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Quantization Conditions for Linear and Nonlinear Trajectories*
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It is shown that the relation between linear trajectories of opposite normality found by Ademollo, Vene-
ziano, and Weinberg also holds for nonlinear trajectories which occur in a generalization of the Veneziano
form. It is also shown that half-integer spacing of trajectories of opposite normality which are connected by
pion emission is possible only if the lowest spin particle on the upper trajectory is missing. Experimentally,
there is a distinct absence of such particles (e.g., low-lying —, baryons and baryon resonances).

S OME arguments of Lovelace' have been extended
by Ademollo, Veneziano, and Weinberg2 in order

to derive "quantization conditions" for linear Regge
trajectories. Their relation between trajectories of oppo-
site normality which can be connected by pion emission
is obtained by invoking the Adler self-consistency con-
dition' in the Veneziano model. 4

Recently, a generalization' of the Veneziano form
was found which possesses meromorphy in s and t,
polynomial residues, Regge behavior, nonlinear tra-
jectories, and the Veneziano form as a limiting case in
which the trajectories become linear. The generalization
is an infinite product in which the zeros are displayed so
that the arguments of Lovelace and of Ademollo,
Veneziano, and Weinberg apply straightforwardly. We
6nd that the relation' between trajectories of opposite

normality still holds even when the trajectories are
nonlinear.

We also And that the assumptions of Ademollo,
Veneziano, and Weinberg imply that the lowest spin-
particle ort the higher lying tr-aj ectory must be missirtg in
order for their predicted half integer spacing' actually to

occur. This prediction is in agreement with current
experimental knowledge. In particular, it supplies a
dynamical explanation for the absence of certain par-
ticles such as low-lying baryon resonances. It should be
emphasized that for the case of linear trajectories this
result can be proved using the Veneziano representation.
We choose to use the more general representation
because there is no extra work, the argument is the
same, and the result is then obtained under more
general conditions.

The generalization of the Veneziano form found in Ref. 5 can be written
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where the trajectory functions are given by

nx(s) = (1/E) 1n(Axs+ Fx) = (1/E) In(1+E(Ax's+ I'x')),
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and the h.'s, F's, and E are real constants with E&0. For E)0, we can choose E(m) = 1. In order to have con-
vergence of the infinite product in the Veneziano limit E~'0, we choose R(0) =E and E(m) = 1—e x™for m/0.
As E—& 0, the trajectories become linear.

As in Ref. 2, we imagine that the amplitude for 7r+A +8+C is some l—inear combination of terms of the form
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where k, 1, and n are integers, and J~ and J~ are the
spins of 3 and B.
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The Adler self-consistency condition states that this
amplitude has a zero at I' &=0, i.e., s=m~', t=nz~'.
Assuming that the zero does not arise because of can-
cellation between terms of the type (4) with different
values of ts, t, and m, the form (4) must vanish at
s= m&2, t= m&'. This can occur only if the numerator of
(4) vanishes, which implies that
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where E» takes on only integer values and

Eggy&n.
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For X~~ to be even-integer-valued or odd-integer-
valued for all spins J~, we must have
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where I' and Q are integers with P&0. These equations
together with Eq. (2) imply that

~x($) = P~~($)+kQ. (10)

Considering amplitudes with X and A interchanged'
leads to the result that 1/P is also an integer. Therefore,
I' = 1.This fact, together with Eqs. (7)—(9), implies that
cV~~ is independent of J~ and that Q=N~~. Thus
Eq. (10) becomes

oX($) QA($)+ 21VAA ~

This result states that two trajectories of opposite
normality which are connected by pion emission have
the same slope at each value of s and have intercepts
which differ by half-integers. For linear trajectories,
this is just the result of Ademollo, Veneziano, and
Weinb erg. Their mass formulas which depend on
trajectories being linear will follow from Eq. (11) only
if E'= 0, although they follow approximately for
small E.

In order to derive a further result, we now consider
the integers k, I, and n in (4). Since I+Jii is the mini-
mum t-channel angular momentum, we have the

Parity conservation implies that only trajectories
with normality opposite to that of A (B) can contribute
in the s channel (I channel) at P "=0.

Equation (5a) implies that 21Viii=1V&z+Eiiii. Thus,
E~~ is either odd-integer-valued or even-integer-valued. '

For trajectory functions of the form (2), the spectrum
of external masses is given in terms of spin by

m„' = (ex»-i —I'~)/A ~ .

Letting X= Y and A =B in Eq. (5a) and substituting
Eq. (6), we find that

inequalities

I+Jii) 0 for Y and B bosons,

I+Jii&x2 for Y and B fermions.

(12)

(13)

A"~~& —2J~;„for bosons, (16)

E~~) —2J~ ~;„+1for fermions, (17)

where J~; is the lowest spin of all physical particles
on the A trajectory. If we repeat these considerations
for amplitudes with X and A interchanged, we And

S&&+2J~ Irt j~ fOr bOSOns
~

Eg~& 2J~;„—I for fermions.

If Jz ~;„=J'x m;„=0 or —,', then, by Eqs. (16)—(19),
g~z ——0, and therefore nx(s) = n~($). If a spin-0 (spin- —.', )
particle is missing on a boson (fermion) X trajectory,
then Jx;„——1 (Jx; =~3) and 1V~~&2. This would
permit the X trajectory to lie —,

' or 1 unit above the A
trajectory.

Thus, we see that for the half-integer spacing of
Ademollo, Veneziano, and Weinb erg to occur, the
lowest-spin particle on the upper trajectory must be
missing. For a difference of 2 between the intercepts of
two leading trajectories, the two lowest-spin particles
on the upper trajectory must be absent. 6

For the trajectories with half-integer-spaced partners
given in Ref. 2, we will mention the missing particles.
On the 6 and P'»* trajectories, there are no —,'particles,
and on the p and E* trajectories there are no scalar
particles. In the case of ~ baryons, there has been
considerable interest in finding the dynamical reason
for their absence. Our result could be of use in baryon
spectroscopy as a means of correlating the less-well-
established trajectories.

The author would like to thank Professor M. Baker
for suggesting this problem and for many helpful
comments.

This result helps us understand the observation of Ref. 2 that
observed intercept diR'erences are all ~ and not ~ or —,'.

The order of the polynomial in f of the residue of the
pole in (4) at nx(s) =j can be shown to bej+I n J—&. —
The requirement that the order of the polynomial be
less than or equal to the angular momentum j (no
ancestors) implies that

n& Jg+—/ for X and A bosons, (14)

n& J~+I+—~ for X and A fermions. (15)

We now let X= Y and A =B. From Eq. (Sb) we have
X~~&n. Combining this with Eqs. (12)—(15) gives
X~g& —2J~ for bosons and Xgg& —2J~+1 for
fermions. We have already established that X&z is
independent of J~, and therefore we have


