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The experimental implications of the Sardakci-Ruegg representation for the 6ve-particle processes
EK7lwx and EXEXm are investigated in the region of various resonance productions. As in the Veneziano

representations, there are many spins present in high-mass resonances. The angular momentum content of
the resonances and the angular distributions of the decay products are studied as a function of momentum

transfer. In a number of cases, we And that there is only a very small admixture of odd daughters. In these
instances, the condition under which the odd daughters vanish is nearly equivalent to certain previously
obtained mass formulas.

ECENTLY, there has been much interest in the
construction of generalized Veneziano representa-

tions for the E-point function. ' The experimental
implications of the Veneziano-type four-point function
have been investigated by a number of authors. ' One
general feature of these crossing-symmetric amplitudes
with Regge behavior is the presence of several partial
waves resonating at precisely the same energy. Although
one should view this representation as a first approxi-
mation, it indicates that perhaps the p-t. interference
phenomenon is the rule rather than the exception. It is

our purpose in this note to focus attention on this and
other questions concerning resonance production in
what we believe to be a meaningful model.

In the present paper, we analyze the Bardakci-Ruegg
representations for the processes mE —+ ~mE and
EK —+EKE,3 with emphasis on the features of reso-
nance production. Though, a priori, there seems little
reason to expect the odd daughters4 of a resonance to be
absent in the asymptotic limit, they are not present
for many cases in the above processes. Even when they
are present, the odd daughters appear to be dynamically
di6erent from the even ones. The angular distributions
and angular momentum composition of the resonances
change with varying momentum transfer in a rather
complex fashion. There are, however, certain regular
features of the variation which appear to be quite
general.

The five-particle processes are a function of five
variables which BR take to be the five subenergies s;;
(where j=i+1). (See Fig. 1.) In terms of these vari-

where
y (1 us) 84(1 u]us) 15+ 23+ 34
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Going to a pole in the 2-3 channel at o.~3=X and
taking s15 asymptotic, ' we have

A =X(1,2,3,4,5)+X(1,3,2,5,4),
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ables, the representation for the process m'IK 5~
x 2~+3K 4 in the configuration of Fig. 1 is
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4The odd daughters of a resonance with spin 2V have spin
E—1 S—3

FIG. 1. Five-particle process
where
S15= (Pl+PS) s $12 (PI P2) s

S23 = (P2+P3) S34 —(P3+P4) )
and s45= (p4 —pg)2.

~ One gives a» a linearly increasing imaginary part when
taking s» asymptotic in the absence of a better unitarizing
procedure.
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TAI3LK I. The relative probability for the production of angular
momentum J for a resonance of given a9~ =E.

(a) s4g ———0.01
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FIG. 2. Helicity frame where
the z axis is given by the direc-
tion —p4, and where the y axis
is perpendicular to the produc-
tion p1ane.
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Two reference frames are oI use to us. Ke perform
the angular momentum decomposition in the helicity
frame, where we use the five variables s~5, s45, s~~, n,
and P (see Fig. 2), in terms of which one can express $1s
and s34. The angular distributions are given in the
Jackson frame, where we use the five variables $ts,
$4s, $ss, ()ts, and @ (see Fig. 3) and integrate over ()ts
and P alternatively.

Following the procedure outlined by Cook and Lee, '
the helicity amplitudes for the production of a resonant
state in the 2-3 channel with spin J, and s' projection
M, are given by
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A Jfv($75)$45)$2s) = d cosndPYJsr(Q)P)

&&A ($ts, $4„.,$s3,n,P), (3)

which becomes in the asymptotic limit s~5 —+ ~,
A jar($ts)$4ji)Sss) =(1+(—) (—) )X$sr($ts, $4s)$'23). (4)

The residue at the pole is a polynomial of maximum
degree E in the subenergies adjacent to the resonant
channel. This ensures that angular momenta J greater
than S will not be present in the resonant state. ' The
signature factor is expected on the basis of 6-parity
arguments applied for positive-integer values of n45.
There are similar signature factors for the other charge
configurations we will speak of, but we shall usually
ignore them and concern ourselves only with XJ~.
XJ~ also depends on the masses m~, m~, and m3.

In Tables I(a) and I(b), we present the angular
momentum composition of X for m~ =m2 =m3 =0, where

' L. I . Cook and B.W. Lee, Phys. Rev. 127, 283 (1962).
'Actually one should have a properly unitarized amplitude.

However, as long as the exchanged masses in the 1-2 channel are
reasonably large, the present polynomial is an adequate representa-
tion of the unitarized polynomial. However, the polynomial
appearing at the pole in the BR representation is unable to
represent a crossed channel 1-2 pole if the pole occurs at a small
value of s» such as the pion mass. The projection of such a pole
term gives a much larger eGective range than the BR representa-
tion is capable of reproducing. Thus, in such a case, one would
expect substantial corrections due to proper unitarization.
Approximate unitarization might proceed along the lines suggested
by R. Z. Roskies LPhys. Rev. Letters 21, 1851 (1968);22, 265(E)
(1969)j, who finds that for large energies many poles may con-
tribute in the vicinity of a resonant energy.

J= Q J Prob(J)
J=O

fo«wo vai«s of $4s.s Prob(J) represents the relative
probability that the resonance at n~3 ——N has spin J,
and J is the average spin of the resonance. As expected,
Prob(J) falls off for the higher values of J. It is also
clear that as s45 becomes more negative there is a shift
towards lower values of angular momentum. This is the
case for all physical configurations one can study using
the Bardakci-Ruegg (BR) representations. If, in the
2-3 c.m. system, one considers particles 4 and 5 as a
single particle of m'=s4~ and spin n&5, the crossed-
channel 1 variable is $ts, and d cos8ts ~d$ts/2k', where

P(

FxG. 3. Jackson frame, which
is the same as the helicity
frame except that the z axis
is given by the direction pI.

-P~&P(

8Xote that Jz for the full amplitude A equals J despite the
signature factor, if only even or odd J are present.
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TABLE II. The relative probabilities for the production of angular
momenta J for a resonance of given 0.23=37.

(al s4g= —0.01

1.84 2.80 3.78 4.65 5.37
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FIG. 5. Jackson-frame an-

f
gular distribution in cos8
or two values of s4g. The

s»
process is that of Table I,~'E- ~ ~-~+E-.
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Here k; and k~ are the initial and final
e. ne can t en viewc.m. momenta in the 2-3 rest frame. 0 h

t e above shift in J as the combined result of two com-
peting angular rnornentum barrier effects: (a) decreasing
the effective spin of the 4-5 particle o.45, keeping s45

~~ j~increasingxe, w ich causes J to decrease and qbj~i
s45, and hence the eRective momentum k km, eeping a45

fixed, which causes J' to increase. " Were we to use
somewhat unphysical values of the trajectory inter-

-1.0 0
Gas 8)p

1.0

cepts, the relative magnitude of the two eRects can be
reversed resulting in an increase of J bas s45 ecomes more
negative. For very unphysical values of the intercepts,
there is no clear pattern.

From Tables I(a) and I(b) it should also be apparent
that in the present case, for the value n ' =0.5 th

daughters with leading asymptotic behavior. "
For t e case where the 2-3 masses are e ual, the con-
dition for the vanishing of the odd daughters of a 2-3
resonance is

2n12 +n22 a45 1+rr (222 2+m 2+p/ 2) 0 (5)

Rewritten it becomes, for the case where the same
trajectory occurs in channels 1-3 and 2-3 )

&12+&22+o'12= 1+~42
&

Ex ressin
a sort o generalized Veneziano sub 'd'si iary con ition.

~ ~

tor m
xpressing t e intercepts in terms of the pare t taren re

eco-
ryy masses, measured in units of 1/ ' d do, , an eman ing

e vanishing of the odd daughters, we obtain from (5),
fol the case g iE 5~ 7p 27p+3E

3m, '—moP —3m~' =1.
For the process of E iE+ —+m + tg~~ 2x gx 4, t' e condition

or the vanishing of odd daughters in the 2-3
channel (sr sr+ channel) with

0,'45 =o.'i2 =Q~* =1—m~+2 2
) o.23 =o. = —mp p

becomes
1 mx" 212„2+m—rr2+2m—.2 =0

For the process 7p i~ ~E E+ssr 4, t e con ition (5)
reduces to a linear combination of the above two. For
the process E iE+5 —+E E+ ' f

'
h3m 4 or w ich we use

's EK —+ EKm representation with

0 0Ai2 =Ay = —my &
A2g =0,'= 1—SZp p

CE4g =A&+ = 1 m&+0— X* y

ll In general, there are almost none. ote there are al ays odd
es wit nonleading asymptotic behavior {s ) 4b '

ere is never any spin zero in the resen
conservation.

e present cases due to parity

Fro. 4.J versus k for the cases given in Tables I(a) and I(b).

9Thek f
'

of importance is that which occurs as the coefBcient
of cos8» in s» =c—2k' cose». It is given by k'= k;kg =P, (s23,s4&,m&'

XX (s2~,esss, mssl]' 2/4s», where X (a,b,sl =as+ bs+ rs 2ab 2ar, — —
—2bc. Notice that it is an increasing function of ~—'on o (—s45) for s4~

"In the BR representation, for which we have f ll d h'

rocedure these eG
v o owe t is

shifts in J resu tin
eGects are quite dramatic as compared t ll

suiting from changing s45 alone keeping the interce t
constant. For instance, for the case of Table I, %=6.

J=4.69 for 0.45 ——0.49, s4~ ———0.01.
2

J=3.69 for ~45 ———0.51, s45 = —0.01;
J=4.16 for a4~= —0.51, s4~ = —1.01.
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S45= - l.O I

/
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F?G. 6. Jackson-frame angular distribution in cosp for two values
of s45. The process is that of Table I.

mx4 g+mx +gmgP p

m 2 2~K~2 ~2
P

(6b)

(6c)

(6c) is the well-known Okubo mass formula, and (6a)
and (6b) are the'same as the formulas derived from the
Veneziano representations in the soft-pion limit except
for an extra 2m

Because of the success of these results, one might be
tempted to take the vanishing of the odd daughters in
the asymptotic limit as being fundamental. However, we
need only look at the process E+~m'5 ~ E'2K'3K+4 to see
that this is not so. Indeed, the condition (5) becomes,
using (6b) above, M~' ——4M'~' —2m, '——',—~33IIm', or,
using (6c) above, cVq'——,', which is clearly not satis6ed.
When the masses of particles 2 and 3 are not equal,
then the condition for the vanishing of the odd daughters
becomes quite complicated and is, in general, never
satis6ed. For example, we present in Tables II(a) and
II(b) the angular momentum composition of X for the
process K+~x 5

—+@+2K 3x 4 for which there is no
Signature faCtOr, i.e., 2 =X With n23'=n~*' ——0.25,
n~2'=n45'=n =048" The odd daughters are clearly
present though their leading asymptotic behavior

condition (5) becomes

I =2m '+m, '—mx*' —3m''

In addition, their representation for this case requires
cv-p degeneracy. Combining these equations, we have

(6a)

becomes increasingly suppressed as s45 becomes more
negative. It seems apparent that even when they do
not vanish in the asymptotic limit, they are treated in
a fashion fundamentally different from that in which the
even daughters are treated. Experimentally then, it
seems that by choosing the correct process one can hope
to see pure resonant states for angular momenta as
high as two, but that, in general, one should expect the
full angular momentum content possible. This is
particularly true at the present experimental energies
which are not yet sufficiently large for the elimination
of the odd daughters in this model to be complete. In
fact, for the value sU, ——20 GeV' the angular distribu-
tions in 0» and P are still fairly unsymmetric for the
cases in which the odd daughters vanish asymptoti-
cally, "indicating the presence of substantial amounts of
odd daughters.

Viewing particles 4 and 5 as a single particle, one
might ideally expect that J would be a linear function
of k. For the case of Tables I(a) and I(b), we plot J
as a function of k in Fig. 4. It is very linear. Changing
s45 will change the intercept of the graph but will not
affect the slope very much. The effective range (i.e. ,
the slope of the graph) turns out to be of the order of
the inverse mass of the nearest singularity in the 1-2
channel. 7 The graphs for the cases of Tables II(a)
and II (b) are very similar. This type of behavior seems
to be a general feature of these representations.

In Figs. 5—8, we present the angular distributions for
a reSOnanCe at n23=3 fOr the partiCle prOCeSSeS Of

Tables I and II, for two values of s4q (the smaller of
which is near that value of s45 at which the number of
events is maximum). In Figs. 7 and 8 notice that the
distributions become more symmetric as s45 increases in
magnitude corresponding to the suppression of odd
daughters. As s45 becomes more negative, there is an
increasing contribution to helicities other than 3f=~1
which must dominate in the forward direction. "
Figures 5 and 6 demonstrate the asymmetry of which
we spoke earlier at s~~=20, which increases as s45

S45= —I.OI

FIG. 8. Jackson-frame an-
gular distribution in cosp for
two values of s45. The process
is that of Table II.

FIG. 7. Jackson-frame an-
gular distribution in cosHI2
for two values of s45. The
process is that of Table II,
E+~—~ E+~'~—.

-1.0 0
cos Hip
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"The calculation here was carried out with Gnite&masses.

—I.O 0
COS $

I.O

3 Both distributions should be fully symmetric if only even or
odd J are present. The factors causing odd daughter presence are
of the order s23/SI5, s45/si m'/SI. , i.e., nonleading in s».

'4 Note that the density matrix p~;~~, ~ defined in the Jackson
frame, being given in terms of the density matrix p~~ defined in
the helicity frame by p~;&~, & =g~~ d~~;@(co)p~~ As ~.~'(co),
is dominated by p», pI &, and p & I in the forward direction because
co (the t-channel crossing angle) becomes 0 or 1I., for which the d's
are diagonal,
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becomes larger in magnitude due to the increasing im-
portance of factors such as s4s/sts, which arise from the
second term, which contributes to this process and gives
rise to the signature factor for very large sl~. For greater
values of o,2~, the 0~~ distributions take on more and more
of a diffraction peak appearance, which will become less
steep as s45 increases in magnitude because of the shift
towards lower angular momenta.

In conclusion, it seems that resonance structure
should, in general, be expected to be quite complicated
with, certainly, even daughters present and most
probably a substantial amount of odd daughters as
well. The simplest, and best known, example of this is
the p-e interference in the x+m. channel. "This seems to
be a property of all presently existing crossing-sym-
metric amplitudes satisfying duality. To a certain
extent, the manner in which the structure of a resonance
in such an amplitude changes with the momentum"P. B.Johnson et at., Phys. Rev. 176, 1651 (1968).

transfer in the production process can be understood in
terms of simple physical and intuitive arguments,
involving angular momentum barrier eGects. They
explain, for instance, why the average angular mo-
mentum rises linearly with k even though the trajectory
function, and hence the maximum angular momentum,
is a linear function of s. In addition, we have seen that
the BR representation for the processes considered has
some unexpected features, which may reduce the com-
plexity of the resonant structure under certain condi-
tions. For instance, increasing the magnitude of s45

suppresses the odd daughters markedly, particularly at
large laboratory energies. One may even find that in
certain processes, the odd daughters are altogether
absent at asymptotic energies, although this would
seem to be the exception rather than the rule.

We are grateful to Dr. W. R. Frazer for suggesting
this problem, and for his constant guidance and en-
couragement throughout the course of this work.
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Assuming linearly rising Regge trajectories and neglecting the &SE coupling constant, we consider a
simple expression for the proton magnetic form factor Gsrv(t) which has poles at positive-integer values
of the degenerate trajectory functions o.,(t) and a„(t).

'N this paper, a simple model for the nucleon electro-
' - magnetic form factors is suggested and discussed.
First, we must define the form factors of interest. The
matrix element of the electromagnetic current operator
between proton states is written

(4ko'ko)'"&p(k')
I ~.(0) I p(k))

=«(k') LPi" (t)v.+Ps"(t) ( .—1)
x (2M)—'ia„„g„fg(k) (1)

= e (1—t/4M') 'tc(k') $Gs" (t) (2M)—'P
+G~"(t)t.(gM')-'(tfPv. ~PIJ))~(k), (2)

where q=k k', P=k+k', t—=ps, M=nucleon mass,
e=proton charge, p„ is the total proton magnetic
moment, and the normalization is

Pt'(o)=Ps"(O)=GE"(o)=Gsr"(o)=1 (3)

The neutron electromagnetic form factors Fi"(t),
&&"(t), GJs"(t), and G~"(t) are defined similarly. Using
the algebra {y„,y„)= 2g„„, the Dirac equation and Eqs.
(1) and (2) give

I .G "(t)=P "(t)+( . 1)P "(t), —(4)
* Supported in part by the U. S. Atomic Energy Commission.

Gnv(t) =Ptv(t)+(t/4M') (ts„—1)Fsv(t), (5)

so that there is the kinematic constraint at the proton-
antiproton annihilation threshold

tsvGsr" (4M') =Gss" (4M'),

and similarly for the neutron.
There is no a priori reason to choose between the

form factors of Eqs. (1) and (2) for theoretical analysis,
but the experimental data indicate certain regularities
for the form factors of Eq. (2). In terms of these Sachs
form factors, the one-photon-exchange differential
cross section for elastic electron-proton scattering in
the laboratory frame is, apart from the radiative
correction,

do. 1 (do.
ts(

dQ ts EdQ &=v

X
I I

'I LG "(t)j'— 'LG "(t)3'
I(4Msf )

tans(igr) ts sLGsrv(t)fs (7)
2M'


