 85g

—1/2

j, k =1, 2, , m. (14)

Here X may be the real part of the amplitude (12), or
it may be any complicated function of the total cross
sections and the parameters A, 8, and c. The II, I, is the

'6' use the following experimental data. The scattering
lengths: ate=0. 192~0.004, g3 ———0.096&0.002 in natural units,
from G. Hohler, G. Ebel, and J.Giesere, Z. Physik 180, 430 (1964).
The low-energy data are from V. S. Barashenkov and V. M.
Maltsev, Forschr. Physik. 9, 549 (1961).The intermediate-energy
data are from A. A. Carter et a/. , Phys. Rev. 168, 1457 (1968);
A. Diddens et al. , Phys. Rev. Letters 10, 262 (1963); A. Citron
et al., Phys. Rev. 144, 1101 (1966).The high-energy data are from
K. J. Foley et a/. , Phys. Rev. Letters 19, 330 (1967).

~~ J. Orear, University of California, Lawrence Radiation
Laboratory Report No. UCRL-8417, 1958 (unpublished).

For purposes of numerical evaluation, we may rewrite
(11) as

2j'a»q'
ReF(q') =

(oP —oe~') (1—co~')

2qs Qo dq~Lg (+)(q~) g (+)(q)$

7l 0 g
—

g

(Qo —
q—PA —g &+&(q)) lnI

x' &Qo+q

dq'

o q"(q"—q')

(Q )so
(12)

Q'+e „-e 2N+1+c

error matrix which we calculated from the high-energy
data and the parameters A, 8, and c."Since our calcu-
lations incorporate the latest data on ~E scattering,
they will be very useful for evaluation of sum rules. For
this reason, we give ReF(co), ImF(a&), and their errors in
Table I.

IV. EVALUATION OF SUM RULES
AND THEIR ERRORS

In Sec. III, we described the calculation of ReF(ee),
ImF(~), and their errors. Now we can evaluate I(p,X)
and its error for given p and )j.. For ) =1, p must be
smaller than ss. However, the value P= —', would require
a subtraction at the threshold and because of the large
errors there, we take p in the range —2&p&1. Simi-
larly, for ),= 2, we take —2&P&—', instead of —2&P&2.
In the ranges mentioned, the integrands are Gnite
everywhere. Then, we use the piece-wise Simpson rule
to evaluate I(p, ) ). For calculation of the errors, note
that the Simpson rule enables us to write

I(p, k) =g (c;a;+d,ye),

where x,, y; are the real and imaginary parts of the
amplitude at the momentum q; and c;, d; are functions
of momenta, 1V, p, and X. Now, if the real and imaginary
parts were completely independent, the error could be
calculated from Eq. (14) with only the first sum re-
tained. It turns out that the errors calculated in this
way are unrealistically small. However, since the real
part is calculated from the imaginary parts, there is a
certain degree of correlation between the two and also
between the real parts at diGerent energies. In view of
the fact that we have included only the statistical
errors which are quite small, we calculate the errors by
coherent addition, i.e.,

»(p, ) )=Z (lc;I»'+ Id'I»')

A different evaluation may lead to a somewhat different
estimate of errors. However, this will change primarily
the X.', and will not appreciably effect the solution, since
we have taken into account the whole range of p. As we
shall see, our solutions dnived from the X=1 and X= 2
cases are indeed mutually consistent, indicating strong
stability. In Figs. 3 and 4, we have plotted I&(P) and

ls(P) with their errors. The continuous curves are
calculated from the three-pole model, solutions C1 and
C2 (see Table II). The agreement is excellent.

V. ANALYSIS OF DATA IN TERMS OF
REGGE PARAMETERS

A. 1=1 Case

As described in Sec. IV, we have evaluated Ir(p) and
its error for 61 values of P in the range —2&P&1. This
information can be analyzed in terms of Regge-pole
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TABLE I. Real and imaginary parts of P are tabulated as functions of the pion lab momentum, g. The units of g are GeV/c and
the other quantities are in natural units. The real part and its error are calculated from Eq. (12).

g

0
0.108
0.115
0.140
0.150
0.168
0.206
0.219
0.237
0.242
0.254
0.271
0.277
0.292
0.303
0.320
0.337
0.353
0.385
0.424
0.454
0.565
'0.573
0.595
0.711
0.812
0.931
1.050
1.089
1.201
1.433
1.476
1.604
1.644
i./19
1.785
1.825
1.851
2.035

ReF

0+0.030
0.615~0.114
0.873&0.107
1.661&0.264
2.321&0.184
3.431+0.448
4.440&0.464
5.353+0.596
5.030+0.414
5.065+T.162
5.697&0.381
3.031+0.695
2.153+0.292
0.309+0.331—1.420+0.297—4.466&0.397—5.978+0.324—6.571&0.757—7.344+0.296—6.619+0.397—6.567+0.427—4.561+0.347—4.331+0.252—3.732+0.687—2.300+0.478—1.245%0.237
0.346+0.224—3.375+0.233—3.994+0.236—2.433~0.253—3.332&0.316—4.272&0.338—5.681+0.380—5.699+0.402—5.519+0.454—5.648+0.515—5.236+0.462—5.022~0.474—5.377+0.664

0
0.394&0.034
0.368&0.025
0.963+0.068
0.962+0.069
2.061+0.386
4.367&0.537
5.106+0.487
7.770&0.198
7.721~0.367

10.015+0.205
12.516+0.248
12.903+0.156
13.706&0.339
14.261+0.346
13.486+0.393
11.636+1.091
10.755+0.189
8.147&0.225
7.327+0.189
6.492&0.488
5.452+0.062
5.435&0.249
5.602&0.059
/. 851a0.041
7.619+0.040

12.020+0.044
14.920+0.047
14.214+0.051
14.481+0.058
20.079&0.062
20.440&0.064
20.400+0.073
20.366+0.175
20.659~0.094
21.221+0.107
21.310~0.202
21.826+0.122
23.853~0.207

g

2.102
2.135
2.245
2.346
2.456
2.470
2.520
2.620
2.656
2.720
2.820
2.866
2.920
3.020
3.067
3.120
3.220
3.27/
3.320
3.420
3.520
3.620
3.687
3.720
3.820
3.930
4.030
4.107
4.130
4.230
4.330
4.430
4.530
4.630
4.730
4.830
4.930
5.030

ReF

-5.903~0.625—6.150+0.625—5.679+0.675—6.135&0.830—6.929&1.046—6.914+0.859—6.881&0.862—7.215&0.914—7.388&0.927—7.740+0.974—7.889&1.037—8.058&1.064—8.229~1.107—8.394~1.179—8.427&1.214—8.457~ 1.267—8.836%1.339—8.794&1.384—8.777~1.425—9.042+ 1.508—9.199~1.596—9.419+1.688—9.636&1.754—9.718&1.787—9.820&1.880—10.089~1.990—10.601&2.094—10.237&2.175—10.209~2.218—10.779~2.311-10.764&2.419—10.911~2.533—11.024~2.650—11.127&2.770—11.247~2.892—11.370~3.018—11.494~3.146
-11.613~3.277

24.952~0.1/1
24.853~0.150
26.472+0.149
27.612~0.167
28.726~0.200
28.748+0.401
29.342+0.013
30.259+0.013
30.660+0.200
31.093~0.014
31.868+0.014
32.291~0.212
32.631+0.015
33.407+0.015
33.746~0.247
34.262+0.012
35.151+0.012
35.486&0.194
36.009+0.013
36.900+0.013
37.809~0.013
38.704+0.014
39.303&0.180
39.516~0.014
40.417&0.010
41.364~0.010
42.163+0.010
42.526~0.251
42.973~0.010
43.740~0.011
44.571~0.011
45.355+0.011
46.153+0.012
46.965~0.012
47.805~0.012
48.615+0.012
49.445~0.013
50.242+0.013

models. First, we consider the one-pole model. |A'e

minimize the difference between the two sides of Eq. (9)
with respect to the trajectory and the residue of the
Pomeranchon. We find a unique solution with ni (0)
=0.83 and yJ ——23.12. However, this disagrees badly
with high-energy total cross sections, as pointed out by
Olsson. " For two-pole models, we verify Olsson and
Yodh's conclusions, ' viz. , those solutions which give a
good 6t to the high-energy data give very bad X' to our
sum rule and vice versa. The following is a typical
two-pole solution:

ug ——0.989~0.01, Yg ——12.41~0.3,
ng ——0.54 %0.02, yg ——I1.69&0.4.

This gives a X'=52 for 61 values of P, and a Xx=212 for
8 experimental high-energy total cross sections.

This inability of the two-pole models to satisfy the
high-energy and the low-energy constraints simul-
taneously indicates a more complex system of singu-
larities. within the framework oi pure Regge theory
this convict can be avoided by introducing a third pole
E".One may associate the latter with the broad J=0,
isoscalar mx resonance e."Or, one may look upon it as a
manifestation of a cut in the angular momentum plane.
The P" can be associated with fs, while the Pomeran-
chon, which is generated by the nonresonating back.-
ground and has a small slope, may be a Qat trajectory
without any known particle associated with it.

TABLE II. Comparison of constrained and unconstrained three-pole models. (X')B,E. is the X' for g experimental
high-energy total cross sections. The xp and xss correspond to Eqs. (9) and (10), respectively.

Solution

Ci
C2
03

0.988 ~0.01 T2.980~0.2 0.440 +0.02
0.9879~0.01 12.900+0.2 0.4579~0.02

1 12.08 0.49

11.324+0.3 —0.500 &0.03 9.856~0.3
11.193&0.3 —0.5572&0.04 10.121~0.3

11.81 —0.5 9.48

Xl X2 (X )H.E.

7.9 14.5 2.07
8.3 9.8 2.92

23.3 42.7 2.14
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the method is quite general, we consider the pion-
nucleon scattering in the forward direction, for definite-
ness.

Consider a function A(cc) satisfying the following
properties: It is analytic in the ~ plane, except for a
finite number of poles and cuts on the real axis. A (&oi)
= &A(c0). It is bounded polynomially as ice i

—+ eo. It
is real-analytic, i.e., A*(~)=A(o&*). Now we define a
phase 6(cc) of A(c0) as follows:

A (cc)=a
I
A (cc) I

e"i"i (A1)

50
CL

+

where the upper (lower) sign is to be taken if ReA (p) is
positive (negative). For the first case, 0&8(c0)&s and
for the second, —s &6(cc)&0. If ReA (p) = 0, continuity
arguments determine the sign.

If we assume further that 6(~) is finite, we can show
that'

49—
E, (cc)

A (oi) = exp
Q. (~)

dec'co'B(ca')
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where z and p are, respectively, the number of zeros and
poles of A (oi), while P.(cc) and Q„(cc) are polynomials of
order z and p. The asymptotic behavior of A (o&) is

FIG. 5. Total cross-section sum 0- -„+sr +„ in mb versus g in
GeV/c. The data are from Foley et a/. , Ref. 16. The continuous
curve is calculated from our solution C1, Table II.

seems to be favored over unity. We list the following
points in support of this:

(1) Both the l~= 1 and X= 2 sum rules give essentially
the same value n~ ——0.988.

(2) Both solutions give excellent fits to the observed
high-energy total cross sections, as can be seen from
Table II and Fig. 5.

(3) Solutions constrained to n& 1give——consistently
higher X' for the sum-rule Qts.

(4) In the case of three-pole models, even if we start
a run with n~ ——i or 1.01, the minimized output solu-
tions always give 0.& less than unity.
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APPENDIX

Here we describe briedy the method of determination
of the number of zeros of a given amplitude. Although

A (oi) =oyez
—u-(s(z'l8(wl (A3)

Here, z is even (odd) if A (cc) is crossing-even (odd).
Now we take A(cc) =F(cc)—F(p)—Fii(oi)+alii(p),

where all the quantities are defined in the text. By con-
struction, this amplitude has two zeros at cv= ~p and
no poles. We must show that these are the only zeros of
A(cc). Since ReA(p) =0, one must turn to continuity
arguments to determine the sign in Eq. (A1). From
Table I, it is easy to see that ReA (oi))0 for ~c —+ +p.
Thus, the upper sign is implied in Eq. (A1). Therefore,
the phase is in the range 0&6(cc) m for alice. Comparing
(A3) with the Regge asymptotic behavior, we get

The Regge behavior also determines the phase b(co) as

b(~) =s ——,'~err .

From Eqs. (A4) and (A5), we obtain

(AS)

z= p+2.
Note that this result is independent of whether or not
ap is unity. Now since A(cc) has no poles, s=2. This
means that A (o&) has exactly two zeros which are located
at ~= &p.

The odd amplitude can be treated similarly. The
crucial result is Eq. (A3) which is valid for both even
and odd amplitudes.


