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Other methods, such as the point-splitting technique
do not seem to have any practical significance.

It is unfortunate that the point-splitting technique
cannot be used to calculate the various anomalies that.
have been discovered. It is seen that this method sim-
plifies the calculation considerably in that it presents a
formal expression for the anomaly which is moderately
easy to evaluate; see (3.4). Moreover from the structure
of the formulas for the anomalies, in the point-splitting
context, one may hope to be able to prove results inde-
pendent of perturbation theory. Perhaps a useful point
of view about the point-splitting device is that it pro-
vides a clue to the existence of anomalies. The precise
value then must be computed by the method relevant
to the application —typically by the 8JL method.

(d) Although we have found q-number ST in some of
our models, their significance to the usual applications
of current algebra seems to be minimal. The only im-
portant role that ST have had, to our knowledge, has
been in connection with Weinberg's first sum rule. "It
is true that in derivations of that result, frequently the
assumption is employed that the ST are c numbers,
which is not valid in our models. However that assump-
tion is in fact too strong —the sum rule requires merely
the equality of the vacuum expectation values of the
ETC between vector currents and axial-vector currents.

"S.Weinberg, Phys. Rev. Letters 18, 507 (1967).

This equality is maintained in the present investigation,
as is seen from (2.7). Thus, the first Weinberg sum rule
holds, even though the ST are q nunibers.

On the other hand, our considerations indicate that
the use of canonical commutation relations to draw con-
clusions concerning the asymptotic behavior of electro-
production amplitudes or the convergence of radiative
corrections in general and mass shifts in particular is
highly suspect. Not only can the interactions change the
values and tensor structure of the commutators, " they
also can introduce entirely new forms. The usual
"proofs" contain strong implicit assumptions concerning
the dynamics.

Electromagnetic mass shifts may be of particular
interest; if there is a neutral scalar meson, then the
Cottingham formula applied to any shift should yield a
quadratic divergence even though there are no charged
boson fields. To be sure, this divergence would, in a
complete theory, be associated with the electromagnetic
mass renormalization of the neutral scalar particle, ' but
the Cottingham formula is indiGerent to the source of
the divergence.
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Integral equations suitable for the dynamical treatment of strongly interacting particles are derived.

The equations can be described as Bethe-Salpeter equations with one particle restricted to the mass shell,

resulting in a three-dimensional covariant equation which can be easily interpreted physically. To restore

the dynamical terms omitted in the process of restricting one particle to the mass shell, additional kernels

are added to the irreducible kernels from the original Bethe-Salpeter equation. The addition of these extra
terms leads to a resulting simplification in the kernels themselves, since the new kernels have the same

structure as the original ones, with some partial cancellations. Estimates as to the convergence of the

procedure and the sizes of the various potentials are given. The special case of the hydrogen atom is dis-

cussed briefly, and comments are made on the application. of these equations to the nuclear-force problem.

Connections between scattering equations and bound-state equations are discussed, and the relativistic
normalization condition for bound-state wave functions is derived.

I. INTRODUCTION AND DISCUSSION

~ VERYONE knows that the hydrogen atom can be
~ quite well described by nonrelativistic quantum

mechanics and that only the finer details require the
application of the ideas of relativistic field theory (in
the form of the Bethe-Salpeter equation). On the other
hand, even though much progress has been made in the
last 20 years toward an understanding of the nuclear

* Supported in part by the U. S. Once of Naval Research.

force, no one has yet been able to construct a simple

reasonably accurate theoretical description of the
deuteron. The striking simplicity of the hydrogen atom
is sharply contrasted with the complexity of the current
models of the nuclear force, which usually have about
10 adjustable parameters and can be said to be as
complicated as is theoretically possible. ' Is it really

' See Rev. Mod. Phys. 39, 495—718 (1967) for a recent review
of the status of the nucleon-nucleon interaction.
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true that one cannot construct a simple theoretical
description of the essential features of the deuteron and,
if so, what is the property of the dynamics of the nu-
clear force which prevents such a description when the
hydrogen atom can be handled so well?

Motivated originally by the above considerations,
we concern ourselves in this paper to the general prob-
lem of the construction of covariant integral equations
which satisfactorily describe the behavior of strongly
interacting particles. In a subsequent paper these equa-
tions are used to analyze the low-energy nucleon-
nucleon system.

It is desirable that the equations have a simple
physical interpretation and be fairly easy to work. with.
These conditions are achieved by starting with equa-
tions of the Bethe-Salpeter type, but restricting one
of the particles to its positive-energy mass shell. The
result is a covariant three-dimensional equation. The
dynamics must also be correct, of course, and the con-
tributions left out of the Bethe-Salpeter equation by
restricting one particle to the mass shell can be rein-
troduced by enlarging the number of terms one includes
in the kernel. One might first think that this would
complicate the problem, but. as it turns out the opposite
is true. The new terms added to the old kernel tend to
cancel some of the old terms, resulting in some simplifi-
cations and a better physical understanding of the re-
rnaining terms, which now (because of the three-
dimensional nature of the equation) can be viewed as
a sum of relativistic potentials. The nth potential has a
range characteristic of the exchange of n quanta, and
hence by restricting ourselves to the 6rst n terms we
describe the force to a distance of X/n, where X is the
Compton wavelength of the particle which generates
the force. And the equations have the desirable feature
that they reduce to Schrodinger or Dirac equations in
the nonrelativistic limit. Hence the new equations are
especially suitable for the description of low-energy
systems, and by way of illustration we show in Sec.
III C how an effective Dirac equation for the hydrogen
atom can be derived. (See Sec. II 8 for a verbal sum-
mary of how to construct the equations and correspond-
ing kernels and for an explicit example for scalar
particles. )

Another advantage of the equations described above
is that the wave function one obtains corresponds to
one particle off the mass shell, and such solutions are
precisely those needed to describe the interaction of
loosely bound systems in scattering theory or to use the
two-body interaction in the treatment of three-body
forces. In such situations it is usually a sufficient
approximation to regard one of the particles as a specta-
tor, and hence to restrict it to its mass shell. '

In developing the equations in the following sections,
we focus attention on the "nonrelativistic" domain; we
assume that the kinetic energies of the interacting
particles are small compared to their rest mass and that

' F. Gross (to be published).' F. Gross, Phys. Rev. 140, B410 (1965).

the mass of the exchanged. particle which accounts for
the interaction is small compared to the mass of the
interacting particles. If these conditions are met, then
our arguments can be regarded as a derivation of the
equations within the dynamical assumptions we make.
If these conditions do not obtain, the equations still
provide a dynamical model for the strong interactions
in the same way that, for example, the Bethe-Salpeter
equation in the ladder approximation is a dynamical
model.

Our approach differs from that taken recently by
Blankenbecler and Sugar, and by Namyslowski. 4 Both
of these approaches focus attention on the unitarity
condition on the right-hand sid" the equations are
constructed from the unitarity cuts contributed by the
lowest-lying intermediate states, both elastic and in-
elastic. In a problem involving the form factors of
loosely bound systems, ' we found some time ago that
selected pieces from many inelastic contributions to the
unitarity sum were necessary to properly describe the
dynamics, and we see in Sec. II that this also tends to
be true for the low-energy scattering or bound-state
problem. Hence our approach focuses attention on the
range and strength of the diferent forces which con-
tribute to the interaction, and not on the presence or
absence of right-hand cuts. As it turns out, the contribu-
tions we include contain elastic and inelastic cuts. In
other aspects, our approach is similar to that of Ref. 4;
in particular, a difhculty common to all approaches of
this type is that crossing symmetry is not handled very
well.

In Sec. II A we outline the arguments used to con-
struct the integral equations, and in Sec. II B we obtain
the equations explicitly for some simple cases involving
spin-zero "nucleons" and the exchange of spin-zero
bosons. In Sec. III we turn to the complications which
arise when one extends the ideas of Sec. II to inter-
actions of two spin--,' nucleons through the exchange
of massive scalar and pseudoscalar mesons. We find that
the equations developed can be applied to the case of
scalar-meson exchange, but that we encounter obstacles
in the pseudoscalar case, which explain why it is difficult
to treat the nucleon interaction. Among our observations
is that the difhculty with the low-energy nucleon-
nucleon system results not so much from the intrinsic
nature of the strong interactions, but rather from the
unfortunate fact that the pion is a pseudoscalar particle
t see the discussion following Eq. (3.17)j.We will show
in a subsequent paper' how this difficulty can be cir-
cumvented by considering the two-pion exchange as a
single relativistic interaction, which turns out to be
equivalent primarily to the exchange of a scalar meson
of distributed mass, and hence amenable to the tech-
niques developed here.

In Sec. IV we discuss how to obtain the corresponding

4 R..Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966};
J. M. Namyslowski, ibid. 160, 1522 (1967). See also additional
references in both papers.

s F. Gross, Phys. Rev. 134, B405 (1964); 136, 3140 (1964).



bound-state equation from any integral equation for the
scattering amplitude. We also give a simple derivation
of the normalization condition for bound-state wave
functions.

II. SCALAR THEORY
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In this section we develop our general approach
for the simplest case possibl~ two neutral scalar
"nucleons" of mass 3f interacting by the exchange of a
neutral scalar meson of mass o-&&3f.

We begin by writing out the Feynman perturbation
series for the interaction of the nucleons by the succes-
sive exchange of 0- mesons. We consider all O.-meson ex-
changes, but exclude nucleon self-energy terms and
meson-nucleon vertex corrections. These terms could
be incorporated later by using phenomenological meson-
nucleon form factors or by using information about the
meson-nucleon scattering amplitude. The diagrams we
consider are shown explicitly in fourth order in Fig. 1

and in sixth order in Fig. 2.
We next examine each Feynman diagram, and de-

compose it into a finite number of covariant pieces.
The method of doing this will be described later. These
pieces turn out to be of different orders in the small
parameter (0/M). When all the pieces from all the
Feynman diagrams are regarded collectively, we have
a new perturbation series. If the dimensionless coupling
constant g is not too large, so that

g= (g'/32~) (~/M) (1, (2.1)

then some of the terms in this new series diverge while
the remaining terms converge. In the case (2.1), it is

easy to construct covariant integral equations which,
when iterated, correspond to the diverging parts of the
series. Hence, the entire series can be handled by first
solving the integral equations and then using perturba-
tion theory. The number of kernels or potentials one
needs in the integral equation is finite. When f) 1, we

may still employ this method, since the potentials we

must use have shorter and shorter range. However,
we must now use an infinite number of potentials with

larger and larger couplings if we wish to solve the
problem completely.

Although our development makes use of a perturba-
tion series which does not generally converge, we feel
that the integral equations we derive should be a good
approximation, even if the corresponding series does
diverge. The principal restriction on the usefulness of
our method is the requirement (2.1) (in order that only
a finite number of potentials be needed) and the require-
ment that o/3f((1, in order th. at the series converge
rapidly.

A. Derivation of the Equation

Ke will examine the exchange diagrams in second,
fourth, and sixth order in some detail. Afterwards, the
trends will become clear and we can make the discus-
sion more general.
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FIG. 1. Feynman diagrams in fourth order included in the
dynamical model discussed in the text. Solid jines are "nucleons"
and dashed lines mesons.
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FIG. 2. Feynman diagrams in sixth order included
in the dynamical model.

The interaction Lagrangian is

~ =g(~ )'"(P44+0'k4'), (2.2)

where the factor (cV0)'I' has been added to make g
dimensionless. Hence the scattering amplitude in second
order is attractive:

~"'=—g'~~/E~' —(p p')'7. (—2 3)

If we restrict both particles to the mass shell, we have
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the usual nonrelativistic erst Born approximation. '

On (2 ) g2~or/Lor2+ (y y~) 2] (2 4)

The 6rst interesting questions arise in fourth order.
There are two exchange diagrams, shown in Fig. 1.
We think of these diagrams as the relativistic second
Born approximation and investigate how they differ
from the iteration of (2.4). If the dynamics can be
described by the potential (2.4) then the fourth-order
terms should not differ signi6cantly from the iteration of
(2.4).

po= po'=0, (2.5)

and the diagram gives

First, we consider the box diagram, Fig. 1(a), and
again restrict ourselves to the case when both external
particles are on the mass shell. The computations are
much simpler if we restrict ourselves to forward scatter-
ing p= p', which should not be too restrictive since at
low energies the scattering is mostly S-wave anyway.
Hence, in the c.m. system,

ig4(MO)'
~(4a)

(2m)4
1

(& —&,) —k,'—.)L(&,+&,) —k, —.)t (2.6)

where
~4;= (~'+k')'I' E4,= (3E'+k')'I' (2 7)

g4M20'
BR (4~&=

BR (4 )=-+
g4&20-2

(2zr)'

X (2.9a)
SZ,Z„(Z,—Z„)L~2—(Z, —Z„)z)z

'

g43f2O2
ORp(4 &=

(2zr)'

where

and

(2.9b)
(2(g)zL(gy g )& 40&)&p(//+AD )&

iver= 12~&(g~&++ &) 10404 2(km y&)&

g4%20-2

m «-~=
(2zr)'

We decompose this diagram into three covariant pieces
by performing the kp integration, using the residue
theorem. Closing the contour in the lower half kp plane
gives

on&4 &= on &4.&+ on, &4 ~+ on &4-& (2.S)

where On~ are the residues from the positive (negative)
energy nucleon poles and BRp is the contribution from
the (double) meson pole. Hence, if a&=—+~1„

g4M02
K+(4 )

3r-ooo 4(2~) 8

d'k

(kz —g' —z4) L~'+(p —k) ']'

d4kbt (2W —k)' —M')8(ko —',W)
X (2.9e)

L(1W+k)2 ~2)L~2 (p k)2]2

In a nonrelativistic situation, when the total energy
W=—23//+4 is close to 2&V (so that 4«M), then

p' = (-'W)' M' M—4= b—' (2.10)

In this situation one expects that the intermediate
nucleons remain close to their mass shell. Hence we
intuitively expect QR+ to be the dominant term, and
5K, which picks up the explicit negative-energy pole
(contributions from far off the mass shell), to be quite
small. Finally, BRp which comes from the energy singu-
larities of the pion propagators, should be smaller than
BR+ if retardation effects in the potential are small, as
one expects.

It is easy to evaluate the terms (2.9) in the limit when
y2 0'~b2&&M2, and this is 'sufficient to bear out these
intuitive observations. We observe that the integrand
of BR+ and Gap is uniformly convergent as k or 3E~~,
and hence the 3f~~ limit can be taken under the
integral. Similarly, BR is uniformly convergnet as 0.,
8, y —+ 0 and k ~~, so this limit may be taken. Wt:
obtain:

(2.9c)
sz,z,(z,+z,)( '—(~4+&.)')'

Although these separate pieces of the fourth-order dia-
gram do not appear to be separately covariant, one can
easily see that they are by noting that (2.9a) and (2.9c)
can be written in a manifestly covariant form:

OIrp(4 '

g4~2~2
(4a)

OR (4&
(2m)'

f
d4kbf(z' W+k) ' 3E')8('W+ko)—-X,(2.9d)
L(-;W—k)' —mz)p~& —(p —k)']''

g4 30

~ " (27r)' 16 L '+(p k)']'"—
g4r2 " k'dk

~"" 64zr'3l 0 EI,(EI.+M)'

(2.11b)
g

32~2'

g4~2

(2.11c)
192+2&2

= ( g4/327r)3f/(o 2—i6), (2.11a)—
2 d k
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Note that in this limit BRO and 5R are energy-
independent. We have

OR+ 4 /ORo'4' = —7rM/(o —2ii&) M/o))1, (2.12)

and we see that when o-((M the total interaction is well
approximated by the positive-energy nucleon pole, and
that this approximation holds for energies of the order
of 0., but certainly not for energies of the order of M.
If O-=M, then the interaction is of very short range and
is dominated by large-nucleon kinetic energies, which
means that the nucleons are far off the mass shell and
the other off-mass-shell contributions are important as
well.

The remaining fourth-order contribution comes from
the crossed-box diagram shown in Fig. 1(b). Near
threshold we intuitively expect this diagram to be
smaller than the uncrossed box, because it requires two
mesons to be present at the same time, and hence
the nucleons must be farther off their mass shell. A
second line of reasoning derives from noting that if we
neglect retardation, so that the interaction is instanta-
neous, then the crossed box is greatly suppressed. '
Mathematically this comes about because there is no
positive-energy nucleon pole in the lower-half complex
ko plane, so that the dominant term BR+ is now missing. ~

The diagram gives

ig4%2O-2
BR&4"=

(2&r)' [Ep~bo —(E„—k,)'—ie][Eb' —(E„—kp) '—ie](o&o—kp' —ie) ' (2.13)

3g4cr' "k2dk —g4
%0(4 '

7

32m2 o)' 32z2
(2.15a)

g4o' "k'dk[6M(Eb+M)+4k']
Olr (4'&

64~'M o Eb'(Eb+M) '

g4~2

(2.15b)
32m'M2

Hence we see that BR& ~) is smaller than BR( ) by a
factor of o./M, and, furthermore, that the dominant
terms of ORot"= ORo" '+ ORo"" cancel. This means
that 5R+.&4 ) agrees with the exact fourth-order contribu-
tion ORt4& to order (o/M)'. In calculating ORt'& we

obtain a better answer from the (simple) contribution
OR+t"& than we do from the (more complicated) ladder
approximation OR( ). These cancellations referred to

Closing the ko contour in the lower-half plane, we see
that there is no positive-energy nucleon pole, so that

ORt'b&= OR, t'b&+ OR t4b&. (2.14)

Taking the M ~~ limit as in the uncrossed case gives

in Sec. I are an important advantage of our procedure
over the conventional Bethe-Salpeter approach.

The fact that the crossed graph tends to cancel the
box graph has been known for a long time. This cancel-
lation has shown up in a number of different ways.
Bethe and Salpeter showed in their classic paper that
for neutral scalar particles the instantaneous potential
gives correct results to order (o/M)'. P In an interesting
paper, Charap and Fubini showed that the crossed
graph tends to cancel an energy-dependent part of the
box graph —making the two together more suitable for
a static potential than the box diagram alone. ' What we
see here is that the simple approximation BR+&'~&

similarly benefits from this cancellation —because of the
cancellation it is more accurate than one would expect.
For charged theories, the two fourth-order diagrams
have different isospin coefficients, so the cancellation is
not complete.

We now consider the sixth-order diagrams, all of
which are shown in Fig. 2, First, we examine the con-
tributions from the various singularities for the ladder
diagram, Fig. 2(a), at threshold (i.e., for simplicity we
assume p= 0 and suppress the —ie):

where

BR&' )=
d4kgd4k2

(2~)' D(~b, ' —kro')(~b. ' —kpo') [~b, b,' —(kro —kpo)']
(2.16a)

D= [(E„—M)P —k P][(Eb —M)P —kpoo][(E„+M)P—kroo][(Eb +M)P —k P] (2.16b)

If we now perform the &~0 and k2o integrations in the complex plane, there will be terms arising from positive-
energy nucleon poles (+),meson poles (0), negative-energy nucleon poles (—), and combinations of these. We saw
in fourth order that the negative-energy poles gave a very small contribution. We will therefore neglect these
residues entirely. Hence, we have

ORt'& OR„+'"&+OR/pt" y ORpp&' & (2.17)

' Even if the interaction is instantaneous, there is still a con- tribution from the crossed box. See the discussion in Sec. III C and
the original paper by E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).' If we had closed the contour in the upper half-plane we would have encountered two nucleon poles which are still suppressed because
they nearly cancel.

P J. M. Charap and S. P. Fuhini, Nuovo Cirnento 14, 540 (1959).
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where

Again, in the limit 0/M~ 0, the above integral can
be exactly evaluated. Taking the limit M —&oo in (2.18)
and performing the angular integrations gives

from the positive-energy nucleon poles. LFigure 2(b)
with ro 0and——Figs. 2(c) and (d) are of this type. $

(ii) The positive-energy poles occur in clusters like

where

dx] cfxv

x&xg (1+x'') (1+xo2)

gin
1+(xg+ x2) '

I+ (x&—x2)'

g' )' 4MC
(4a) ~

~

g2

32~)
(2.19)

=3. (2.20)

(EI,—M+ko —io)-'(Eo .—M+ko —ro —io)—'

&& (E„—M+r, —i.)-'.
The poles in ro are now in both halves of the complex
plane, but the poles in ko are all in the upper half-plane
so that when we close the ko contour in the lower half-
plane we will miss the nucleon pole entirely and obtain
k~~0-. Hence, the ro poles are now separated by a
distance of order 0-, so that they contribute terms no
larger than those already contributed by the meson
poles. LFigures 2(e) and 2(f) are of this type. )

In a similar way, we show that the other terms are
of the following orders:

OR+o &o ' OR„+" '(0/M), ORoo'"& OR++ ~o '(0/M)'.
(2.21)

The reason for this is that the internal momenta are
always of order cr, and the internal energy will be of
order a if we take the residue at a meson pole, or of
order 0'/M if we take the residue at a, positive-energy
nucleon pole. Hence, for box diagrams in which a par-
ticular energy occurs in two meson propagators and two
nucleon propagators, the contribution from a meson
pole will be proportional to

meson pole=(1/o)',

while if we take a nucleon pole instead, it will be of order

nucleon pole= (1/~)'M/o'= (1/o)'M/o .

The same argument holds for each box in any ladder
diagram. Hence, if we have a ladder diagram involving
the exchange of n mesons, the contribution resulting
from the n-meson residues will be down by order (o./M)"
compared to the dominant contribution where all the
positive-energy nucleon poles are retained.

In a similar manner one can develop a general rule
for estimating the size of the other sixth-order diagrams
shown in Fig. 2. One notes that in the parts of the
diagrams where mesons are crossed (i.e. , where the
diagrams cannot be separated into two disjoint pieces
by cutting nucleon lines only), one of two situations
arises:

In higher-order diagrams the same arguments apply,
as the reader can easily conhrm for himself.

Our conclusion, then, is that in all irreducible parts
of meson-exchange diagrams, the positive-energy
nucleon poles will give contributions no larger than
meson poles, while in diagrams which are reducible,
each positive-energy nucleon pole gives an enhancement
of order M/o over the corresponding meson pole. Note
that a cut through a diagram which reduces it is also a
two-body unitarity cut, so that we may also say that
the diagrams are dominated by the two-body elastic
unitary contributions.

From the above considerations we obtain the follow-

ing rough estimate for the size of a 2nth-order irreduci-
ble diagram:

(g'M )"( IC )"
'

OR ~o-&=
o' k(zm. )'M'

Mq g'I
(z.zz)

a 1 (27r)o 3III

where E is some effective constant depending on the
details of the three-dimensional momentum integra-
tions which can be obtained only by comparing the
individual diagrams. In what follows, we will use the
letter n to represent the number of meson exchanges in
any diagram. If a 2nth-order diagram can be reduced
r ways, then the leading term comes from the r positive-
energy nucleon poles so that the diagram is enhanced:

(i) The positive-energy nucleon poles occur in pairs
like

/ M g'E q"-'pMq"
OR C2.&=

/

go

(2 )oMP 4 )
(2.23)

(Ej„. M+ko io) '(E„——M+ko —rioo)—
in which case they are both in the upper half-plane.
Consequently, when we close the ko contour in the lower
half-plane we will avoid them and get no contribution

It is now clear how to construct the covariant integral
equations referred to at the beginning. In any order of
perturbation theory, the largest pieces of the Feynman
diagrams come from the positive-energy nucleon poles
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in the ladder diagram. If we introduce the effective ex-
pansion parameter

g =g'K/(2s. )', (2.24)

we see that at threshold the dominant pieces of the
ladder sum give a series like

ORg=(g'3l/o)(1 —g+q' — +q — ). (2.25)

In fact, by examining (2.4), (2.11a), and (2.19), we
conjecture that E~4x' is a representative value, so
that the effective-expansion parameter is something like

meson effects could be treated as a perturbation. Of
course, if p& is dose to unity, we would probably want
to include the two-meson potential anyway.

In a similar fashion we could add, if necessary, three-
meson potentials. These would be computed from the
sixth-order graphs shown in Fig. 2; we would take all
those pieces derived from two-meson poles or one-meson
pole and a nucleon pole buried in irreducible parts of
the diagram. The effective expansion parameter for the
three-pion-exchange contributions would be

g&= g'/32~. (2.26) ge ggLgg(0/M) j'. (2.30)

If g~) 1, we think of the series (2.25) as a symbolic
representation of the integral equation which can be
written to correspond to this series. This integral equa-
tion is a simple three-dimensional covariant equation,
and we take it as the 6rst approximation to the scatter-
ing problem. The kernel for the integral equation is a
form of the one-meson-exchange potential. We will
write this equation explicitly below.

The next largest series of terms we would have to
consider comes from pieces of Feynman diagrams where
there are at least n —2 two-body unitarity cuts (or n 2—
ways to reduce the diagram). In these diagrams we pick
up the n —2 positive-energy nucleon poles, and one re-
maining meson pole. The only diagrams of this type are
ladder diagrams, or ladderlike diagrams which contain
at most one crossed-meson box, as in Fig. 1(b) or Figs.
2(c) and 2(d). To sum such terms as this, requires the
addition of a new potential or kernel to the integral
equation corresponding to a part of the two-meson-ex-
change contribution. This kernel is the sum of the meson-
pole contributions from the crossed and uncrossed box,
Figs. 1(a) and 1(b). Adding this potential gives us more
than the terms referred to above; in particular it also
gives us all iterations of the new potential itself. The
terms which involve only the iteration of the new po-
tential include only n= even, and go like

(2n) Lgn(~/0)gL~ (0/~)gn —&(~/~), n-l

= (0/32~) I nx'(~/~)1" ' (2.27)

Hence the effective two-meson-exchange expansion
parameter is

gP(0/3I), (2.28)

and the iteration of the two-meson potential at threshold
looks like

OR2= (g'/32~) (1+F2+g2'+ +g2~+ ~ ) . (2.29)

The pattern is now clear. If g2&1, then we again
think of this series as a symbolic representation of some
of the terms which would be generated by iterating the
integral equation with one- and two-meson-exchange
potentials. If g2&1, then the series converges, and it is
not necessary to sum the two-meson-exchange potential
to all orders. We assume if q2&1 that the one-meson-
exchange potential would be suQicient, and that two-

For the p-meson-exchange terms we expect an expan-
sion parameter lik.e

(2.31)

Hence, as long as $= gz(0/cV) (1LEq. (2.1)g, there will
always be a p such that g~(1, no matter how large p&

is. For these theories we can sum up all of the divergent
terms with a three-dimensional covariant integral equa-
tion with a Qnite number of potentials or interaction
kernels (p of them). The method is clumsy if p is greater
than 3.

At this point we observe that because of the cancel-
lation LKqs. (2.10b) and (2.14a)j in the two-meson
potential for neutral theories, the one-meson-exchange
term includes all the major sects up to three-meson
exchange. In the case of charged exchange, there will
be no such cancellation and the two-meson potentials
can be expected to be important. This turns out to be
extremely important in the case of the deuteron.

3. Summary and Example

We now summarize the prescription for writing down
the wave equation and the corresponding potentials.
One begins with the usual Bethe-Salpeter equation but
restricts one of the particles to the mass shell. The pre-
cise form of the equation can be obtained by formally
integrating over the internal energy ko, picking up the
positive-energy pole, and ignoring the ko singularities in
the kernels and wave function (or scattering amplitude).
These singularities are restored (as described in Sec. I)
by adding terms to the original sum of irreducible dia-
grams which defines the potential. To get the new po-
tential involving the exchange of n quanta, we take all
diagrams with n quanta exchanged, whether reducible
or not, and do the internal energy integrations picking
up all poles except positive-energy nucleon poles cor-
responding to two-body unitarity cuts in reducible
diagrams. These contributions have already been in-
cluded in the iteration of lower-order potentials. Note
that the nth-order potential contains pieces of inelastic
cuts involving n mesons as referred to in Sec. I. Finally,
we note that the arguments in Sec. II A serve merely
to show that in the nonrelativistic domain one has
reason to believe that this is a convergent procedure.
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Pl
I

p+p
I 2

p =I/2(p-p)
I 2

p = I/2 (p —
p )

I 2

mass shell (the variables are defined in Fig. 3):
OR(p P'W ) =G(P O' W)

d'k G(p, kW) OR(k, p', W)
(2.32)

(22r) 2(282 —W) 2WE2

If particle 1 is on the mass shell, then

(1W+p)2 M2 (1W+ pi)2 M2

which means that

(2.33)

(0)

+ k I +

n

+ h +
J /

pp=E~ ,'W, p—&&'
———E~.——2'W, (2.34)

so that BR and G no longer depend on the full four-
momentum but only on the three-momentum. However,
the restriction to three-momentum is done in a co-
variant fashion, so that BR and G are still covariant
objects. They are simply scattering amplitudes with
particle 2 off the mass shell. In the same way, the three-
dimensional k integration is actually covariant.

The kernels are
FIG. 3. Symbolic representation of the integral equation and

potentials (up to two-boson-exchange terms). A cross on any
particle line means that the particle is restricted to its mass shell.

G(p, k,W) =G&'&(p, k,W)+G&'&(p, k,W), (2.35)

As an example of the preceding, we give the wave
equation if one- and two-meson potentials are retained.
This relativistic wave equation is a Bethe-Salpeter
equation with one of the nucleons (particle 1) on the

(2.36a)G&"(p, k, W) =
'+( —k)' —(E„—Z )'

G&'&(p, k, W) =G&' &(p k W)+G&"&(p k W) (2.36b)

g4~2~2
G'4'(p, k, W) =

2(22r) 2

g4~2~2
G&'"(p,k,W) =

2(2m-) 2

dlq[~, ' (~2 ,+&2 —&n)'-7 '—
+k+-+ p,(, ,+z,) 7Lz, —(w —z,—2,)'7

d2qp~ ~22 (~2,+&.—&,)'7—
+k~ p.

~2,L&~2,' —(~2-,—&.)'7I:&.' —(W —&2—~2-.)'7

(2.36c)

(2.36d)

The term G(4 ' comes from the meson-pole contributions
to the uncrossed box while G"') is the meson-pole con-
tributions to the crossed box. For completeness we
should include the negative-energy nucleon poles in
these potentials also, but since they are much smaller we
have ignored them. These kernels are covariant.

At this point one could adopt the philosophy that the
kernels (2.36) should be treated exactly and Eq. (2.32)
solved numerically using these kernels. One would argue
that even though the dynamics has been accurately
described only to order (o/M)' by these kernels, an
exact treatment guarantees Lorentz invariance and
may introduce relativistic terms which are meaningful,
even though comparable terms have already been
neglected. We think there is much to be said for this
point of view, but we will now adopt a different on- we
will work in the c.m. system, and neglect all terms of
order (o/M)' or higher. This means that in the two-
meson-exchange kernels, we neglect all terms of order

—g2MO.
G&'&(p, k,W) =

o2+~2

G&4~&(p, k, W) = —G&4'&(p, k,W)

(2.38a)

where

g4~2 oo

Sm'
(2.38b)

(A12 o2) 1/2 4+12+~2

4 = p —k, l&2=Me= M(W —2M) . (2.39)

We restrict the external momenta to order 0-. Exami-
nation of the integrals show that they converge and that
internal momenta can also be regarded as of order 0..
Hence, neglecting all terms of order (o/M)', we have
the approximate equations

oR(p,p', w) =G(p, p', w)

d'k G(p, k,W) OR(k, p', W)
(2.37)

(2m-) '4M(k' —&&2)

and
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2-

between the crossed and uncrossed two-meson diagrams.
If it were a theory of isovector "nucleons" and mesons,
then the crossed and uncrossed box give different iso-
spin factors:

V+V

'Sing'+

8 bing' g' (uncrossed box),
—8«8~~ —5,t;8t, ~ (crossed box),

(2.45)

where the initial nucleons have isospin a, b and the final
nucleons a', b'.

In this case

-2- g= g~bo~r br grab'ba = 6aa'itibb' p (2.46)

-3-

-4-

-5-

O. l 0.2 0.3 0.4 0.5
r (irl 0" )

Fxc. 4. Graphs of the potentials for the
numerical example given in Sec. II B.

0.6

which means that the second-order potential has the
effect of the exchange of an equivalent distribution of
heavy isovector mesons. In the actual case of nucleons
interacting by the exchange of pseudoscalar mesons, a
similar cancellation occurs which results in the second-
order potential being largely equivalent to the exchange
of a distribution of scalar mesons.

In Fig. 4 we show a graph of the potentials (2.44) for
the hypothetical case when X = 1, g'/4zr = 14, and
0/M = 1/7 so that rlq(o/M) = x'. In this case, the second-
order potential provides a repulsive core.

d'kG(p, k, W) I'(k)

(2zr) &4M(gz P)
(2.40)

Thus, in position space if we define

Hence, in this approximation the potential is local and
the equation, when cast into position space, becomes a
Schrodinger equation for the scattering amplitude.

The bound-state equation corresponding to Eq. (2.37)
(see Sec. IV) is

III. SPINOR THEORY

Here we extend the ideas developed in Sec. II to the
case of two spin--', fermions of equal mass M interacting
by the exchange of a scalar meson, a pseudoscalar
meson, and a massless vector meson. As we shall see,
the presence of spin complicates the situation, partic-
ularly in the physically interesting case of pseudo-
scalar-meson exchange.

we obtain

4(r) =
e '&' r(p)

dp~
(2zr) ' p' —i'

( V'/M —e)tP(r) —= V(r)g(r), —

(2.41)

(2.42)
&r= g+4+g~4*. (3.1)

A. Scalar-Meson Exchange

The interaction Lagrangian for scalar-meson ex-
change is

where

V(r) =
d'6 G(P,k,Ms)e 's'

(2zr)'
In this example

where
V(z) = V"'(r)+ V"'(r),

( gz g e ttF

V&')(r) = —2i
(32zr M r

2EJ TdaSX/ g' 0 q'
V"'()=—

i

zr (32zr M), (o"—0')"' r

(2.43)

(2.44a)

(2.44b)

(2.44c)

The second-order scattering amplitude is again attrac-
tive. Restricting ourselves to the cases when the ex-
ternal particles are on the mass shell and the scattering
is in the forward direction gives

Ms"'= [—g'/~' —(p —p')'P[u(p)u'(p')l~
X [u(—p) u'( —p') $z

= (—gz/~z) (X*X'),(X*X'),.
(3.2)

We now look at the fourth-order case, where we see
the first signs of the complications which will confront
us when we deal with spin. The uncrossed box, Fig. 1(a),
gives us (in the forward direction)

The constant X would be zero if this were a theory of
scalar particle exchange beca.use of the cancellation

Ms (")=uz(p) uz( —p) BRs &"&ur'(p) u, '( —p),
where

(3.3a)

d'k[M+7z (-', IV+k)][M+yz (-', W —k)]Zg
~&s(")=

(2zr)4 [(gq —g )' koz ie$((gq+g )'—k—o' —z—e$(cv' —k ' ie)'— (3.3b)
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and the symbols were deined in the Sec. II. Following the reasoning developed in Sec. II 8, we calculate the
leading-order contribution by neglecting terms of order p/M. We have

where now

Ms(4a) = (x* x')2(x* x')2IB(4a),

ig4 d4k(4M' —kp')
J (4u)

(22r)4 f(E& E )' k ' io)f(E),+L~' )' ko2 j—o)((g2 k—o2 j—o)2

(4/g2) ~(4a)+I (4a)

(3.4a)

(3.4b)

where BR(' ) was evaluated in Sec. II. It is the new quantity IP( ') which gives us the complication. This is because
when the contributions from the various ko poles in IP are separated out, each separate term diverges. The sum
of the terms converges, however, and in fact it converges to a result considerably smaller than the leading term,
and can ultimately be neglected. Ultimately, in this case, the complication is a trivial one.

Since this IP term will be important in the following, we show how this comes about by a detailed examination:

I (4a)

(22r) 4

de kp'

f(E2 E ) —ko —jp)f(E&+E ) ko io)(M——ko2 —jo)
(3.5)

Integration over ko and closing the contour in the lower half-plane gives the three types of terms referred to in
Sec. II:

g4

(22r)'

g4

Ipo
(22r) 2

d'k(E2 —E„)

8ME),fo)2 —(E2—E„)')'
dpkf —8(p k)k2 —4M2k2/12(p k)2+8M2(p. k) 4M2(p2+g2))

4(gf(g2 (E„E)2)2f(g2 (E„+E )2)2

(3.6a)

(3.6b)

d kp(E +2E„)g4I (4)
(22r) 2 8ME&fo)2 (Ek+E )2)—2

(3.6c)

Note that the + and —integrals diverge linearly while (3.6b) diverges logarithmically. For this reason we can no
longer assume that k'=g', and hence all the k' terms have been retained in the above expressions. Adding the three
terms together, retaining the leading terms only, we obtain

4 d'k
(4 )

4(22r)' f(p2 —(Eo—E„)2)2f(p2—(Eo+E )')'

&&((I/o)) f—8(y k)k'+4k'(g' —p') —4M'(y —k)'+12(p k)' —4g'M')

—(I/Ep) f—8(p ~ k)k2+4k2(g2 —p2 —M2)+4(y k)2+4M2p2)) (3 7)

which is now convergent. We next expand the denominators, assuming p, and g«M only (k unrestricted) change
variables of integration from k to k = k —y and do the angular integrations. When the leading terms are retained,
we have

—g "k"dk'(I 1)Ip«)
322r2M2 o k"+g'E(go Eo ~

= (—g4/322r 2M2) fin(M/(r) —1) . (3.8)

By comparison with (2.11), we see that the troublesome term Ip is smaller than the 6rst term in (3.4b) by about a
factor of (g/M)' ln(M/g) which can be quite small.

Since the three divergent terms give a small contribution, they can be neglected and it is still possible to construct
a simple convergent low-energy relativistic theory for spin- —, particles with scalar exchange in a manner similar
to that discussed in Sec. II. To this end, it is useful to introduce the identity

M+y k2 Ey, +k)p E2—k2o
24(k) 24(k) — 2 (—k)()(—k), (3.9)

which expresses the fact that the positive-energy off-shell nucleon of momentum k can be regarded as a super-
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d'k G(p, k, W)(M+yz kz]LM+» k2j~s(k, p', Ifz)&(M' —kz')0(kzo)
. (3.10)

(M' —k22) (M' —k') 'Dies(p, p'W) =G(p,p'W)—
(2~)'

Equation (3.10) is" explicitly covariant. After the ko integration has been performed, the identity (3.9) gives us

position of a positive-energy mass-shell nucleon of momentum k and a negative-energy mass-shell nucleon of
momentum —k (antinucleon traveling in the opposite direction so that the quantum numbers will come out right).
Now in the high-k limit, the divergence comes from the u(k)N(k) and v( —k)8( —k) terms which go like ~k~ as

)
k (~~ . Hence these terms can be made convergent by dividing by a power of

) k) in some covariant fashion. An
example is given by the choice

M'
(M+y& kz) ~

3f~ —k2

2M'
PN(k) u(k) gz,

E„(2E4—E„)
3f' (E.-E.)

k)z4( k) — ~(k)e(k) I ~

M2 —k2 E„(2Ek E„)(E—I,

(3.11)

2E,E„—2M2 —pn l'
E„(2E„—E„) M'

(3.12)
E„(2Eg—E )

and both of these terms are now convergent'in" [k(. They differ from the exact expressions by the factor
M2/(M' —k') so that we make an error of

and hence (3.10) is accurate to order M '.
It would now be a straightforward matter to exapnd (3.10) to order M ' and obtain the effective lowest-order

potentials as we did at the end of Sec. II for the scalar case. In such a treatment one sees that the Lz'(k)0(k)12 te~
is down by ~ ' and consequently must be neglected. To order M ', we must include the positive-energy spinor
states only.

B. Pseudoscalar-Meson Exchange

For the pseudoscalar interaction Lagrangian, we take

7z =igPy'PQ+igPy'fqP.

As in Sec. III A, if we restrict ourselves to the case when the scattering is in the forward direction,

(3.13)

because of the off-diagonal nature of the y' matrix.
For the fourth-order box diagram in the forward direction, we have

MP Nl(fz)442( P) ~P I& (P)N2 ( P)

(3.14)

(3.15)

d4kLM —» (-', W+k) jLM —~, (-', le —k)]
5IYg &4 '=

(2w) 4 f(Eq —E„)'—ko' —i4)$(EI,+E„)' —ko' —i'd)(cv' —k02 —ic) '
(3.16)

Again, neglecting terms of order p/M, we have

Mz ~4'&= (x* x'), (x* x'),jz &4~& (3.17)

where Ip&4 & is precisely the term introduced in Eq.
(3.5). Hence, the result (3.8) applies to the pseudoscalar
case.

%e now can see quite clearly why the pseudoscalar
case gives so much trouble. The pseudoscalar inter-
action is intrinsically relativistic. Sy this we mean that

in fourth order the retardation of the potential cannot
be ignored —it gives the major contribution, and the full

interaction must be treated in order to obtain a Gnite

result. The source of the difhculty is not so much that
the p5 interaction strongly favors particle-antiparticle
coupling (or nucleon pair production), but rather that
the y interaction suppresses the interaction of positive-
energy states (cf. Eq. (3.14)j to the point where in

fourth order the dominant contribution comes from the
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meson singularities, and the nucleon singularities serve
only the secondary role of providing a built-in cutoff.

We are now in a position to answer some of the ques-
tions posed in Sec. I. Since there is no nonrelativistic
theory of the one-pion-exchange (OPE) force, one
should not be surprised that simple nonrelativistic
models built around OPE potentials have never worked.
Furthermore, the iteration of the OPE force is not the
most important force in the intermediate region; there
is a large contribution from two-pion-exchange (TPE)
processes which is not merely a relativistic generaliza-
tion of the second OPE Born approximation. Since the
dominant contribution to the TPE force comes from the
retardation of the pions, it is an intrinsically new force.
Although it has been known for a long time that a large
attractive force in the intermediate region is needed
to bind the deuteron, a common speculation is that this
force must be due to some significant low-energy S-wave
pion-pion interaction. It has not always been appre-
ciated that this attraction comes partly from a straight-
forward analysis of the crossed and uncrossed box
dlagl ams.

C. Massless Vector-Meson Exchange

As a practical application of the ideas developed so
far, we consider the case of the hydrogen atom. We show

how we can.derive an effective Dirac equation for the
interaction of the electron in the field of the proton.
This effective equation has already been discussed by
Grotch and Yennie. '

Three new features enter the hydrogen problem:
(i) The fermion masses are unequal, (ii) the exchanged
boson has zero mass, and (iii) the exchanged boson is

a vector particle. We first discuss the unequal-mass
problem in the spin-zero case.

For unequal masses, we define the internal momenta
as (particle 1 is the proton with mass M; particle 2 is the
electron with mass m)

k = $3II/(m+M)]W+k, k = Lm/(M+m)]W —k,
(3.18)

where, when both particles are on the mass shell in the
c.m. system,

ks = (ATE(, Mes)/(M+—m), eI,
—= (m'+ k') '" (3.19)

The fourth-order uncrossed box for scalar photons is

~ (4a)
7

ie4

(27r)4 L(k —p)' —ie]t (k —p')' —ie](Es' —{LM/(M+nz)]W+ks)' —ie)(es' —(pm/(M+m)]W ke}'—ie)—
(3.20)

The ko singularities in the complex ko plane are shown
in Fig. 5 for the particularly simple case when y= p'=0.
Note that the ko pole at the positive-energy proton
(ks=Es —M) remains separated from the potential
poles in the lower half-plane until

~
k~ =M, while the

positive-energy electron pole remains separated from
the potential poles in the upper half-plane only for

~
k~

of the order of m. Hence, closing the contour in the
lower half-plane and retaining the proton pole should
provide a better approximation than taking the elec-
tron pole in the upper half-plane. Specifically, we shall
see below that it is easy to approximate the proton-pole
term to order M ', while in the same approximation
the electron-pole term would be accurate to order m ~

only. This is merely a complicated way to express the
fact that it is more accurate to neglect the oft-mass-
shell behavior of the heavy proton that it is to neglect
the off-mass-shell behavior of the lighter electron.

If we specialize (3.20) to p= p', and
~ p ~

=i8, where 6s

is twice the reduced mass times the binding energy (we
are in the bound-state region below threshold), we
obtain

Retaining all terms to order 3f ' but neglecting terms
of order M 2 gives

e dk

2(2s)s (ks+5 )(k—p) t M+e ]
= (—e'/64s Mb')M/(M+e, ) . (3.22)

k plans

-tE +8)
kg
X

-(C -NI)

XX X

X XX

E M
k

Had we taken the electron pole instead of the proton
pole, (3.22) would have been accurate to order m s only.
Had we evaluated (3.21) above threshold, the result
would diverge corresponding to the existence of the
infinite Coulomb phase factor. "

BE~+&4 '=
2(2s-)'

X
E/, L(k —p) ' —(E E/, ) ']'[e/, ' (e +E ——Ey)']—

(3.21)

FIG. 5. Location of the singularities in the complex ko plane
of the integrand of Eq. (3.20) for p=p'=0.

9 H. Grotch and D. R. Yennie, Rev. Mod. Phys. 41, 350 (1969)."H. Suura and D. R. Yennie, Phys. Rev. Letters 10, 69 (1963).
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In evaluating the contribution from the boson poles
of (3.20), we encounter an infra, red divergence which is
a consequence of the zero mass of the bosons. To treat
this difhculty it is necessary only to include the crossed

fourth oidei diagram which cancels the clive~gence and
gives a result smaller than (3.21) (the bosons are

a dtheneutral). To see how this cancellation works, we a d
crossed diagram to (3.20), restricting p = y', to obtain

ie4
".&Z, (4) =--

(2m.)'

2ie4

d4kfEi, '+Eg i,
' —2E„'—2(pp —kp)']

ie e' —e —k ' —ieL(k —)'—ie]'(E ' (I~' ——p +k )' —ie]LE2„ i,
' —(I.,+pe —ko)' —ze]Lei, ' —(e„o—kc) —te

d4k

—E o
—ko)' ie I

—ei,
' (e„-+—po —ko)' —ie]L

—p' — ]l " ' — -p.+ o'-
I .—.—( .+p.—.!—

BR &4~—

(2e-)' SM'm(k —p)'

= e4/64e-M'mb. (3.24)

Consequently, we see that the potential poles are sup-
pressed by

01K, &'&/OR &' &~ b'/Mm—= 2e/(—3f+m), (3.25)yo / y+

where e is the binding energy.
We now are in a position to discuss the realistic case

with spin. The idea is to obtain a potential correct in
the fourth order up to small terms of the size (3I) '.
Our previous estimate (3.25) shows that the photon
poles can be expected to contribute terms of the order
of (Mm) ' to the potential. To avoid having to calcu-
late these terms explicitly, we make use of the old trick
and use the gauge invariance of the theory to modify
the interaction so that these photon poles are suppresse
by an additional factor of 3f ', and thus may be ignored.
The modification we make is

(3.26)

where 6 is the four-momentum carried by the inter-
acting photon. It is easy to show that any modi6cation

(not necessarily covariant) function of ~ wf A will leave the

We may now pick up the potential pole contribution
from (3.23), which to lowest order in M ' and m ' is

sum of all photon-exchange diagrams unchange .."The
noncovariant choice (3.26) therefore does not change the
over-all result, but is convenient because it suppresses
the photon-pole contributions to the fourth-order ia-
grams by an extra factor of Af ', as we will now
demonstrate.

We now proceed with the calculation. The decomposi-
tion (3.9) for the proton-projection operator shows that
the v8 term is of order 3E ' when the photon poles are
taken (it is zero at the positive-energy proton pole), an
the estimate (3.24) shows that the photon poles are
already down by M ' with respect to the leading term,
so that the negative-energy proton term may be e imi-
nated in all cases. Furthermore, to order 3E ' the proton
spinors reduce to

8 (p)y'u (k) ~ (o. po'+o'o" k)/2M. (3.27b)

Since the second term in (3.27)a is of order M ' at the
t le and 3f ' at the photon poles, it may e

rM 'neglected in all cases. Finally, we have, to order M
the contributions from (3.27a) to both the crosse an
uncrossed diagrams":

v (p k)(p k)'--
~.(y) v'-—

(p —k)'

(p —k)' (p —k)' fp' —k'
(3.27a)

(p —k)' (y —k)'k 2M

~v(o, o)
"'= ie4

(2x)'
y (k —p')(k —p)'y (p-k)

X d'k u.(—p) y' — (p —k)' (m y(LmW—/(31+m)] —k})—1 0

(p —k)'

1

(y —k)'(k —p')' Ei' —(E„—po+ko)' —ie E~„ i' —(E„+pe—ko& —te
(3.2g)

49 . More recisely, this argument applies only to amplitudes in which the external
d b d- t t ave functions the gauge transformation does change

h ll b bl lit d o t 1 t

~ 0

"-g ~ - - ~ "yP y y
I E (333)bl ~ M. forth ttl-, tf th ' part of the vector exchange. n q.We use the notation 3IIy(p p) ol e p p pa

exchange (including the y'7' part).
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Note that the transformation (3.26) leads to a cancellation of the photon poles from (3.28) so that to order M '
the (0,0) part of the scattering amplitude no longer has any photon poles. Hence, the ko integration in (3.28) gives
only the proton pole, and at this pole

so that to order M '
po —ko= 8,—ZI,=(p' —&')/2M, (3.29)

—e4

~v(0, 0)"'=
(27r)'

~ (p-lr)(k'-p') v (k —p')(p" —&')
d'ku, (—p) yo —— [ni —y'(w —8/, ) —y k5 ' y"—

2M(p —k)' 2M(k —p')'
u.(—p')

Finally, using the fact that
2M(p —k)'(p' —k)'. (3 30)

u„(p)go[(p' k'—)/2M5u„(k)=u„(p) y (p —k)u„(k) = y„(p—k),
where

we can write, including the y terms (3.27b),

(3.31)

(3.32)

—e4

(2')'

d ku, (—p)- ~o~„' ~ (p —k)q„(p —k)

2M (p —k)' (p —k)' (p —lr)'

v (k —p')v. (k —p')
X[nz —yo(W —Eo) —y k5 — +-(~-p')' (k —p')'

Y'Yu

(k —p')'-
u, (—p') . (3.33)

Hence, the fourth-order term now appears as the iter- The equations we have discussed can be written in the
ation of an effective interaction which can be written as general form

where
d4k G(p, k, W)

(3.35)
X&(IV,k) Nt(k, p', W)

G(P,k) = —[e'/(p —k)'5(y'y„' —pi*pi, '), (3.34) ~~(, II,,) G(, W)+
(2m)4

and the correct integral equation which sums this inter-
action is

dok G(p,k)[~—~o(W —Z, ) —q k5-'r(k)
r(p) =—

(2m)'2iM
(3.36)

The corresponding position-space bound-state wave
equation is precisely the equations used recently by
Grotch and Yennie. ' It is a Dirac equation for the elec-
tron with an eRective potential given by (3.34). The
terms of order M ' and the other terms that we have
neglected could be evaluated explicitly to give a small
fourth-order potential. These "small" terms give a
larger contribution than one Inight expect because of
the fact that the integrals diverge, and are cut off only
by the form factor of the nucleon arising from the strong
interactions. (For details see Ref. 9).

IV. CONNECTION BETWEEN BOUND-STATE
AND SCATTERING EQUATIONS

(Gp, p', W) +G(p, Wk) (AW, k) 01K(k,p', W),

(4.1)

where, in the second form, integration over d'k and
multiplication by i (/2) i4s implied (for any repeated
variable), G is any interaction kernel, p and p' are the
relative four-momenta of the initial and final states
dined previously, and t/t/' is the total energy in the c.m.
system. The function D(W, k) is the appropriate free
two-body propagator. Different choices of 6 lead to
diff erent types of relativistic wave equations. The
original Bethe-Salpeter equation corresponds to both
particles being off the mass shell, so that for two bosons
of equal mass M, we have

A(W k) = [M' (-,'W+k—)' ic5 '—
X[M' (-,'W k)—' io5—'—(4.2)—

while for the class of equations suggested in this paper,
we have

Here, we show the sim. pie way in which hound-state
equations can be obtained from any of the scattering A(&V~k) =

I
M' (on k)'?'~[M' (oW+k)'5

equations discussed in this paper. X0(-,'W+ ko), (4.3)
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corresponding to one particle on the mass shell. The
Blankenbecler-Sugar' choice corresponds to

into (4.5) and demanding that the coe%cient of the
double pole be zero on the right-hand side gives the
bound-state equation:

A(W, k) =27r
4M

ds(s W'—) 'b(3P —(-',s'12+k)'j

X~LM' —(-'~'I' —k)'j (4.4)

I'(p) = G(p, k, Mg)h(M~, k) I'(k),
I't(P) = I' t(k) 6(M~, k)G(k, P,M~) . (4.7)

which is equivalent to keeping only the two-body cut.
We can write (4.1) in an alternative form. First, we

note that

OR(P, P', W) = G(P,P',W)+ BR(P,k,W) d (W,k)

XG(k,p', W) . (4.1')

Multiplying (4.1) by DR(r, P,W) A(W, P), integrating
over p, and using (4.1') gives a nonlinear version of (4.1)

Ãt(r, P', W) =G(r,P', W)+ DR(r, P,W) D(W, P) 5E(P,P', W)
JR—(r,p,W)d, (W,p)G(p, k,W)a(W, k)mt(k, p', W) (4..5)

One can easily see that this is equivalent to (4.1) by
iterating; the last term on the right-hand side is just
sufhcient to cancel out the overcounting produced by
the second term on the right-hand side.

The equations which describe bound states can be
obtained directly from (4.5). One simply demands that
(4.5) hold in the vicinity of a bound state. Two equations
are obtained —the bound-state wave equation and the
normalization condition for the bound-state wave
function.

To obtain these equations, we assume that, in the
vicinity of the bound state of mass M&, we have a pole

DR(P, P', W) = I' t(P) I'(P')/(M~' W')+ R(P,P—',W), (4.6)

where I't is the adjoint of I' (describing the time-re-
versed coupling constant) and R is a background func-
tion with no singularities at Ws=M~'. Inserting (4.6)

These equations also guarantee that R does not con-
tribute to the single-pole term. Finally, equating the
residues of the single-pole term gives a new condition

1= —I'(P)(~/~W')~(W, P) I
~'=~a'I'(P)+ I'(P)

X (8/BW') I 6(W,p)G(p, k, W) 6(W,k) jl'(k)
i s 2=~~*.

(4.8)

This is the normalization condition for the wave func-
tion. Performing the differentiation of the last term on
the right-hand side and using (4.7) gives an alternative
form for the normalization condition, which we write
out explicitly as

d'pd'p' 8
-»(p)= ~(W,p)~ (p p')—

(2')4 BW~

+ G(p O' W) I'(p') (4 9)
(2~)' — w =~,*

In the special case (4.2), this normalization condition
is identical to the usual normalization condition given
for Bethe-Salpeter amplitudes.
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