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it fo11ows that it then follows that

I'(o+I—m)—(p+rt) P 2v+o—sm b„ 2m

These equations form the basis for determining y„(s),
for if we deGne

The factor (—1)" is due to the presence of I„+„(z) in

(B1) rather than 1 ~, (&).
It is possible, using a similar procedure to that of

Ref. 11, to give integral representations for the signa-
tured partial-wave amplitudes directly. We shall not
do this here.

and expand

y (s) = ( —1) "f —cr(s) —-'+rcpt
(84)

I'(—cr (s) ——,'+st —m)
2—ntsl —s'+n—2m b „. (37)

m, =0 mI
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The quantum theory of the electromagnetic interactions of a charged spin-1 particle is investigated,
within the framework of canonical 6eld theory. An earlier treatment of this problem by Lee and Yang is
generalized so as to include an arbitrary quadrupole moment. Some di%culties connected with the lack
of relativistic covariance of the theory can be overcome, without using Lee and Yang's "P-limiting formal-
ism, "provided one allows for direct scattering among the charged particles.

I. INTRODUCTION

HE quantum theory of the electromagnetic interac-
tions of a charged spin-1 particle has been treated

by many authors. ' 4 Although it is well known that a
spin-1 particle could have both an arbitrary magnetic
moment and an electric quadrupole moment, for sim-

plicity the additional quadrupole moment was generally
excluded in the past. ' In this paper, we will attempt

*Work supported in part by the U. S. Atomic Energy Commis-
sion.

t Submitted to the Department of Physics, The University of
Chicago, in partial fulfillment of the requirements for the Ph.D.
degree.

~ In this paper, we will use the canonical formalism for the
spin-1 field as given in G. Wentzel, QNaetlm Theory of Fields
(Wiley-Interscience, Inc. , New York, 1949).

2 A systematic study of the theory, which includes the eGects of
an arbitrary magnetic moment, was given by T. D. Lee and C. N.
Yang, Phys. Rev. 128, 885 (1962). Both the canonical formalism
and their & limiting formalism were used to derive the Feynman
rules.' For an alternative to the Lee-Yang theory, see M. Nakamura,
Progr. Theoret. Phys. (Kyoto) 33, 279 (1965);K. H. Tzou, Nuovo
Cimento 33, 286 (1964).

4 The Feynman rules can be found in R. P. Feynman, Phys.
Rev. 76, 769 (1949). Other fundamental papers are S. Kanesawa
and S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 3, 101 (1948);
T. Kinoshita and Y. Nambu, ibid. 5, 473 (1950);5, 749 (1950);C.
N. Yang and G. Feldman, Phys. Rev. 79, 972 (1950).The latter
two references use the P formalism.

~ The general form for the S=1 electromagnetic vertex function
on the mass shell can be found in V. Glaser and B.Jaksic, Nuovo

a systematic study of the general case, i.e., we will con-
sider a stable spin-1 particle which has a charge, mag-
netic moment, and electric quadrupole moment of arbi-
trary values, and its invariant couplings with the
electromagnetic Geld. Xo higher moments have to be
considered, since general arguments show that a particle
of spin S has 2S+1 intrinsic multipole moments. '

Although from past experience with the simpler
cases, we expect this to be a rather complicated theory,
its study is obviously desirable. For one thing, it is im-

portant to see if such a general theory can be constructed
at all, within the framework of canonical Geld theory.
A negative result would cast doubt on the possibility
for a spin-1 particle to have an arbitrary quadrupole
moment, at least within the framework of canonical
field theory. In Sec. III, we choose a trial interaction
ter111, which can describe a spin-1 particle with arbitrary
quadrupole moment. We Gnd that it is possible to con-
struct a consistent theory, provided we add further
interaction terms. This is similar to the treatment of
Nakamura and Tzou' (see Sec. II) for the case of an
arbitrary magnetic moment. A more physical motiva-

Cimento 5, 1197 (1957). Some effects oi an arbitrary quadrupole
moment were treated by J. A. Young and S. A. Bludman, Phys.
Rev. 131,2326 (1963).' See, for example, L. D. Landau and E. M. Lifshitz, Qttantum
Mechanics (Addison-Wesley Publishing Co., Inc. , Reading, Mass. ,
1965), p. 262.
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tion for a study of the general theory is that it might be
relevant in connection with the nonet of vector mesons.
Experimentally, their electric properties are not known'
(except for the charge), so that arbitrary values for the
intrinsic multipole moments may be needed in theo-
retical models.

It turns out that the requirement of the relativistic
covariance of the theory is rather difficult to satisfy.
Indeed, already for the case of an arbitrary magnetic
moment, which was first introduced by Corben and
Schwinger, ' Lee and Yang' found that the resulting 5
matrix was explicitly noncovariant. ' Lee and Yang
proposed a method to obtain a covariant theory, which
they called the "g-limiting process. " The covariant
theory was identified as that theory which was obtained
as the formal limit $ —+ 0+ of some covariant, but un-
physical (for )WO) theory. This continuous limit to the
physical theory might be questionable, however, since
it involves a discontinuous change in the number of
dynamical degrees of freedom of the system. An alter-
native method was later proposed by Nakamura and
Tzou. ' They showed that a covariant theory could be
achieved within the usual canonical formalism if an
additional invariant interaction term was appropriately
added. To lowest order, this interaction gives rise to the
direct scattering of two charged particles. In the clas-
sical limit A —+0 it vanishes, in agreement with the
correspondence principle. Classical electrodynamics
gives no hint of this interaction, whose origin must be
understood as being necessary to satisfy the require-
ments of relativistic quantum theory in this particular
case. ' Likewise, the generalization to an arbitrary
quadrupole moment and its interaction will require
additional interaction terms (counterterms) to obtain
a relativistic theory.

In Sec. II, the electromagnetic interactions of a
charged spin-1 particle that possesses an arbitrary mag-
netic moment will be reviewed. The theory will be that
of Nakamura and Tzou.

In Sec. III, the theory will be extended to allow for
an arbitrary quadrupole moment. The question of the
relativistic covariance of the theory and the related
question of counterterms will be studied.

' For the neutral vector mesons p', co, and @, a simple symmetry
argument shows that their moments are zero. If A is any self-
conjugate particle and j„is odd under charge conjugation, then
(A

~ j„~A) = —(A ( jl. [ A), so that (A ) j„(A) =0, as well as all of the
moments of the current. (I thank G. Wentzel for pointing this out
to me.}' H. C. Corben and J. Schwinger, Phys. Rev. 58, 953 (j.940).

For the simpler case, when the Corben-Schwinger interaction
is absent, there is no difhculty with the covariance of the theory.
This was shown in the paper of S. Kanesawa and S. Tomonaga
(Ref. 4)."S. G. Brown and S. A. Bludman, Phys. Rev. 161, 1505 (1967),
have given support for the need of such a counterterm in the quan-
tum theory. They have shown that the Dirac-Schwinger covari-
ance condition can be unambiguously satisfied when the interac-
tion includes the counterterms, but fails if the counterterm is
absent.

II. NAXAMURA-TZOU THEORY

A. Lagrangian

We turn our attention to the electromagnetic inter-
actions of a charged spin-1 particle, allowing erst for an
arbitrary magnetic moment. The theory will essentially
be that of Nakamura and Tzou, ' while the derivation of
the Feynman rules will follow closely the work of Lee
and Yang. ' This will be needed to prepare the way for
the general case, treated in Sec. III, where an arbitrary
quadrupole moment will be introduced.

Let the charged spin-1 particles be described by the
fields q „, q „*and the electromagnetic Geld by the vector
potential A„."We will also need the four dimensional
curls of these fields, denoted by G„„G„,*, and F„,, re-
spectively (G„,= B„p, 8,—p„, etc.). The Lagrangian
density of the 6elds and their interaction is given by

where

Z=Zt+Zs,
eC] = 2|Gyp G p 5$ p
g2 — P P

G„„=G„„ie(A„y—„A„y„),—
G a G gc+ pf 'sc g Q)

F„.=F„„+ie(p„'p„~„*~„)

(2.1)

(2.2)

Here e is the charge and 1+Ir the gyromagnetic ratio of
the particle.

2& can be obtained from the free Lagrangian by the
familiar rule 8„—+8„&ieA„; Z2 gives the Corben-
Schwinger interaction iel(F„,p„~p, p1us a direct scat-
tering term between two charged particles. This latter
term is the counterterm of the Nakamura-Tzou theory.

It is interesting to note the similar structure of the
interactions written in Z~ and Z2. Both contain the
minimal number of derivatives (namely, one) that is
consistent with gauge invariance.

The field equations that follow from the Lagrangian
(2.1) for the charged and electromagnetic Gelds are,
respectively,

G„, zms p„+ielrF„„pre—= 0

c)„F„,—ze(G„„z„—q „*G„„)=0.
(2.3)

(2.4)
The gauge derivative D„=B„—ieA„has been intro-
duced. For other notation, see Eq. (2.2).

Taking the gauge derivative D„of (2.3) and summmg
over s, the divergence equation follows:

zzz'D, q, = -', ie(1 —Ir)F„„G„„. (2.5)
Use has been made of the identity LD„,D„j= zeF
and the equation of motion for the electromagnetic f,eld
(2 4).

We use the notation z„=(z„A); Greek indices run from 1 to 4.
Latin indices from I to 3. Repeated indices are to be summed over.The asterisk is the Hermitian conjugation X (—)",where I is the
number of occurrences of the index 4. Natural units are used(A=v=1).
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Associated with the multipole moments of the par-
ticles are the operators

jzi = s eij x d x xjJK(x)

Q;, = d'x (3x,x, —x'B;j)p(x) .

B. Hamiltonian

One can now pass to the Hamiltonian dynamics in

the usual way. ' The momenta conjugate to the fields

y, p *, and A will be called ~, ~ *, and P, respec-

tively, and are given by

i~.= BZ/B(B4q. ) =G.4*,

izr *=BR/B(B4q *)=G 4, (2.6)

iP =M/B(B4A )=F 4.

m4=m4~=0 reQects the fact that the spin-1 particle has

three dynamical degrees of freedom. Their conjugate
fields q4 and q4* can be expressed as functions of the
independent variables by setting v=4 in Eq. (2.3) and

using (2.6). The so-called constraint equations then

follow:
ZZZ q4 ——ZD. zz —eKP q,

nz' q 4*——iD* zz+ el4P. q *. (2 7)

If the counterterm ~' had not been included in the

Lagrangian, the constraint equations would take a
rather complicated form. This can be seen in the paper
of Lee and Yang' Lsee their Eq. (A25), Appendix Bf. In
particular, the dependent 6elds q4, p4* cannot be ex-

pressed as polynomial functions of the independent

fields. This is rather important in connection with the
covariance of the theory (see the remarks at the end of

Sec. II D).
The Hamiltonian density 3'. can then be expressed as

a function of only independent variables, substituting
for q 4, Bp/Bt, etc. , Eqs. (2.6) and (2.7). The interaction

part is identified as K—K (e= 0).

C. Interaction Representation

Ke pass to the interaction representation to obtain

the I'eynman rules. In this representation, the fields

The intrinsic magnetic moment p, and quadrupole mo-

ment Q are defined as the matrix element of these opera-
tors for a positively charged particle at rest and with

the spin eigenstate Ss=+1:
p,
—= (p=0, Ss——1~ jzs~ p=0, $,=1)= (1+14)e/2ZZZ,

Q= (p —0 S —1
~
Qss

~

p= 0, S = 1)= —2«e/4'

It is seen that the charge and magnetic moment can be
arbitrary, but once chosen, the quadrupole moment is

fixed. .

Besides the noncovariant terms that appear in the
interaction Hamiltonian contained in the X term, some
of the propagators also contain noncovariant parts":

&TLq „(x)q, *(0)3)...= n„,(x)y (z/~') B„,B„B'(x),
&2'LG"(x)G-p*(o)3)-.

B~B~Spp BpBpSp~+ ByB~Ssp

+BpBpK)va+i(8„45 48„p+8„4Bp48„
—By48p48, —8,48 48/, p)8 (x),

&~LP..(*)P. (0)»...
= ( ,Bp„B—B B„B„—Bp+5„pB„B

+B&&BsBp)2D&(x)+z(Bp4Ba4B&p+ B~4Bp4B a
—

B/, 45p48. —8.48 48pp) 84(x),
where

$„„(x)=[B„„(1/—z)rBz„B„]', A~(x)-,

6F———i(8zr4) d'k ~i@-x
k'+zzz' —zs

1
Dp= i(84r4)—' d4k e'"'—

k2

B4(X) = Bs(X)8(t) .

(2 9)

D. Feynman Rules and Relativistic Covariance

The Feynman rules for calculating the S matrix can
now be derived using the well-known procedures of
Dyson and Wick. Following Lee and Yang' Lsee their
Appendices B and Cj, this will be done in two steps.
First, the propagators and the interaction Hamiltonian
are replaced by an equivalent set, equivalent with re-
spect to the resulting S matrix (the Lee-Yang equiva-
lence theorem). The new propagators are the covariant
part of the propagators given in (2.9), and the new in-
teraction Hamiltonian is given by

where

Xz = —~z+bH,

V& = —,'i54(0) ln(det(1+ A)). (2.10)

"A useful identity is T (A (~)fl(~') J =1[A (z) fl (z')]
+s4(&—&')LA (&) ff(&')g-, for A and 8 boson izelds. We use this
formula to dehne the T product at the singular point x=x'. The
propagator functions given in Eq. (2.9) can also be found in Ref. 2.

satisfy the free-field equation of motion Lsee Eqs. (2.3),
(2.4), (2.6), and (2.7) with e=0). In terms of the free
fields, the interaction Hamiltonian Xi is given by
&z= —Zz+K, where

&z= 2 —Z(e= 0) =ieA„(G„„*q„q—„*G„„)

(2.8)K= e'(A—iq 4* A4q—i*)(Aiq4 A4q—i)
—(es/zzz') A,G4, *AsG4s se—'14'( q ~*q 4 ip

—
*&pi)

+ (e's'/m') A j,F4j(G4s*q, —G4. q z*) .
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Here A is an (11&&11)symmetric matrix characteristic
of the system (see Appendix A). The Dyson-Wick
niethods can then be applied to the equivalent Hamil-
tonian (2.10), and the Feynman rules easily obtained.

For the Lagrangian (2.1), an explicit calculation
shows that det(1+A) =1, so that 8H=O. The covari-
ance of the S matrix then follows.

The condition det(1+A)=1 implies that the de-
pendent fields p4, r)p/r)t, etc. , can be written as poly-
nornial functions of the canonical fields. Inspection of
Eqs. (2.6) and (2.7) shows that this is so.

The Feynman rules for this case can be found in the
papers of Nakamura and Tzou. ' The three- and four-
vertex functions are the matrix elements of iZz Lsee
Eq. (2.8)].

The vertex functions for the general interaction are
listed in Fig. 1. The above vertices can be obtained by
setting X= 0 there.

III. QUADRUPOLE INTERACTION

A. Lagrangian

The foregoing theory will now be extended to include
an arbitrary quadrupole moment. The Lagrangian den-

sity of the system is now

@1+@2+@8~ (3.1)

our criterion for choosing the interaction given by Eq.
(3.2) is that it is the simplest one that describes an arbi-

trary quadrupole moment and contains no more than
erst derivatives of the vector fields p„, y„*, and 3„.
Thus we omit from our theory an interaction of the
form G„„~yqBqF„,+H.c., which might otherwise be
chosen, since it is closer to the classical form for a quad-

rupole interaction. Although this means a certain loss of

generality, our concern is to see if the addition of an

arbitrary quadrupole moment can lead to a consistent.

relativistic theory.
Up to this point we have been careful to avoid using

such phrases as "minimal interaction" or "anomalous
moments" because of the known ambiguity of these
notions for the S=1 case."This is borne out by the
fact that the interactions contained in both Z~ and g2
seem to be equally fundamental interactions for all

values of the parameter ~. However, Zz+Zs can now be

I'See the article by G. Wentzel, in Preludes in Theoretical
Physics, edited by A. De-Shalit, H. Feshbach, and L. VanHpze
(North-Holland Publishing Co., Amsterdam, 1966).

2z+ 2s have already been studied in Sec. II; 2s is taken
to have the symmetrical form

Zs = (i'/m') F„„G„,*G„p, (3.2)

with X some constant (see Eq. (2.2) for notation).
The intrinsic magnetic and quadrupole moments are

now
~= (1+g+X)e/2m, Q=2(X —z)e/m'.

i~.=G.4'* G.,* (ie)——/ms)(F—.,G„~ F„G.,*)
iver *=G '=G 4+(ie)/ms)(F, G,,—P,,G,),
i& =F 4'=P 4

—(ieX/m')(G, *G,,—G,,*G,)
(3.6)

while the constraint equations (2.7) remain unchanged:

m p4 ——iD m —e~P q,2

m'@4*=i&" ~+e~P q.
(3.7)

The desirable feature of the constraint equation (3.7),
that the dependent fields q4 and @4* can be expressed
as polynomial functions of the canonical fields, is main-
tained here. However, as can be seen from (3.6), the
same is not true for the time derivatives of the fields.
This will cause difficulties connected with the relativistic
covariance of the theory.

B. Interaction Representation and Relativistic
Covariance of the Theory

As has already been pointed out, we expect that our
theory will not be relativistically covariant. Indeed,
already for the simpler interactions treated in Sec. II,
we found that only electromagnetic interactions were
not enough, but also direct interactions among the
charged particles were needed to obtain a relativistic
theory. Notwithstanding the fact that some direct in-
teraction among the charged particles has already been
included in Z3 through the use of F„„rather than F„„,
we will see that the theory is not covariant. This lack of
covariance shows up in the derivation of the Feynman

"T.D. Lee, Phys. Rev. 140, 8967 (1965).

contrasted with Z3, which has a more complex structure.
Also, as will be shown below, the attempts to satisfy
the relativistic requirements are more difficult for Z3
than for St+as. This could lead one to conclude that
in some sense Zz+2, is a zninimal interaction (X=O),
while Z3 is nonminimal. A more precise definition of
minimality, and which is in agreement with the above
observations, is that by minimality we mean that the
interaction Lagrangian contains the minimal number of
deri vali mes consistent with the symmetries of the system.
Such a definition has also been advocated by Lee."

We note that the field equations for the charged and
electromagnetic fields are now, respectively,

DpGpp m Ipy+MKFpy pp= 0) (3.3)
B„F„„' ie(G„„—'"p„p„*G„—„')= 0, (3.4)

where the effect of Zs ( X) appears through the
quantities

G„„'=G„„+(ie)/m')(F„pG„, F„pG„p),—
P„„'=F„„(i'/m'—)(G„,*G„, G„,*G„,—)

LG„.and P„,are defined in (2.2)j.
The conjugate momenta can be easily obtained by

the replacement G —+ G', G*~G'*, and F—+ F' in Eq.
(2.6):
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Element

internal photon line

Internal meson line

5 —vertex

4 —vertex

Graph

&V

& qC

Valu e

o = -i8~, /q

S = —
l (Sp,p + m P@P p ),

" -2

(p'+m'-Ie) '

V= See Table I

U = See Table I

A gB&0 is clearly an undesirable aspect of the
theory. Not only does bH transform noncovariantly
under Loretz transformations, but it also breaks the
unitarity of the S matrix and is divergent.

An attempt to amend the theory so that bH is elimi-
nated, at least to lowest order in eX, and an indication of
how this could be extended to higher orders will now be
given.

C. Countertej'xna

4- vertex W ~ See Table I

rules that correspond to 3. As in Secs. II 8 and II C, the
canonical formalism will be used.

We Grst need. the Hamiltonian of the system as a func-
tion of the canonical variables q, ~, etc. This ca,n be
found in the standard way. ' We note that it will be an
infinite series in the parameter eX/m' because of the
presence of denoininators when the Eqs. (3.6) are in-

verted. We then pass to the interaction representation
to obtain the Feynman rules. In this representation,
the interaction Hamiltonian is a function of free-field
variables. It, too, is an infinite series in eX/ni . The gen-
eral form of the interaction Hamiltonian will be
—Sr+K, where all the terms that transform noncovari-
antly under Lorentz transformations appear in K. & is
given simp1y by

(3.8)z,=g —z (s=o),

and is a covariant function.
As in Sec. II C, we replace the interaction Hamil-

tonian by an equivalent one which is to be used in con-
junction with the covariant parts of the propa, ga,tors for
calculating the Smatrix. Since our interaction, with the
added term 23, is still contained in the class of intera, c-
tions considered by Lee and Yang, ' their equivalence
theorem can be applied here. We And, then, that the
equivalent Hamiltonian is given by

Ki'= —Zi+ BH,

where Zr= 2—2 (e=o) as before, and

BH=-', ih'(0) lnI det(1+2)g.

A is an (11)&11)inatrix characteristic of the system.
In an explicit calculation, which is given in Appendix

A, we find that det(1+2) /1 and, in particular,

SH = —-', iS'(0) (2e&/is. ")'pGs~'Gst+FsAQ
+ O(ee,s). (3.9)

pgQ. f. Feynman rules for some of the simpler graphs associated
with the interaction Lagrangian given in Kq. (3.13). Only the
values of the three- and four-vertex functions are listed (see Table
I).Higher-order vertex functions, as well as the vertices associated
with the counterterms ZoT, are not included. The rules are given in
the momentum representation.

@a++5+@c+Zd ~

2,= a(eX/m')'G„, *G„,G„,*G„,

Zs ——b( eX /m')'G„. *G„, G„.+ G„.

Z, = c(e~//~ ) F„.G„.*F„,G„,

Zd d(eX/m')'F„. G„—:—FA „

(3.1o)

(3.11a)

(3.11b)

(3.11c)

(3.11d)

where a, b, c, and d are constants to be determined. The
calculations are contained in Appendices B and C.
BrieRy, the new interaction Hamiltonian is found which
now includes Z~T. The equivalent Hamiltonian is then
constructed, with ZgT contributing a term, called 8HcT,
to the 8H already found (3.9). We then demand that to
lowest order (e'iV), M'cr+BH=O. This uniquely deter-
mines the four constants

u= 2, b= —~, c= —2, d=4. (3.12)

In the next order 0(e9.'), however, 8HcT+bH is non-
vanishing, so the theory must still be judged unsatis-
factory. A reasonable next step is the construction of
further counterterms, i.e., we choose additional counter-
terms which result in 8HcT+8H=0 to 0(e9,'), while not
a,ffecting the lower-order calculations. For example, for
the O(e'X') term, counterterms contaiiung a product of
five field operators would be appropriate, a typical one
being (eX/m') 'FFFG*G.

Concerning still higher-order terms in 8HcT+8H, we
have no reason to believe that they are all zero at this
stage. But by proceeding as indicated above, by adding
appropriate counterterms, the theory could be made
covariant to all orders in eA. . We wish to point out that if
the above study of the lower-order terms is any indica-
tion, we would expect that additional counterterms are
needed for each order of 6Hcr+BH. Thus we expect
that Z~T will have to contain products of 6eld operators
of arbitrarily high order to Anally obtain a relativistic
theory.

We amend the Lagrangian 2 given in (3.1) by suitable
counterterms. These counterterms will be designated
collectively by ZcT, and the theory will now be given by
the Lagrangian (2+Zcr). ZoT is determined by the
requirement that the resultant theory be relativistic in
the sense that the bH terms of this theory are zero.

Let us first take ZgT to have the form
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TAnrx I.The values of the three-' and four-vertex functions associated with the interaction Lagrangian (3.13).
The notation is given in Fig. 1. (X'= X/m'. )

&=eel~.p(p+p' ~'P' qp+&'P qp')a b-.—(P aq —&'P—' qp+&'P' Pq)p be.—(p'+eq+~'P qP' ~'P—' Pq).+~'P.P-'qp ~'p, 'q-pp]

U= ie—'(2b„.b p b—„bp. b—avbp„)+pe'X'{b„b p(q q—') (P' —P) —ba„bp. (q P'+q'. P)
+bavbpv(q'p+q p ) bap[gv(p p)a ql» (p p)v]+bi»v{ pp(q g ) a pa (q g )p]+bpv(qaplv +ga pe+qa pi» qa pa )

bav(gp PI» q» pp+qppl»+qp Pi» ) bvp(pv ga pa gv+pvga+pv ga )+bua(pvqp ppgv+gppv +gp pv) J

W =pe e (2bpvbaa bpabva bpabva)

ze KX {b„pbva(g +p ) ' (g+p) bvabvp(q ' g+p p) b'apbav(p 'q+g 'p)+bvv(qp ga ga gp+gppa +ga pp)

+baP(P»qv +Pa gv+Pv Pa Pa Pv) baa(qepv +PvgP +gvgP +PPP» ) b»P(Pa ga+'ga Pa+qa qa+Pa Pa)
+bop(p» ga pa gv+gvqa +pa pv)+bav(gppa qa pp+ppp„+gv gp) j

a When the charged particles are on the mass shell, the three-vertex function V reduces to V -+iep~p(p+p')&+(1+pc+y) (y qp g~„~ )+(yam~) (& &

-$&Q~p) (p+1p )jjbj. This is in agreement with the expressions written down on general invariance grounds by A. Zichichi, S. M. Berman, N. Cabibbo, and
R. Gatto, Nuovo Cimento 24, 170 (1962).See also Glaser and Jaksic (Ref. 5).

iZz+i Zcr
eA „(G„v*—pv g»*G„»)—.

+exI'„„g„*q„+ze'x'(g„*q, q, g„)—
—(e),/m') P„,G„p*G»p+ zZcr. (3.13)

IV. SUMMARY

Ke have demonstrated that it is possible, in principle,
to construct a relativistic theory of the general electro-
magnetic interactions of a charged spin-1 particle. Our
particular interest was the inclusion of a quadrupole
moment of arbitrary value. In order to construct such
a relativistic theory, however, it was necessary to in-
clude terms beyond those suggested by the classical
interaction of multipole moments with the electromag-
netic Geld. In particular, we needed both nonelectro-
magnetic interactions, involving products of the charged
Geld variables only, and higher-order electromagnetic
interactions. The latter interactions contained the elec-
tromagnetic Geld in a nonlinear way. These additional
terms (counterterms) were explicitly found to lowest
order O(e'X'), with their strength uniquely deterznined

by the requirement that to this order the resulting
theory be relativistic. It was then indicated how the
higher-order terms could be constructed in a similar
manner, and how the theory could then be made co-
variant to all orders in eA. . These counterterms have
physical significance, and, for example, additional scat-
tering terms are predicted which are due to them.

The problem of the renormalizability of the theory
still remains. Our point of view throughout the paper has
been that it is meaningful to consider the two problems
of the relativistic covariance of the theory and its re-
normalizability separately. While the structure of our
theory is rather complicated, we are at least reassured

D. Feyom~ Rules

The vertex functions for the general interaction are
listed in Fig. 1 and Table I. They are the matrix ele-

ments of

that a positive answer could be given to the problem of
the relativistic covariance.

APPENDIX A

In this appendix, we will calculate the value of
lntdet(1+A)j. For the purpose of this paper, it will
be suKcient to evaluate it to O(e9.'). This work will use
the general results found in the I.ee-Yang paper (see
their Appendix C).

The symmetric matrix A, q is deGned by

Aab 8 Zzlr)gBlPzv, '

where Zz=Z —Z(e=0). The 11 Hermitian variables
(u= 1, , 11) are defzned by

f; =iP4;,
lt p+;= (1/v2)

C G4J —Gej*j,

;= —(z%42)EG;+G„*j,
Ao= (zzz/~2) Lq 4

—
g 4*j,

lt zz= (z~/VZ) p p—4y g 4*),

(A2)

where j=1, 2, 3.
In (A1), gz is to be understood as a function of the

lb„while all other variables like qp, fp*, G,;, etc., are to be
treated as constants.

Using Eqs. (3.1), (A1), and (A2), the symmetric
matrix A can be found for our theory. Written in block.
form, it is

0 a;; b;; E;
0 c;; S;

0 T;
U

I;
J;
E;
V
lV

(A3)

We have used a mixed notation: zz, b, and c are (3X3)
matrices, If, S, T, I, J, and E are (3&(1) columns, and
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(1+A) -+
9X9 0

0 2X

The (9X9) part of (1+A) is not affected by this trans-
formation, but the (2X2) part is changed. The deter-
minant of the new (2X2) piece=1. We are then left
with a symmetric (9X9) determinant to evaluate, i.e.,

8
det(1+A) ~ det a~ 1 c

b~ c~

For calculational purposes, the following identity is
useful:

ln det(1+X) = Tr ln(1+X)
=Tr(X—2X'+-'X' —+ .)

With
0 a b

X= g 0 c
b~ c~ 0

we find, to the required order, that

ln det(1+A) = 4e'h" (2G; *G +F;—F;;).
416ebh" F@Ggb*Gb,+ 0(e4h—4) .

This gives the result in Eq. (3.9).

U, V, and W are (1X1) elements. The elements of the
(3X3) matrices are

a;; = —&2eh'(G;,+C",;*),
b;; = iV2eh'(G;; —G;,*),
c;;= 2e'A'Jl;;.

The elements of the (3X1) columns are

It.;= (eb/@2m)(p;+ y, *)+(i e'h'/v2m) A, (G,, G;,*—),
I;=- (ieK/—V2m) (p; p, *)—+ (e'h'/u2m)A, (G;,+G,;*),
S;= (e'h'/m)F;;A, +(e'bh'/2m)(q, *+p;)(G,,*+G,;),

(e/—m) A;+ (ie'Iih'/2m) (q, ~ q, )—(G;,*+G,,),
T;= (e/m) A;+ (ie'zh'/2m) (p;~+ (p, ) (G;;*—G;,),
E;= (e'h'/m) A F" (e'ah'/2m—) ((p," q) (G"*——G ") .

The (1X1) elements are

U= (e2/P/2m2)((p y (p *)

(ie'z—h'/m') A; (q;+ p,*)(G;;*—G;,)+e'A '/m',
V= (ie'x'/2m') (y;*q;"—p;p, )

+ (e'Kh'/m')A, (p;*Gg*+q;G;;),
8'= —(e'b'/2m') (p;—q;*)'

+(ie' bh/m')A, (p;*—p;)(G;,*+G;,)+e'A'/m'.

(i and j run from 1 to 3, and summation is understood
over repeated indices). h'= h/m'.

The value of ln det(1+A) is needed. We first perform
column and row manipulations and are able to transform
1+A into diagonal block form:

where all indices run from 1 to X. This Lagrangian rep-
resents a system of E coupled oscillators, with A, E, HEI,

and C functions of the coordinates Q, only. h is the
coupling constant, which we take to be small, and as-
sume that expansions can be performed in terms of it.

If we set A, b'= hA, +be, b, we see that (B1) differs
from the Lee-Yang Lagrangian Ltheir Eq. (A41)j in an
essential way by the inclusion of a term which is of
fourth order in the velocities Q,.

The canonical momenta are

F.= &I/&Q. = (Lb+A.b')Qb+h'old ab, dQbQcQe (B.2)

This equation can be solved for Q, as a power series
in X.

For the purpose of this paper, we will only need the
equivalent Hamiltonian to 0(h ). This requires the ex-
pression for the interaction part of the Hamiltonian to
the same order. The interaction Hamiltonian of Lee and
Yang Ltheir (A47)g is modified by the additional term
in (Bl), and to 0(h') the interaction Harniltonian in the
interaction representation is given by

a;„,=—', Q.Qb
1+A'- b

4h'~abc~Q—.QbQcQ~+0(h') . (B3)

The vacuum expectation values of the T products in the
interaction representation, given by Lee and Yang, ' are
the following:

where

(&LQ (")Q (0)3) = & s(")

(TLQ.(t)Q (o)j) -= l&. &(t)

(TLQ (t)Q„(0)j) „= ,'8„„s(t—) —i8 8(t), —

s(t)=e " for t&0
= e" for t&0,

8= ds/dt, 8= d's/dt'

(B4)

To obtain the equivalent Hamiltonian, all Feynman
diagrams are calculated, but only the explicit 8(t) part
of the propagators Lsee Eq. (B4)j is used for an internal
line. The equivalent Hamiltonian calculated in this way
will then have the form

&equiv= I int+ ~+

5II is the term due to those Feynman diagrams in which

APPENDIX 8
In this appendix, we will generalize the Lee-Yas~~«

equivalance theorem to include a larger class of inter-
actions. This is necessary to treat the counterterms that
were added in Sec. III C.

We take for a model Lagrangian

I-= —',Qa'+-,'hA ebQaQb+-,'-h'~abQaQb

+4'h'cV, b,eQ,QbQ, Qg+C, (B1)
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Qc Qd

2
Qp )t, Mabcd Qb

FIG. 2. Feynman diagram as-
sociated with Eq. (B6) of Appen-
dix B.

an internal line begins and ends at the same point. More
technically, it is due to the T product of operators which
are at the same instant of time.

In Eq. (83), let us set

c, and d there. We determine them by requiring that
they result in bH&T+ bH =0 to order e9'. The results of
Appendix 3 for particle dynamics are generalized to the
present case of field dynamics by identifying the Q, as
the Hermitian part of the 9 fields F4;, G4;, and G4j*.
More specifically,

;—+iF4j,

(C1)QS+c ~ (1/~2) (G4c—G4t*)

Qs+ ~ —(i/v2) (G4+G4J*)
Hiac I+II

where

TrA =0,

(35)
(C4)Q 3E,b„Q,Qb ——0.

To order X', the contribution of II to 8II can be found

by calculating the diagram of Fig. 2:
The explicit form for A & is given in Appendix A; only
the (9X9) submatrix is needed here. Since it is traceless,
Eq. (C2) is satisfied. E,b and 3E,b,z can be found by
comparing the counterterms Eq. (3.11) with the model
Lagrangian of Appendix 8, Eq. (81), and making use of
Eqs. (C1) above.

After a straightforward calculation, using the 2, R,
and M so found, Eq. (C3) results in the pair of equations

»II = —(6/4) ~'~.b.dQ QbP'LQ. (0)ed(o)))-

(86)=X'(i/2)&(0) X-,' Q ~.bc Q Qb,

where only the b(t) part of the propagator was used in
the last line. In order to obtain a sensible theory, we
must impose the condition that

I= —',L(A'/1+A')). bQ.Qb,
II= —-'X'3E b dQ QbQ Qg. From Appendix 8, Eqs. (85) and (87), we find that

the equations that must be satis6ed for bHQT+hH=O
The 8H due to I in the above equation has already been to order g2

calculated by Lee and Yang. We note their result (with (C2)
A, b replaced by A, b'= &A,b+X'E,b):

Tr(A —-'R') =0 (C3)
bH, = —',ib(0) TrDn(1+A'). ,).

Z ~a bc cQaQ b
=0

C

Otherwise, contracting the remaining two operators in

(36) gives an additional

(2a+4b+ c)G@~G@=—4G;;*G4c,
A A A rh

cF;;F;;=—2F;;F;;,

while Eq. (C4) results in the pair of equations

(C5)

bHii' X'(i/2)'8(0) b(0) X ss Q 3E„„. (12a+16b+4c+2d) G4;*G4;=0,
F4.F .—0

a, e
(4c+2d)

It is to forbid such terms that (87) has been imposed.
The solution of (C6) and (C5) is

APPENDIX C
@=2

~
$= —

g ~
c= —2

~
d=4.

We are now able to calculate the coeS.cients of the
counterterms of Sec. III C, which were denoted as a, b, This gives the results quoted in Eq. (3.12).

(C6)


