
PHYSICAL REVIEW VOLUM E 186, NUM 8 ER 5 25 OCTOBER 1969

Anomalous Commutators and the Box Diagram
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In continuation of previous investigations, commutator anomalies associated with the box diagram are
exhibited. It is found that q-number Schwinger terms are present in the general case for commutators of
currents which are bilinear in fermion fields. Nevertheless, the Weinberg sum rule is, not violated. A c-
number Schwinger term, which involves three derivatives of a 5 function, is also found.

of the ST was found to be nonzero. In the present paper
we continue the BJL analysis to exhibit the ST asso-
ciated with (fermion) box diagrams. ' We also exhibit
a third derivative of the 8-function c-number ST, which
is rarely mentioned in the literature.

Section II contains the principal analysis and results
of this investigation. In Sec. III we compare the present
conclusions with those obtained by the point-splitting
technique of Schwinger. ' Concluding remarks about the
signi6cance of these results comprise Sec. IV.

I. INTRODUCTION

II. HIGH-ENERGY DETERMINATION
OF COMMUTATORS

The BJL definition of an ETC is obtained as follows:
Consider the covariant T* product of two operators~

T~s*(g) = der e' *(cri T*A (x)B(O) i p). (2.1)

This object is calculable for example by the covariant
Feynman-Dyson perturbation theory. Drop all poly-
nomials in qo, obtaining the T product
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in spinor electrodynamics; and R. A. Brandt, ibid. 166, 1795
(1968),who exhibits the possibility of a q-number ST in the same
theory. The BJL deQnition yields a c-number commutator to
order o.~ D. G. Boulware and J. Herbert (unpublished). An even
more radical point of view was taken by G. Kallen in lectures
delivered at winter schools in Karpacz and Schladmig, 1968
(unpublished); he disputed the existence of these commutator
anomalies entirely.' J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

4 K. Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto)
Suppl. 37-38, 74 (1966).

~ Further study of the ETC associated with the triangle graph
is to be found in R. Jackiw and K. Johnson, Phys. Rev. 182, 1459
(1969); S, L. Adler and D. G. Boulware, Phys. Rev. 184, 1740
(1969).

The ETC between A and J3 is then, by definitions

C~n(tl) = lim —iqoT~Is(q)
qo-+oO

' Such terms have been found before and commented u on by
D. G. Boulware and S. Deser, Phys. Rev. 175, 1912 (1968 .

'The metric (1, —1, —1, —1) is used. The Dirac matrices are
delned by (yI',y") =2g&" and y5= —7»=gy'y'y'.

Johnson and Low, Ref. 4, show that this de6nition is equivalent
in position space to the following prescription for calculating the
ETC:
&olLa (0») 2t (0)3 lp)

=»m &ol2'~(v, x)2t(0)lp) —(nlTA( —v,x)B(0) lp).
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VER since Schwinger' publicized the necessary
& existance of a gradient term in the [j', jet equal-

time commutator (ETC), the nature of this Schwinger
term (ST) has remained undetermined. In theories
where the ST is calculable by canonical procedures, its
character, i.e., whether it is a c or q number, is obviously
established by inspection. Examples of such theories
are scalar electrodynamics, the 0 model, and the algebra
of Gelds. However in quark models, where the current
is bilinear in fermion fields, the ST is not given by
naive canonical manipulations and its character is more
recondite. In the literature there appear convicting
statements, averring both a c- and q-number character
to this object. ' Evidently the ETC is not well de6ned,
at least in perturbation theory, and diferent results
are arrived at, depending on the definition one settles
upon.

Of the various prescriptions for calculating the ETC
that can be adopted, one has recently been the object
of considerable attention: the high-energy method of
Bjorken, s and of Johnson and Low4 (BJL). With this

approach, Johnson and Low' exhibited the existence of
q-number ST, in I'ermion current ETC's, associated
with the singularities of the triangle graph. 5 Speci6-
cally the vacuum —single-particle-state matrix element



If the limit (2.3) diverges, one interprets this as a diver-
gence in the (renormalized) matrix elements of the ETC.

The advantages of this definition of the KTC are the
following: (i) To the extent that T* products are mea-
surable, (2.3) is an operational and measurable defini-
tion for the ETC. (ii) When the Low representation for
the T product converges, (2.3) gives a plausible expres-
sion for the ETC3

C~e(q) = dip
Lu»(qo', il) —P»(qo', il)j

(2~)
(2.4a)

(~l&(0) l~)(~IA(0) IP) (24c)

LOf course (2.4a) must also converge. ] From (2.4),
various high-energy sum rules can be derived. 9

It has been discovered that the KTC calculated by
this definition need not coincide with its canonical
value. 4" In Sec. III we shall also show that the BJL
dehnition need not coincide with the point-spreading
technique. When the KTC divers from the expected
canonical value, we shall refer to it as anomalous.

The shortcomings of the BJL definition of an ETC,
when it is anomalous, are the following: (i) Canonical
KTC are necessary in setting up the formalism. For
example, the Dyson-Schwinger integral equations for
n-point functions are derived with the help of canonical
ETC. (ii) Various formal gauge properties of the theory
can be veri6ed only with the help of canonical KTC.
(iii) The comrnutators which arise from the BJL pre-
scription are valid only when evaluated between re-
stricted matrix elements. In particular, the Jacobi iden-

tity, in general, is not satisfied.
It should be emphasized that these shortcomings are

not unique to the BJL prescription; they are related to
the fundamental consistency of the field theory. At least
in perturbation theory, all known nontrivial field the-
ories (with the exception of the qP theory which does
not possess a vacuum) develop divergences which are
associated with the breakdown of the canonical com-
mutation relations. As a consequence, the gauge prop-
erties must be imposed during the renormalization pro-
gram. If the amplitudes which are calculated by means
of the Feynman rules are taken to defin the covariant
time-ordered products and hence the Wightman func-

' A recent example of the derivation of sum rules with the help
of the BJL -limit is due to C. ballan and D. Gross, Phys. Rev.
Letters 22, 156 (1969).' R. Jackiw and G. Preparata, Phys. Rev. Letters 22, 975
(1969); S. L. Adler and Wu-Ki Tung, ibid. 22, 978 (1969); R.
Jackiw and G. Preparata, Phys. Rev. 185, 1748 (1969). The
relevant paper by Jackiw and Preparata is "T products at high
energy and commutators. "

~»(q) =2 (2~)'~'(q+P- P-)—
y(alA(0) In)(NIB(0) IP), (2.4b)

p»(q) =Z (2~)'~'(q+Pe P-)—

tions, the BJL prescription then calculates the limit
given in Ref. 8.

We have not reconciled these two approaches to ETC.
It is known, however, "that when the only anomaly is a
ST then it is sometimes (but not always) possible to
maintain gauge properties by introducing (anomalous)
seagull terms in the T* product, and gauge invariance
is effected by a cancelation between ST and divergences
of seagull terms. We are not aware of any method to
handle the first of the above-mentioned diTiculties.
What should be the structure of the canonical formalism
when the ETC's as calculated by (2.3) are anomalous?
We do not pursue here the problems associated with
this conAict any further, but confine ourselves to the
BJL definition (2.3).

A and 8 are taken to be currents; thus, we are in-
terested in

T"(q) = d'~ e' *(
I
Ti"(0)J (0) Ip), (2.5a)

C&"(q) = lim —iqpT&" (q)

d'*e "*(~
I
L~"(o,x) i"(0)llP). (2.»)

XI (q&q" —q&"q')x(1 —x)+-', m'g&" (1W1)j. (2.6a)

The sign in the term proportional to re'gl'" is —(+)
when the current is vector (axial vector). Note that if
the currents also carry a discrete internal symmetry—
with matrices X,—then the generalization of (2.6a)

"For a discussion see, e.g., R. Jackiw and K. Johnson, Phys.
Rev. 182, 1459 (1969).

"Some discussion of the BJL approach and the vacuum pola-
rization tensor is to be found in R. Jackiw and G. Preparata,
Phys. Rev. 185, 1748 (1969).

Internal symmetry will be ignored for the most part.
Hence, j"is given by Py"P, or bye gy'y "P, in which case
it will be designated by j5". The fermion fields are as-
sumed to have only renormalizable interactions with
bosons. Thus, we are interested in Yukawa-type scalar,
pseudoscalar, and vector couplings, exclusively.

The above matrix elements when 0, is the vacuum and
p a single-meson state have been studied exhaustively
in lowest-order perturbation theory. "Thus we will not
concern ourselves with this case here.

When both n and p are the vacuum state, the T*
product is ill defined in lowest-order perturbation
theory. "However, all the ambiguities and divergences
associated with this graph can be collected into a poly-
nomial in g. Dropping such contact terms, one is left
with

i ' ( q'
T"(q) = — d~ lnl 1—*(1—~)

27r2 m'
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which we call T &"" is related to TJ'" by

T,s4"= (TrX~Xs) T"". (2.6b)

It is clear that the vector —axial-vector T product
vanishes. Of interest for the ST is O'. This is the same
both for the vector and axial-vector currents. We have
from (2.6a)

g
2 1

—iqeT'2(q) =q" dh x(1—x)
2' p

( q2 qk r

Xlnl 1——a(1—a) = d2;
2222 2K p

( q
2 ) — qkqs—q,'a(1 —x) lnl x(1—x) l+n22 + . (2.7)

4 n22

FxG. 1. Diagrams for
the two-current —two-boson
matrix elements.

Terms that go to zero as qp~~ have been dropped in
the second equation in (2.7). The coeKcient of —qs/22r2

diverges quadratically (up to logarithmic factors) as
gp~~; this is interpreted as the usual, quadratically
divergent single-derivative ST, already found by
Schwinger. However in addition to this term, we find
a 6nite expression proportional to q~q'. This is a triple
derivative of a 3 function. We have therefore from (2.3)

nlLj'(ox), js(o))in&=(all j,'(ox),j '(0)Pin&
=iS828(x)+ (ij122rs) O'T8(x)

(2.8)
where S is quadratically divergent.

The triple derivative term is not usually found in the
literature. " Indeed a "proof" is given frequently with
the result that

(0lLj'(o,x),j"(0)jlQ& =ielsb(x) da p(a ) (2.9)

where p is the spectral function. However such a "proof"
is valid only when the integral Jsgdas p(as) converges.
It is seen that in the present instance this quantity is
divergent, and examination of (2.7) shows that it is
precisely the presence of a quadratic divergence q~qp'

that is responsible for the occurrence of the finite triple-
derivative term. Thus, the result (2.9) may be cir-
cumvented in the presence of divergences. "

We conclude this section with a consideration of the
case when the states n and P are each single-meson
states. (By crossing this is equivalent to the case when
one state is the vacuum, and the other is a two-meson
state. ) The T* produce (2.5a) is now represented by
the fermion boxes shown in Fig. 1, two legs belonging
to the two currents, and the other two to the two bosons.
Thus, we are led to consider for vector currents

d4r
= —2g' Tr(&sS (r+q) y"S(r+pt ps)0'S (r p,)0'S—(r)—

(22r)4

+y "S(r q+Pr P2)y"S(r+P—r P2)O—'S(r Pr) O'S (r—)+y"S(r+—q) O'S (r+q Pt) y"S(r —P2)0'S (r) )—. (2.10)

In the above, the 0"s represent the interaction coupled with strength g. They are each unity for scalar mesons y'
for pseudoscalar mesons. For vector mesons 0' is y e (pt), and 0' is yf'ep(p2), where e is the vector polarization.
The factor 2 in (2.10) comes from collapsing the six topologically distinct boxes to three by charge conjugation.

» Its presence has been noted by R. A. Brandt, Ref. 2.
"An operator proof has also been presented by D. J. Gross and R. Jackiw /Phys. Rev. 163, 1688 (1967)g to the end that the ST

contains at most one derivative of a 8 function. However, this proof also requires the existence of the commutator, a circum-stance
which does not obtain in the present context.
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We shall need the limit as qo~~; we expect the result to be independent of all other momenta and masses. "
Thus, we set m=O and pi= ps

——0. It. is now seen that the scalar and pseudoscalar interactions give the same result:.
We consider these first (O'= I,y"')

T*""(q)
PI=@2=0,7rk=o

d'r
—

T r(yl 5(r+q)y"5 (r)5(r)5 (r)
(2vr)4

+y"5(r q)y&5—(r)5(r)5(r)+y"5(r+q)5(r+q)y"5(r)5(r)} (2.11)

Ignoring polynomials in q, we obtain for the T product

2 pv (q)
—(g2/f (g2/&2) (qpql/q2)

The ST, which is obtained from the Ok component, is therefore

sq lek —
(q 2g2/q2) (qk/7rs) k (ti) —(g2/s-2)qk

(pil Cj"(O,x),jk(O)3[ p, )= (—fg /~') a"a(x

This suggests that the commutator may be electively written in the form

Cj'(o,x),j"(o)3= —l~~"C(gk / )'~(x)),

where y is the scalar or pseudoscalar boson field.
For vector mesons, the analog of (2.11) is

(2.12)

(2.13a)

(2.13b)

(2.13c)

T*~"(q)
yI =Pg=O, m=0

= e-esT'""(q),

d4r

(2.14a)

T»"(q) = —2g Tr(y&5(r+q)y'5(r)y~S(r)y~S(r)
(2')'

+y"5(r q)y&5(r)y 5(r)—psS(r)+yI'5(r+q)y 5(r+q)y"5(r)y~S(r)) (2.14b)
d4r

= —2g' — —Tr{y&S(r+q)y"5(r)y 5(r)7~5(r)
(27r)4

+pl'5(r+q)y"5(r)y~S(r)y 5(r)+y&5(r+q)y 5(r+q)y"5(r)y~S(r)) (2.14c)
d4r 8

=2ig' — - Tr (yl'5(r+q)y"5(r)ysS(r) j.
(2s)' Br

(2.14d)

Equation (2.14c) follows from (2.14b) by charge con-
jugation, while (2.14d) is established with the aid of
8 5=i' 5 The rep. resentation (2.14d) shows that the
T~ product at this point is just a surface term; hence it
can depend on q only polynomially Cin fact, according
to (2.14d), it is independent of q]. Therefore the T
product is identically zero and the commutator
vanishes. "There is no q-number ST in this case.

When the two currents are both axial-vector, the
result can be verified to be the same. For the mixed
case, vector —axial-vector ETC, the matrix element of
the commutator vanishes by charge conjugation.

Thus, we have established the remarkable result: The
ST in the vector-vector or axial-vector —axial-vector
ETC is a q number for scalar or pseudoscalar inter-
tions. With vector interactions, specifically for quan-

"See also Sec. III.This expectation has been veri6ed by explicit
calculation in the cases of vector and scalar mesons.

"The same conclusion has been arrived at by T. Nagylaki
/Phys. Rev. 158, 1534 (1967)g by a method which is related to
the present one.

turn electrodynamics, there is no evidence for a
q-number ST.

Cj'(O,x),lt (0)g = —pb(x),

Cj '(O,x)pp(0)$ =iy'&8(x) .
(3.2a)

(3.2b)
' No evidence has been found to cast doubt on these commuta-

tors; see Ref. 12.

III. POINT-SPLITTING TECHNIQUE

In addition to the BJI.method, there exists another
technique, with historic priority, that can exhibit the
ST—the method of point splitting used by Schwinger. '
In the present section, we use this approach to study
the same ST that we have presented in Sec. II.

The space components of the currents are defined by

j 'b)=—~(y+sehVb —se), (3»)
js.'b) =—~V(y+ s eh sv V(y —

s e) (3.1b)

Here e is spacelike. The ETC between time and space
components are obtained with the help of the canonical
relations"
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%'e find therefore,

(:s'(0,«),j.'(0)7= Lj,'(0,«),j„'(0)7
=j,'(0)P(«—-', .)—S(«+-,")7, (3.3a)

Ljo(0,«),j„(0)7= I j,o(0,«),j, (o)7
=j„'(0)I s(«——,")—~(«+-,'.)7. (3.3b)

In the above formulas, , we now expand the arguments
of the 8 functions and get

If the matrix elements of j,~ and j5,~ were finite as
e -+ 0 (or at most logarithmically divergent), one could
safely set e to zero in (3.4) and obtain the naive result
that the commutators vanish. However, in perturbation
theory these matrix elements diverge, and care must
be exercized in letting e ~ 0. We now enumerate some
of the matrix elements that are divergent. (i) The
vacuum-expectation value of j, is cubically divergent;
hence the first two terms in the brackets of (3.4a) can
be expected to survive. For j5c this matrix element
vanishes. (ii) The vacuum single meson (connected)
matrix element of j,~ and of j5,~ quadratically diver-
gent; hence the first term in the brackets of (3.4a) and
(3.4b) can be expected to surfive. (iii) The single meson—
single meson (connected) matrix element of j,~ and
j5, is linearly divergent; the first term in the brackets
of (3.4a) and (3.4b) can be expected to survive. (iv)
All other matrix elements of j,~ and j5,~ between states,
containing a total of more than two mesons, will be at
most logarithmically divergent. Hence, they do not
contribute to (3.4).

This analysis indicates that the ST will in general be
a q number, linear and quadratic in the boson fields.
The presence of such ST was exposed by the BJL
approach in Sec. II.

One may continue the split-point investigation to
calculate the precise value of the ST. We shall present
only two such calculations in order to illustrate the fact
that the present method yields results which differ in
detail from those of the 3JL approach. "

The first calculation that we display is that of the
triple-derivative c-number ST. The second calculation
which we present in detail is the determination of the
matrix element of the ST between single vector-meson
states.

According to (3.4a) and (i) above, the triple-deriva-

"The point-splitting technique has been recently reviewed
critically by C. R. Hagen, EnforInal Meeting on Renormalization
Theory, Trieste, 1969 (unpublished).

Lj'(0») j.'(0)7= Lj '(0») j .'(o)7= —j'(o)
&&( &~a;b(x)+(1/24) e4 e'8 8~8ib(«)+O(e')7, (3.4a)

Lj'(0 «),j5'(0)7= I:j5'(o,x),j.'(o)7= —j5.'(o)
XLe'8;8(«)+O(e')7. (3.4b)

(~/12~2) d (gmjg kl+ gtnkgj l+ gm tgjk)

d=1/15 for three-dimensional averaging,

d = 1/24 for four-dimensional averaging.

Combining (3.4a) with (3.5c), we obtain

(3.5c)

{0(Lj'(0,«),j'(0)7(»=F58'8(«)
+Li/(12~')7(3d) a'V'8(«) (3.6)

Here, 5 is the quadratic divergence discussed by
Schwinger. It is seen that neither three-dimensional nor
four-dimensional averaging allows the result of this cal-
culation to agree with that given by the BJL method,
(2.8).

The vector-meson —vector-meson matrix element of
the ST is, according to (3.4a), proportional to (in the
limit ~~0)

d'r
~() ~( —p) '~(+p)

(2~)4

+~'~(~b ~(r+p.)v'~( p)7=I"' (3.~ —)—
Here n, P are the polarization indices and pi, p, the
momenta of the external mesons. The linearly divergent
I 0(1/e)7 portion of the r integral is independent of the

tive, c-number ST is obtained from

—(1/24) ..-~'{n(j,~(0) (»

=—'-"(~(A-:»V(—:)(».(3.5)
24

By letting ~ take on a positive, timelike component,
(3.5a) becomes, in the limit ~'-+ 0,

(1/24) e4"e' Try ~{0
( TP(——,

'
e)P (-', e) (»

= ——e'e e' Try~G( —e)
24

=—(e'e'e" e'/12~'e')z+O(e) . (3.5b)

In the second line of (3.5b), G is the fermion propagator.
The last equation in (3.5b) is the lowest-order result
for the previous expression. Ke now must set e' —+ 0 and
then ~ —+ 0. However, to do this, meaning must be given
to the undefined expression (&~ed e')/c4 on the limit
as e —& 0. This may be done in two ways. One may first
set e' —+0 and then average over three dimensions.
Alternatively, one may average over four dimensions.
The first method has the advantage that it respects the
fact that the parameter e was introduced in (3.1) with-
out a time component, so that canonical ETC (3.2)
could be used to calculate (3.3). On the other hand, the
four-dimensional averaging preserves I,orentz invari-
ance, and is the position-space analog of symmetric in-
tegration in momentum space, a practice conventionally
adopted to give meaning to ambiguous expressions. The
two methods give diferent limits for (3.5b). These are
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This integral is easily done by exponentiating the
denominator, and we find

IjaPk 4~i
oo d4r

e$ s 7' eA 7'

(2~)4

)&$2s'r~r~ri' is(—g ~ri'+g ~r~+gs"r™)j
2 1 ds

(ese ese ) 8
(4s-)' z p s

(3.7c)

Then, for the three-dimensional average, n and P can
only take on space indices, so (3.7c) becomes

i(2/ ')(1/15)(b' b ~+8 IP~+ b 'P~). (3.8a)

For a four-dimensional average, n and P can take on all
values, and we obtain for (3.7c)

i(2/~') (1/24) (b' b'~+ b'b& & b&~g
'—

«) . (3.8b)

Thus, we find here a q-number ST, in contradistinc-
tion to the BJL result which yielded zero. Furthermore,
the two averages not only give different numerical val-
ues, but different tensor structures. In terms of an effec-
tive commutator, we have

Lj'(r), j'(o)j= (i/~') (1/15) (2B'B'
yb' B B)a;b(r) (3.9a)

for the three-dimensional average and

t j'(r), j~(0)j= i(1/7r') (1/24) (2B~B&'

b'~B~B„)8;b—(r) (3.9b)

for the four-dimensional average. Note that the above
ST is independent of momenta and masses.

IV. CONCLUSIONS

(a) We have exhibited q-number ST in ETC between
fermionic currents by two methods: the BJL high-
energy technique and the point-splitting technique.
The ST are seen to involve terms that are linear and
quadratic in boson fields, and their precise form depends
both on the nature of the interaction and on the method
of calculation.

(b) In the context of the point-splitting technique, it
is clear that no further bosonic ST are present. In the
BJL technique no such definite statement can be made

masses and momenta. Therefore,

1 d4r e""
I~ PI —4,~

i (2s.)' r'

&($4r r~r~ r'—(g ~r~+g~"r~+g~~r")$ (.3.7b)

on the basis of the present calculations. However the
following comment can shed some light on further bos-
onic ST arising from the BJL method. The precise
mechanism in perturbation theory which leads to non-
canonical high-energy behavior of T products, thus to
noncanonical ETC, in particular to ST, has been ex-
plained elsewhere. "It is to be recalled that the canonical
results can be regained formally from a Feynman inte-
gral representation of the 2 product by replacing a fer-
mion propagator, which carries an internal integration
momentum r and the external momentum q (which is
getting large in the BJL limit), by just the the external
momentum, i.e., by replacing S(r+q) by ip'/qo No. n-
canonical behavior is encountered only when such re-
placement is illegitimate because of divergences. Thus,
vacuum polarization bubbles, triangle graphs, box dia-
grams, and pentagons become under thi's replacement
cubically, quadratically, linearly, and logarithmically
divergent, respectively. Therefore, one may expect non-
canonical behavior here. The ST discussed in this paper
and elsewhere are those associated with the first three
enumerated cases. The above discussion indicates that
a ST Inay arise from the noncanonical high-energy be-
havior of the pentagon. Such a ST would be cubic in
the boson fields. However, it does not occur; a brief
calculation and estimate of the high-energy behavior of
the relevant graphs shows that it vanishes. The same
considerations indicate that diagrams with hexagonal
structure, as well as structures with more corners,
should have canonical high-energy behavior. Thus, no
q-number ST which are cubic or higher in the boson
fields are to be expected in the BJL context.

We have not examined any diagrams which might
exhibit q-number ST which involve fermion fields. It is
to be recalled that previous investigations have never
encountered such terms. '

(c) It has been demonstrated that different results
for the ST are obtained by the two different methods
which were used to calculate them. It is to be expected
that still other expressions can be arrived at by intro-
ducing yet further prescriptions for calculating the
ETC. ' It is our opinion that none of these approaches is
wrong; diff erent definitions are appropriate for different
contexts. So far only two calculational procedures for the
ETC have been found to have practical significance:
the canonical formal cominutator and the BJL method.
The former is relevant for defining the canonical theory,
for verifying gauge and/or conservation properties, and
for determining low-energy theorems. The latter method
is appropriate for the high-energy sum rules, " and for
the behavior of the light-cone singularity in configura-
tion space.

&& T. Nagylaki, Ref. 16; S. L. Adler and Wu-Ki Tung, Ref. 10.
~ Such further techniques are to be found for example in R. A.

Brandt, Ref. 2.
&1 This point of view has been stressed by J. S. Bell, Nuovo

Cimento 47, 616 (1967l.
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Other methods, such as the point-splitting technique
do not seem to have any practical significance.

It is unfortunate that the point-splitting technique
cannot be used to calculate the various anomalies that.
have been discovered. It is seen that this method sim-
plifies the calculation considerably in that it presents a
formal expression for the anomaly which is moderately
easy to evaluate; see (3.4). Moreover from the structure
of the formulas for the anomalies, in the point-splitting
context, one may hope to be able to prove results inde-
pendent of perturbation theory. Perhaps a useful point
of view about the point-splitting device is that it pro-
vides a clue to the existence of anomalies. The precise
value then must be computed by the method relevant
to the application —typically by the 8JL method.

(d) Although we have found q-number ST in some of
our models, their significance to the usual applications
of current algebra seems to be minimal. The only im-
portant role that ST have had, to our knowledge, has
been in connection with Weinberg's first sum rule. "It
is true that in derivations of that result, frequently the
assumption is employed that the ST are c numbers,
which is not valid in our models. However that assump-
tion is in fact too strong —the sum rule requires merely
the equality of the vacuum expectation values of the
ETC between vector currents and axial-vector currents.

"S.Weinberg, Phys. Rev. Letters 18, 507 (1967).

This equality is maintained in the present investigation,
as is seen from (2.7). Thus, the first Weinberg sum rule
holds, even though the ST are q nunibers.

On the other hand, our considerations indicate that
the use of canonical commutation relations to draw con-
clusions concerning the asymptotic behavior of electro-
production amplitudes or the convergence of radiative
corrections in general and mass shifts in particular is
highly suspect. Not only can the interactions change the
values and tensor structure of the commutators, " they
also can introduce entirely new forms. The usual
"proofs" contain strong implicit assumptions concerning
the dynamics.

Electromagnetic mass shifts may be of particular
interest; if there is a neutral scalar meson, then the
Cottingham formula applied to any shift should yield a
quadratic divergence even though there are no charged
boson fields. To be sure, this divergence would, in a
complete theory, be associated with the electromagnetic
mass renormalization of the neutral scalar particle, ' but
the Cottingham formula is indiGerent to the source of
the divergence.
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Integral equations suitable for the dynamical treatment of strongly interacting particles are derived.

The equations can be described as Bethe-Salpeter equations with one particle restricted to the mass shell,

resulting in a three-dimensional covariant equation which can be easily interpreted physically. To restore

the dynamical terms omitted in the process of restricting one particle to the mass shell, additional kernels

are added to the irreducible kernels from the original Bethe-Salpeter equation. The addition of these extra
terms leads to a resulting simplification in the kernels themselves, since the new kernels have the same

structure as the original ones, with some partial cancellations. Estimates as to the convergence of the

procedure and the sizes of the various potentials are given. The special case of the hydrogen atom is dis-

cussed briefly, and comments are made on the application. of these equations to the nuclear-force problem.

Connections between scattering equations and bound-state equations are discussed, and the relativistic
normalization condition for bound-state wave functions is derived.

I. INTRODUCTION AND DISCUSSION

~ VERYONE knows that the hydrogen atom can be
~ quite well described by nonrelativistic quantum

mechanics and that only the finer details require the
application of the ideas of relativistic field theory (in
the form of the Bethe-Salpeter equation). On the other
hand, even though much progress has been made in the
last 20 years toward an understanding of the nuclear

* Supported in part by the U. S. Once of Naval Research.

force, no one has yet been able to construct a simple

reasonably accurate theoretical description of the
deuteron. The striking simplicity of the hydrogen atom
is sharply contrasted with the complexity of the current
models of the nuclear force, which usually have about
10 adjustable parameters and can be said to be as
complicated as is theoretically possible. ' Is it really

' See Rev. Mod. Phys. 39, 495—718 (1967) for a recent review
of the status of the nucleon-nucleon interaction.


