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A modified form of the continuous-moment sum rule is employed to investigate whether or not the
Pomeranchon intercept ap, deviates from its maximal value of unity in the forward direction. This sum
rule contains a continuously varying power of the amplitude, in addition to the usual continuously-varying
moment. Two particular cases, corresponding to the first and the second powers of the amplitude, are
analyzed in terms of unconstrained three-pole models. The two resulting solutions agree within the errors.
They have essentially the same value of ap, viz., 0.98820.01. Both give excellent fits to high-energy data
The value quoted above is favored over unity, although it is consistent with unity.

I INTRODUCTION

HETHER or not the Pomeranchuk trajectory

ap(t), where ¢ is the negative square of momen-
tum transfer, attains the maximal intercept of unity in
the forward direction (¢=0) has many important con-
sequences. If ap(0) (hereafter denoted by ap) equals
unity, then we can understand several experimentally
indicated features of high-energy hadron physics, such
as the constancy of all total cross sections, the equality
of the high-energy limits of all particle-antiparticle
total cross sections for a common target, and the purely
imaginary nature of all forward elastic scattering ampli-
tudes, among others.! However, it has not been possible
to verify experimentally some of the predictions follow-
ing from the assumption of maximal intercept for the
Pomeranchon. The dynamical mechanism underlying
this assumption is also far from clear. Arguments based
on crossing matrices suggest that the Pomeranchon
should dominate all other trajectories and the Froissart
bound? prevents any trajectory above J=1 in the
forward direction, but there is no theoretical reason why
the Pomeranchon intercept cannot be less than unity.?
As a matter of fact, Cabibbo et al. have argued that the
present experimental evidence does not rule out the
possibility of the intercept being considerably less than
unity.* These authors and Meshkov and Yodh® have
given two-pole models with ap=0.93. However, Olsson
and Yodh® have shown that all existing two-pole models
are inconsistent with their continuous-moment sum
rule (hereafter abbreviated as CMSR). On the other
hand, the only two three-pole models which survive
their test are constrained to have ap=1.°

* Work supported by the U. S. Atomic Energy Commission.

1 For a complete discussion of this and some of the following
Foin;;, see G. F. Chew, Comments Nucl. Particle Phys. 1, 121

1967).

2 M. Froissart, Phys. Rev. 123, 1053 (1961).

3 In physics ‘“anything which is not prohibited is compulsory,”
according to Gell-Mann’s principle. See O. M. Bilaniuk and
E. C. G. Sudarshan, Phys. Today 22, 43 (1969).

4 N. Cabibbo, L. Horowitz, J. J. J. Kokkedee, and Y. Ne’eman,
Nuovo Cimento 454, 275 (1965).

{ 5S7.) Meshkov and G. B. Yodh, Phys. Rev. Letters 19, 603
1967).

¢ M. G. Olsson and G. B. Yodh, Phys. Rev. Letters 21, 1022
(1968). This paper contains a table of references to two-pole and
three-pole models.
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Interest in this question was revived recently by
Chew and Frazer who have proposed the value 0.99 for

ap.” In view of the importance of this question, a

thorough investigation seems to be in order. In this
paper, we consider this question within the framework
of pure Regge-pole theory, since no reliable way of
evaluating the contribution of cuts exists.

To this end, we write down a modified form of CMSR
which contains a continuously varying power of the
crossing-even forward amplitude, in addition to a
continuously varying moment. This puts an additional
degree of freedom at our disposal. Thus, we can test the
stability of our solution by comparing two or more
independent equations, corresponding to different
powers.

The derivation of the sum rule, together with defini-
tions and normalization, is presented in Sec. II. In
Sec. ITI, we describe the evaluation of the real part of
the scattering amplitude and its error from an ordinary
dispersion relation. The calculation of the finite-energy
integrals and their errors are given in Sec. IV. In Sec. V,
we analyze the data in terms of one-, two-, and three-
pole models. We also discuss constrained and non-
constrained three-pole models and the stability of the
solutions. In the Appendix, we apply the phase repre-
sentation to determine the number of zeros of a given
amplitude.’:?

II. MODIFIED CONTINUOUS-MOMENT
SUM RULE

fA. Definitions and Normalizations

Throughout this paper, F(w) denotes the forward
crossing-even pion-nucleon scattering amplitude, while
w and ¢ denote the laboratory energy and momentum
of the pion. The amplitude F(w) is given by

F(w)=3[Frp(@)+Frtp(w)].
It is normalized so that the optical theorem is of the

7G. F. Chew and W. R. Frazer, Phys. Rev. 181, 1914 (1969).

8Yj S. Jin and S. W. MacDowell, Phys. Rev. 138, B1279
(1965).

9 M. Sugawara and A. Tubis, Phys. Rev. Letters 9, 355 (1962) ;
Phys. Rev. 130, 2127 (1963).
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F1c. 1. Finite contour in the upper-half w plane.

form
ImF (w)=3[orp(@)torp(w) Jg=0 P (w)g, (1)

where o+, is the 7£p total cross section. Our definition
of the pion-nucleon coupling constant is

f2 2 1 2

——=~g—<——> =0.08140.002.

dr 4w \2M

The nucleon pole term is given by
Fp(w)=—2fwp/(*—ws"),

where wp=1/(2M); M is the nucleon mass. Natural
units are used everywhere, i.e., A=c=p=1.

B. Modified Analytic Function and its
Analytic Properties

Consider the function

g(@)=e"ENw[F (w)—F (u)—Fp(w)+Fp(u) Pg 28,
B<1+3N (2)

where 8 and N\ are real continuous variables. The
analytic structure of g(w) is as follows: It has no poles.
Furthermore, the expression in the square brackets in
Eq. (2) has exactly two zeros at w= =y, as shown in the
Appendix. Since M is a real, continuous variable, this
generates branch points in g(w) at w==pu. Of course,
g% also gives cuts starting at w=d=u. Thus, the phase
factor in the definition of g(w) guarantees that g(w) is
real analytic in the cut w plane. The restriction 8<142\
comes from the threshold behavior ¢*2# of g(w), since
we want to avoid kinematic poles there.

C. Derivation of the Sum Rule

If we integrate g(w) around the closed, finite contour
shown in Fig. 1, we get

/_ +NN g (@)oot ﬁ g(@)a=0. 3)

In order to evaluate the second term in Eq. (3), we
must know g(w) for complex w. For real w> N, we may
assume the Regge asymptotic form gg(w) for g(w), if N
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is sufficiently large. It is usually assumed without proof
that the same expression gg(w) holds for w real as well as
complex for |w|>N. Here, we shall prove that this
equality holds for complex w also, provided it is under-
stood in the sense described below.’® We assume the
following :

(1) g(w)=gr(w), where gr(w) is the Regge asymp-
totic limit of g(w) for real w>N.

(2) There are no poles in g(w) in the region
lo|>N.

If G(w)=g(w)—gr(w), then integration around the
contour in Fig. 2 gives

/P G ()dert- /_ _:G(w)dw
+/P'G(w)dw+LNG(w)dw=0. @

Now, by assumption (1), the integrals on the real axis
vanish, and if we let IV recede to infinity, the Sugawara-
Kanazawa theorem enables us to set the I integral
equal to zero, too.!* So we are left with

ﬁ ¢(@)do= / ex(w)do. ©)

That is, although g(w) and gr(w) may not be equal for
complex w for |w|>N, their integrals are. In other
words, as long as the equality is understood in the sense
of Eq. (5), g(w) and gg(w) are the same for all real and
complex w, provided |w|>N. The rigorous derivation
of Eq. (5) does away with the necessity of deriving
finite-energy sum rules and CMSR’s by assuming
superconvergence.'?’® The latter requires infinite con-
tours and often leads to spurious restrictions on the
continuously-varying moment.

Now we can evaluate the second term in Eq. (3),
assuming the following asymptotic form for F(w):

'yje—irajlz w\ %
F(w)=—2—-————<~—> forw>N.  (6)

i wosingma;\wp

wo=2M and j run through all the allowed Regge
trajectories.

In the following, we shall assume a three-pole model,
unless stated otherwise. The Regge trajectories that can
be exchanged for the crossing-even amplitude F(w) are
then the P, P/, and P”. In order to evaluate the second
term in Eq. (3), we substitute Egs. (5) and (6) into
Eq. (3), and note that the experimental data are con-

0 This proof was completed with the help of Professor M.
Sugawara.

1 M. Sugawara and A. Kanazawa, Phys. Rev. 123, 1895
(1961).

2 M, G. Olsson, Phys. Rev. 171, 1681 (1968).

8 R, Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768
(1968).
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F16. 2. Contour used to derive Eq. (5).

sistent with F(u)=0. If we define

'yje——imxj/Z
Afz_—-——(w/w())ai ) ]=1) 2: 3
wg singma;
B(w)=Fp(w)—Fp), (M)

then for all reasonable values of the P, P/, P"" param-
eters, 1>>|A4,/A41]>>|A3/A1]>>|B/A1|. Therefore, we
can expand g(w) in a convergent binomial series. This
enables us to perform the integration around the finite
contour I'. We are led to the following sum rule:

N 1—28
m,x>=§7— / dq(% Im{e#*#VF @) — B ()]}

T ()\+1)A1)‘—lAzl—mA3m—"b"
mn TO— I+ DT (= m+ 1T (m—n+1)T (1)

N\?sinir(28—x)
X(——) — ) B<14IN. (8)

Wo 2—26‘{“96

I, m, and » are integers and

x=a1()\—l)+a2(l—m)+a3(m—n) y
B(w)=Fp(w)—Fp(n)=b¢*/ (" —ws®),
b= 2f2w3/(1——w32) 5

Aj=",/wesin(3ma;), j7=1,2,3.

If X is fractional, the binomial series will be infinite.
However, since it is convergent, it can be terminated
after a finite number of terms to give any desired
accuracy. Our sum rule Eq. (8) reduces to many previ-
ous ones such as that of Igi,"* Dolen, Horn, and Schmid,®®
and Olsson®® as particular cases. Although our sum rule
is valid for all real \, the A=1 and A=2 cases are sufh-
cient for our purposes. So we give them explicitly. The

4 K. Igi, Phys. Rev. Letters 19, 76 (1962); Phys. Rev. 130, 820

(1963).
15 M. G. Olsson, Nuovo Cimento 57A, 420 (1968).
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A=1 case, which is the ordinary CMSR, gives

=L ) )

A; N)“i sin%vr(ZB—oz,-)¢
7 N( 2-28+ta; 2N(1—B)’
B<3. (9

b sinmf

wo
The N\=2 case gives

et [ o(2) )]

- <Aj>2 (N )2"‘7' sinm (B —a;) 1 b? sinwB
T\ \e/ 200-B+ay) 2N2(1—p)
2Ain<N)ai+a" singm (28— —a;)

2—-2B4aita;
ZbA]/N i Sin%ﬂ' (26"-'(!])
22
7N \wy/  2—28+ta

+2
=i N2

Wo

, B<2 (10)

where N=5.03 GeV/c.

On the left-hand side of sum rules (9) and (10), the
same amplitude occurs in two different powers and, in
each case, the varying moment 3 weights the data differ-
ently. Thus, we are extracting informationfrom the given
data more efficiently than it was obtained from previous
CMSR analyses.

We note that the sum rules obtained by taking dis-
crete values of 8, for a fixed A, are complementary but
not independent, since all moments are not equally
effective. Therefore, it is essential to take into account
the entire range of 8. For a given intercept «;, we can
find a value of A and a value of 8 which makes one of the
denominators very small. This emphasizes that particu-
lar trajectory. As 3 and X vary, different trajectories are
emphasized. A solution obtained in this way will be a
stable one.

In order to evaluate the integrals in our sum rules,
we must know both real and imaginary parts of the
amplitude. The imaginary parts can be computed from
the optical theorem. However, since the data on the
real part are scanty, we calculate it from an ordinary
dispersion relation, as described in the following section.

III. EVALUATION OF REAL PART AND ITS
ERRORS FROM AN ORDINARY
DISPERSION RELATION

The real part can be calculated from the dispersion
relation

2f2ng2 N 2q2P/.w dq’(f ) (qr)
0

(002""(.032)(1—6032) I T qu_q2

ReF (¢?) = . (11)
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For purposes of numerical evaluation, we may rewrite
(11) as

2f2w3q2
ReF () =——
M o —ast) (l—wr?)

L 2¢ ®dgle™®(q)—aP(g)]
" /0 qrz_ qz

™

—[A—s ()] 1n<Q°_q>

Qotq
Bg @ dg
L f S
™ Jao ¢°(¢"—¢%)

B 2 © 2n
{ _‘1 5> ©Qr) (1)
T n=0 2n+1-4¢

00=8GeV/e, Q=500, Qr=0/Q.

The parameters 4, B, and ¢ extrapolate the high-energy
cross sections as follows!6:

e =14+4B/2° for ¢>(Qo. (13)

The last term in Eq. (12) comes from the series expan-
sion of the integrand of the @— o integration. Since
Qr<%, the series converges rapidly and only a few terms
are needed. The first integral is evaluated from experi-
mentally measured quantities by means of the piece-
wise Simpson rule.

The errors are calculated as follows.'” First of all, we
note that all data are subject to systematic errors and
that accurate estimates of these errors do not exist in
every case. Therefore, we include only the statistical
errors and treat all total cross sections as uncorrelated.
However, the parameters 4, B, and ¢ are correlated.
Now, if X=X (Z,,S;) is a function of # independent
variables Z, and m correlated variables .S;, the error in
X is given by?

n /70X 2 0X 0X 1/2
ax=[z ( azi) 4y ~—»—<H-1>,~k] ,
=1 aZ‘ ik aS] 6Sk

where

j)k=17 2) e, M. (14)

Here X may be the real part of the amplitude (12), or
it may be any complicated function of the total cross
sections and the parameters 4, B, and ¢. The H;, is the

16 We use the following experimental data. The scattering
lengths: @;=0.1924+0.004, e¢;=—0.096+-0.002 in natural units,
from G. Hohler, G. Ebel, and J. Giesere, Z. Physik 180, 430 (1964).
The low-energy data are from V. S. Barashenkov and V. M.
Maltsev, Forschr. Physik 9, 549 (1961). The intermediate-energy
data are from A. A. Carter ef al., Phys. Rev. 168, 1457 (1968);
A. Diddens et al., Phys. Rev. Letters 10, 262 (1963); A. Citron
et al., Phys. Rev. 144, 1101 (1966). The high-energy data are from
K. J. Foley et al., Phys. Rev. Letters 19, 330 (1967).

17]. Orear, University of California, Lawrence Radiation
Laboratory Report No. UCRL-8417, 1958 (unpublished).
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error matrix which we calculated from the high-energy
data and the parameters 4, B, and ¢.} Since our calcu-
lations incorporate the latest data on wV scattering,
they will be very useful for evaluation of sum rules. For
this reason, we give ReF (w), ImF (w), and their errors in
Table 1.

IV. EVALUATION OF SUM RULES
AND THEIR_ERRORS

In Sec. III, we described the calculation of ReF (w),
ImF(w), and their errors. Now we can evaluate 1(8,\)
and its error for given 8 and A. For A=1, 8 must be
smaller than £. However, the value 8=% would require
a subtraction at the threshold and because of the large
errors there, we take 8 in the range —2<B8<1. Simi-
larly, for A\=2, we take —2<B8<$ instead of —2<8<2.
In the ranges mentioned, the integrands are finite
everywhere. Then, we use the piece-wise Simpson rule
to evaluate 7(8,\). For calculation of the errors, note
that the Simpson rule enables us to write

I(ﬂ))\) :Z (cixf—l—d@yi) )

where x;, y; are the real and imaginary parts of the
amplitude at the momentum g¢; and ¢;, d; are functions
of momenta, IV, 8, and X\. Now, if the real and imaginary
parts were completely independent, the error could be
calculated from Eq. (14) with only the first sum re-
tained. It turns out that the errors calculated in this
way are unrealistically small. However, since the real
part is calculated from the imaginary parts, there is a
certain degree of correlation between the two and also
between the real parts at different energies. In view of
the fact that we have included only the statistical
errors which are quite small, we calculate the errors by
coherent addition, i.e.,

SIBN =2 (|cildwst]di]63:).

A different evaluation may lead to a somewhat different
estimate of errors. However, this will change primarily
the X2, and will not appreciably effect the solution, since
we have taken into account the whole range of 8. As we
shall see, our solutions derived from the A=1 and A=2
cases are indeed mutually consistent, indicating strong
stability. In Figs. 3 and 4, we have plotted I1(8) and
I,(3) with their errors. The continuous curves are
calculated from the three-pole model, solutions C1 and
C2 (see Table II). The agreement is excellent.

V. ANALYSIS OF DATA IN TERMS OF
REGGE PARAMETERS
A. A=1 Case

As described in Sec. IV, we have evaluated 71(8) and
its error for 61 values of 8 in the range —2<B<1. This
information can be analyzed in terms of Regge-pole
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TAsBLE I. Real and imaginary parts of F are tabulated as functions of the pion lab momentum, ¢. The units of ¢ are GeV/¢c and
the other quantities are in natural units. The real part and its error are calculated from Eq. (12).

q ReF ImF q ReF ImF

0 0-0.030 0 2.102 —5.9034-0.625 24.952-0.171
0.108 0.615+-0.114 0.3944-0.034 2.135 —6.150+0.625 24.853-+0.150
0.115 0.873+40.107 0.368+0.025 2.245 —5.679+0.675 26.472-+0.149
0.140 1.6614-0.264 0.963+-0.068 2.346 —6.135-:0.830 27.6124-0.167
0.150 2.32140.184 0.962--0.069 2.456 —6.9294-1.046 28.7260.200
0.168 3.4314+0.448 2.061+4-0.386 2.470 —6.914+0.859 28.748-+0.401
0.206 4.4404-0.464 4.367+0.537 2.520 —6.881+0.862 29.3424-0.013
0.219 5.35340.596 5.106+0.487 2.620 —7.215£0.914 30.259+0.013
0.237 5.030+0.414 7.770£0.198 2.656 —7.388+0.927 30.660--0.200
0.242 5.0654-1.162 7.7214+0.367 2.720 —7.740+0.974 31.093+0.014
0.254 5.69740.381 10.015-:0.205 2.820 —7.88941.037 31.868-+0.014
0.271 3.0314:0.695 12.5164-0.248 2.866 —8.058-+-1.064 32.291£0.212
0.277 2.153-+0.292 12.903+-0.156 2.920 —8.229+1.107 32.631+0.015
0.292 0.309+0.331 13.706+0.339 3.020 —8.394+1.179 33.4074-0.015
0.303 —1.4204-0.297 14.2614-0.346 3.067 —8.427+1.214 33.7464-0.247
0.320 —4.466+0.397 13.486-0.393 3.120 —8.457+£1.267 34.26240.012
0.337 —5.978+0.324 11.6364-1.091 3.220 —8.836+1.339 35.151+0.012
0.353 —6.571+£0.757 10.755-+0.189 3.277 —8.7944+-1.384 35.4864-0.194
0.385 —7.3444-0.296 8.14740.225 3.320 —8.777+1.425 36.0094-0.013
0.424 —6.619+0.397 7.327+0.189 3.420 —9.042+1.508 36.9004-0.013
0.454 —6.567+0.427 6.492-£0.488 3.520 —9.1994+-1.596 37.809+0.013
0.565 —4.56140.347 5.452+0.062 3.620 —9.4194-1.688 38.704-0.014
0.573 —4.331+£0.252 5.435+0.249 3.687 —9.636+1.754 39.303+0.180
0.595 —3.732+0.687 5.602+-0.059 3.720 —9.718+1.787 39.516-:0.014
0.711 —2.300+0.478 7.85140.041 3.820 —9.820-+1.880 40.4174-0.010
0.812 —1.245+0.237 7.619-£0.040 3.930 —10.0894-1.990 41.364--0.010
0.931 0.3464-0.224 12.020+0.044 4.030 —10.6014-2.094 42.163+0.010
1.050 —3.375+0.233 14.9204-0.047 4.107 —10.23742.175 42.526+0.251
1.089 —3.994-+0.236 14.2144-0.051 4.130 —10.2094-2.218 42.9734-0.010
1.201 —2.433+0.253 14.4814-0.058 4.230 —10.779+2.311 43.740=+0.011
1.433 —3.332+0.316 20.079-0.062 4.330 —10.764+2.419 44.57140.011
1.476 —4.2724+0.338 20.440-+0.064 4.430 —10.91142.533 45.355+-0.011
1.604 —5.681+0.380 20.400+0.073 4.530 —11.0244-2.650 46.1534-0.012
1.644 —5.699-+0.402 20.366-0.175 4.630 —11.12742.770 46.9654-0.012
1.719 —5.519+0.454 20.659+0.094 4.730 —11.2474-2.892 47.805+-0.012
1.785 —5.648+0.515 21.221+0.107 4.830 —11.37043.018 48.6154-0.012
1.825 —5.236-£0.462 21.3104-0.202 4.930 —11.4944-3.146 49.445-+0.013
1.851 —5.022+0.474 21.826+0.122 5.030 —11.61343.277 50.2424-0.013
2.035 —5.377+0.664 23.853+0.207

models. First, we consider the one-pole model. We
minimize the difference between the two sides of Eq. (9)
with respect to the trajectory and the residue of the
Pomeranchon. We find a unique solution with ap(0)
=0.83 and yp=23.12. However, this disagrees badly
with high-energy total cross sections, as pointed out by
Olsson.’® For two-pole models, we verify Olsson and
Yodh’s conclusions,® viz., those solutions which give a
good fit to the high-energy data give very bad X* to our
sum rule and vice versa. The following is a typical
two-pole solution :

ap =0.9894-0.01,
ap=0.54 £-0.02,

vp =12.410.3,
vp=11.69-04.

This gives a X*=>57 for 61 values of 8, and a X2=217 for
8 experimental high-energy total cross sections.

This inability of the two-pole models to satisfy the
high-energy and the low-energy constraints simul-
taneously indicates a more complex system of singu-
larities. Within the framework or pure Regge theory
this conflict can be avoided by introducing a third pole
P’. One may associate the latter with the broad J=0,
isoscalar wm resonance e.!® Or, one may look upon it as a
manifestation of a cut in the angular momentum plane.
The P’ can be associated with fo, while the Pomeran-
chon, which is generated by the nonresonating back-
ground and has a small slope, may be a flat trajectory
without any known particle associated with it.

TasLE II. Comparison of constrained and unconstrained three-pole models. (x?)u.g. is the x? for 8 experimental
high-energy total cross sections. The X2 and X4 correspond to Egs. (9) and (10), respectively.

Solution a1 7 s Y2 as V3 X2 x?2 (Am.E.
C1 0.988 +0.01 12.980+0.2 0.440 +0.02 11.324+0.3 —0.500 =+0.03 9.8564-0.3 79 145 207
C2 0.987940.01 12.900+0.2 0.4579+0.02 11.193+0.3 —0.55724-0.04 10.1214-0.3 8.3 9.8 292
03 1 12.08 0.49 11.81 —-0.5 9.48 23.3 427 2.14
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F1c. 3. Plot of I;(8) (in natural units) versus 8. I;(8) and its
error are calculated from the integral in Eq. (9). The range of 8
is —2<B<1 and the interval is 0.05. The continuous curve is
calculated from the parameters of our solution C1, given in
Table II.

Next, we consider the three-pole model. As first
pointed out by Della Selva et al.,'® we find that the
controlling parameter is ap. This means that the X? is
more sensitive to small variations in ap than to those in
other parameters. Now, if the errors in the sum rule are
big (8-10%), then one cannot hope to determine small
deviations of ap from unity. This forced some earlier
authors®!5 to fix ap at unity. In our case, the errors are
at most 3-4%. So we can hope to make an uncon-
strainted three-pole fit to the sum rule. In Table II, we
present the solution C1 which gives the lowest X? to an
unconstrained three-pole fit. Now an important ques-
tion is: How stable is this solution for small perturba-
tions in the value of the parameters? As noted earlier,
the X2 is most sensitive to small perturbations in ap. It
turns out that all the solutions having X? values close to
one another do not differ appreciably in their values for
ap. The variations in other parameters are somewhat
larger but are still within the errors. Any solution with
appreciably different ap will have considerably larger
X2,

If we take Olsson’s constrained three-pole solution!®
03 (see Table II) and evaluate its X* value from our
data, we find a X2=23 for the A=1 case, as opposed to
X2=17.9 for our solution C1. In order to investigate this
point we, too, made a three-pole fit with ap=1 and
apr=—32. We find that such constrained fits give con-

18 A, Della Selva, L. Masperi, and R. Odorico, Nuovo Cimento
554, 602 (1968).
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sistently larger X?, the lowest being about 509, higher
than that for our solution C1.

Another interesting point is that, in the cases of one-
and two-pole fits, if we start the run with ap=1 and
appropriate values for other parameters, the output
(minimized) solutions often had values of ap somewhat
larger than unity. This is one more indication of the
inadequacy of the one- and two-pole models. However,
this never happened in case of three-pole fits, despite the
fact that some of the runs were initiated with ap=1
and 1.01.

B. A=2 Case

Here we repeat the minimization process only for the
unconstrained three-pole fits. The solution we obtain
here is denoted by C2. Its parameters and characteris-
tics are given in Table II. Now we can test the stability
of the solutions C1 and C2 by comparing their X2 for
both A=1 and A=2 cases. This is done in Table II,
where we also compare our solutions with one of the
typical constrained solutions, viz., the O3 solution of
Olsson®® where ap=1 and apr=—%. The important
thing that emerges from this analysis is that the Pomer-
anchon intercept comes out essentially the same in both
cases, C1 and C2.

VI. CONCLUSION

In conclusion, we find that although the value of ap
is consistent with unity within the errors, the value 0.99

1,(B) IN NATURAL UNITS
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F16. 4. Plot of 75(8) (in natural units) versus 8. I,(8) and its
error are calculated from the integral in Eq. (10). The range of 8
is —2<B<% and the interval is 0.05. The continuous curve is
cTaIICJlillaItIed from the parameters of our solution C2, given in

able II.
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Fic. 5. Total cross-section sum oz~p+o4+p in mb versus ¢ in
GeV/c. The data are from Foley et al., Ref. 16. The continuous
curve is calculated from our solution Cl Table II.

seems to be favored over unity. We list the following
points in support of this:

(1) Both theA=1 and A= 2 sum rules give essentially
the same value ap=10.988.

(2) Both solutions give excellent fits to the observed
high-energy total cross sections, as can be seen from
Table IT and Fig. 5.

(3) Solutions constrained to ap=1 give consistently
higher X2 for the sum-rule fits.

(4) In the case of three-pole models, even if we start
a run with ap=1 or 1.01, the minimized output solu-
tions always give ap less than unity.
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APPENDIX

Here we describe briefly the method of determination
of the number of zeros of a given amplitude. Although

MODIFIED CONTINUOUS-MOMENT SUM RULE
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the method is quite general, we consider the pion-
nucleon scattering in the forward direction, for definite-
ness.

Consider a function A4(w) satisfying the following
properties: It is analytic in the w plane, except for a
finite number of poles and cuts on the real axis. 4 (w)
=4 (w). It is bounded polynomially as |w| — oo. It
is real-analytic, i.e., 4*(w)=A4 (v*). Now we define a
phase §(w) of 4 (w) as follows:

A(w)==%]4(w)]e?@, (A1)

where the upper (lower) sign is to be taken if Red (k) is
positive (negative). For the first case, 0<8(w)<<w and
for the second, —7<é(w)<0. If Red (u)=0, continuity
arguments determine the sign.

If we assume further that 6(<0) is finite, we can show
that?

L e

where z and p are, respectively, the number of zeros and
poles of 4 (w), while P, (w) and Q,(w) are polynomials of
order z and p. The asymptotic behavior of 4 (w) is

A () =@M

Aw)=

(A3)

Here, 2 is even (odd) if 4 (w) is crossing-even (odd).
Now we take A(w)=F(w)—Fu)—Fz(w)+Fzu),
where all the quantities are defined in the text. By con-
struction, this amplitude has two zeros at w= 4y and
no poles. We must show that these are the only zeros of
A (w). Since Red (4)=0, one must turn to continuity
arguments to determine the sign in Eq. (Al). From
Table I, it is easy to see that Red (w)>0 for w — +pu.
Thus, the upper sign is implied in Eq. (A1). Therefore,
the phase is in the range 0<<é(w) < for all w. Comparing
(A3) with the Regge asymptotic behavior, we get

z=p+(2/m)3()+ap. (A4)
The Regge behavior also determines the phase 6() as

§(o)=7—1irap. (AS)
From Egs. (A4) and (AS), we obtain
= p+-2. (A6)

Note that this result is independent of whether or not
ap is unity. Now since 4 (w) has no poles, z=2. This
means that 4 (w) has exactly two zeros which are located
at w=-=wu.

The odd amphtude can be treated similarly. The
crucial result is Eq. (A3) which is valid for both even
and odd amplitudes.



