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In obtaining the wave functions of three-body Coulomb systems in which two heavy equally
charged, and one light oppositely charged, particles are involved, one can use a type of Born-
Oppenheimer coupling scheme, to obtain nonadiabatic effects. In this paper we decompose the
coupled differential equations of such a scheme in terms of the total orbital angular momentum
and parity of the states, and reduce these equations to one-dimensional ones in a form suitable
for calculation.

I. INTRODUCTION

Much work has been done in evaluating the bound
states of three-body systems involving two heavy
equally charged particles, and one light opposite-
ly charged particle. ' Generally, the situations of
interest are those in which the heavy particles are
the proton, deuteron, and triton in various com-
binations, and the light particle is either an elec-
tron or negative muon. In the electron case adia-
batic-type approximations give accurate results
for systems such as the hydrogen molecular ion,
because of the small electron-proton mass ratio.
The dynamical effects of the protons can then be
obtained by means of a type of Born-Oppenheimer
expansion. '

In the muon case, the states of interest have
been either L =0, muonic molecules, (Pp, d)+,
(ppt)+, etc , for n. uclear catalysis' and nuclear-
potential studies, 4 or L = 1 muonic molecules,
(PpP)+, for muon capture" and proton-structure
studies, ' where L is the total orbital angular mo-
mentum of the system, Because of the size of the
muon-proton mass ratio, the most accurate p. -
molecular wave functions have been obtained by
variational means' rather than by the use of Born-
Oppenheimer schemes, which couple the various
adiabatic solutions via the nuclear motion terms
in the Hamiltonian. Nonetheless, some calcu-
lations using these coupling techniques have been
performed by Cohen, Judd, and Riddella (CJR).

More recently, some interest has been shown
in excited states of muonic molecules, ' and esti-
mates of the energies of such states have been
made. The dynamical couplings of such states,
and hence their true angular momentum symme-
tries have not, however, been taken into account.
In addition, recent interest in highly accurate
values for the hydrogen-molecular-ion energy
spectrum has led to calculations using a scheme
similar to that of Ref. 8, in an attempt to get

accurate contributions to the energy from higher
electronic orbitals. " That work, however, only
considers couplings to states of the same azimu-
thal quantum numbers, i.e. , a states among them-
selves, or w states among themselves (where o
and r are the azimuthal quantum numbers of the
"two-fixed-center" solutions), whereas if one
takes into account the full angular momentum sym-
metry of the states one gets 0, m mixing for L =1
states, etc.

In order to fully appreciate the dynamical cou-
pling scheme approach to these and other problems
it is useful to fully explore the restrictions imposed
on the coupled equations by angular momentum and
parity symmetries in a very general way. In this
paper we extract the most general informationpos-
sible based on these symmetries, and finally end up

with coupled equations in only one variable, the
interheavy particle distance, for any given total
orbital angular momentum, L and parity P. These
equations then exhibit explicitly the relation be-
tween similar states of different L and P, as well
as putting the equations in a form suitable for
straightforward numer ical calculations.

In Sec. II we discuss the separations of the
Hamiltonian and the resulting coupled differential
equations. In Sec. III some symmetry properties
are discussed, in Sec. IV the coupling matrix is
actually evaluated, and in Sec. V the general form
of the coupled differential equations is determined,
and some general conclusions are drawn.

II. COUPLIQG SCHEME

The coupling scheme developed here is very
similar to those of CJB' and Hunter, Gray, and
Pritchard. " The main difference is that the muon
coordinate x& is here measured from the geome-
tric'center of the two-nuclear line rather than
from its center of mass. This has the advantage
of separating the coupling terms into those with
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186 DECOMPOSITION OF THREE-BODY COUPLING SCHEME

the same, and those with opposite parity under
r ——r&. The total Hamiltonian for the three-

p
body system is

52
2 ~ 2 p 2

2M1 R1 2M2 R2 2m R
pp,

from (6) and let

H' =- —v '- —,H' g. =W(r )g. .
P KP f'1 9'2

'
P, i i n i

1p, 2p.

(7)

Then the exact solution of (6) can be written
+ e'/) —e'/ )' —e'/ )

Ip. 2p. '
0 =Z. y.(r )g (r. , r ). (6)

where R„R„and R& are the position vectors of
the two heavy particles (M, and M, ) and of the light
particle (m&) (muon or electron), respectively.
r», x1&, x2p are the interparticle distances. Let

MR +MR +m
n=M +M +m (2)
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+ e'/r —e'/) —e'/r
n 1p 2p
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p.

M M
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2 1

Eliminating the center-of-mass motion we have left

B'4 =El,

r =R —R, r =R ——,(Rl+R ).n 2 1 '
p. p.

' 1

Then (1) becomes

-52 82 S2
2 Q 2 Q 2 p ~

2n R 2M xn 2m +p 2M rn &pp 4=0 (8, P, g;),),8),r' ' n' (9a)

where 8), Q), , Q are the euler angles of the three-
body system, and rn, xp, 8 describe the internal
configuration. The dependence of 0 on 8z, Pz, P
is determined completely by the angular momen-
tum symmetry of the state (see below). The prob-
lem is hence reducible to that of solving for the
r„,r, 8 dependence. In terms of r„, 8~, P~, the
two- ixed-center solutions are of the form

We note that g; depends on r&, and on the magni-
tude of rn. %e now choose polar coordinates to
describe the vectors r„,r&, where )„,8~, Q~ are
the magnitude, polar, and azimuthal angles of rn
in some fixed frame of reference. ) &, 8, Q are
the magnitude, polar, and azimuthal angles of
r& in a frame of reference whose z axis is along
rn, and whose x axis lies in the plane of rn and
the z axis of the fixed frame. Hence, 8 is the
angle between r~ and r&, and Q is the angle be-
tween the planes formed by rn and the fixed z axis,
and the three-particle configuration, respectively.
Then the total wave function can be written

h2 A2
2 g 2 p ~

n 2m r
p, 2lVI rn

p p

+ e'/r —e'/r —e'/).
n 1p. 2p

(4)

4,.(~„,r )=4,(e;~„,~, .8)

and the nuclear part is of the form

(9b)

(9c)

Letting R —= e'm /25',
p,

r-=4m /(4M +m ),
p. z p,

= lf '/m e-',
p, p,

6-=(M -M )/(M +M ),

and r A, r , r A r , E R E ,n p n' p, p, p,
'

p,

we get for (4)

[-e V ' —V ' —Z6V ~ V
Jn fp ftn fp

~2/) —2/) —2/) ]+=Et .
n 1p. 2p.

In the special case of identical particles (M, =M, )
we get (a) e -2m& /M (where M is heavy mass,
and m@ is muon mass reduced with respect to
combined mass of identical particles). (b) 5=0.
We now extract the two-fixed-center Hamiltonian

It is precisely this splitting of the euler angles
between the Pf and )tf that obscures the angular
momentum symmetry in the coupling scheme.
The gf have been obtained in exact form by Bates,
Ledsham, and Stewart" and are characterized by
three quantum numbers n, l, m:

m =0, 1, 2, . .. l=0, 1, 2, .. . n=1, 2, ... (10a)
0) +) +)0 ~ 0 S ) p) d) ~ ~

(~,)', 8)(cosmic, sinmPJ,i nlm n' p.
' (Iob)

m is the azimuthal quantum number in the two-
fixed-center system and corresponds to the exactly
conserved z component of angular momentum for
that system. l corresponds, in the limit of small
xn, to the total angular momentum quantum number,
and n is the principle quantum number. In general
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with energy Wnfm(rn). Even l states are even un-
der P (r —r&) and are labeled g states. Odd l

p
states are odd under P& and are labeled u states.
Typical states are then written Isog, 2sog, 2pou,
2pzu, 3dog, etc. , each state being doubly degen-
erate, having either cosm P or sinm Q dependence.

We now proceed to the coupling scheme. Sub-
stituting (8) into (6), multiplying on the left by
g* and integrating over r& (r„ fixed) we obtain
(/ollowing CJR')

—,g fy". V ( Xy ). d.ri j r„ ii p

—e 5g. fop V ~ V (X t/) )d. ~r.
i j rn r& i i p

After several integration by parts and rearrange-
ments we get

[-e V '+W. (r )+2/r ]X.rn j n n j

A sln8 Bcos8
n Br~ r B8

p,

eos8cosp B
+ 8 ~sin8eosg — +

p, p,

sing B " . . B
+ lj) S1118Singsin8 B r er

p

eos8 sing B cosf B

B8 r sin8 BP
p, p,

(13b)

Under P& (r& - —r&, rn unchanged; i. e. , 8-7r —8,
g -g + p) none of the components of vrn change
the sign. Thus, ' Vr (f has the same P~ symmetry
as y&. Examining Eq. (12b) and (12c) we see that
qf = 0 unless g& and

(behave

the same P& symmetry
Similarly, under P& each component of Vr changes
sign. Hence, Vr g~fhas opposite P~ symmetry to
gf. Looking again at (12b) and (12c), we have e&f-
0 unless ( and

(behave

the opposite P& symmetry.
Thus, for identical particles (5 = 0) only like-muon-
parity states are coupled.

-rg e"x -erg e'x&=Ex. ,2 jzz k jhow j'
where e.. =2f. . ' v +(v f. .)-gji jz r„r„ji ji '

e.. =f. . v +(v f. .)-g. .ji ji rn rn ji ji

F. . =Jg. v g d'r =.-f..ji j r„ i p, ij

g. . =f v y*. v y d'r =g.ji r j r 2 p 2j

f. . = f/+ v p. d'r
gi j r~ 2 p,

g. . = f v g*. v g. d'rji rn j r& i p

(12a)

(12b)

(12c)

III. SOME SYMMETRY CONSIDERATIONS

As we saw in Sec. II the total three-body wave
function could be written 0 (8r, gr, Q; rn, r&, 8),
where 8r, Pr, P describe the external configuration
of the three-body system. If we consider a state
of definite total orbital angular momentum I.'
=l(E+1), then the Lz components of 0 at different
external configurations are related by the irre-
ducible representations of the rotation group. In
Wigner 's notation"

l

p'p, p, n' p.
'

(14)

We note that to evaluate the ejz 9ji two differen-
tlaloPeratorsarelnvolved: Vr~ md Vrp, . Vrn
means differentiate holding r& fixed, Vr means dif-
ferentiate holding rn fixed, In terms of our vari-
ables (8r, Pr, P; rn, r&, 8) and unit vectors
r„,8r, pr, we get

8 8V =r + — —cosP -+cot8 singn Br r ag
n n

+ .
8

—sin8 singsin8 B
n r

P: (r -—r;r --r )T' n n' p, p,
or: 8-8, $ v —P,

L9 -m' —8r'
m+ &f)

The @&(r rn&, 8) are (2l+1) internal configuration
wave functions, which if known give us the entire
wave function. It is sufficient for our purposes to
restrict ourselves to 0'(L= 1, Iz ——0), i.e. , to y.

'
=0 in (14). (This eliminates the variable Qr from
consideration. )

We now look at some special cases of (14). First
we define total parity

9—[cot 8 cos g sin8 + cos 8 ] (13a) and muon parity, as before,
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P: (r -r;r -—r )
p, n n' p, p,

or: 8-w —8, P-w+ P,
8 -8

(15)

We note that the total Hamiltonian (4) conserves
PT, and in the special case of identical particles,
P&. (We note further that P& x exchange =PT).

Cas e (i) I, = 0 .

= —(sin8 /v 2) e 4 +cos8
'v

+ (sin8 /W2) e+
+1 '

and for different PT

0'(L=1, L =0, even P )=g sin8 sing,T 1

0'(L=1, L =0, odd P )=f cos8 +g sin8 cosP,T 2 f' 2

(1V)

where g„f„g, are functions of (x„,x&, 8). Here
clearly one gets (o, w) coupling as well as (o, o)
and (w, w) coupling for odd PZ, but only (w, w)

coupling for even PT. For the case of identical
particles we again get only even or odd P& states
coupling. The even or oddness puts restrictions
on gz, f2, g2

4= 4'(w, w, 8), only even PT exist.n' p,
'

Since there is no P dependence, only a states in
(8) can contribute, and hence in (12a) only o-
type terms are coupled. If in addition the heavy
particles are identical, only og or vu-type terms
are coupled.

Case (ii) I, = 1, Lz = 0 [from (14)]:

P even
p.

f, even under P&,
g, odd, h, even,
g, odd, A',, even.

P odd
p,

f, odd under Pp, ,

g, even, I2, odd,
g, even, k, odd

We now write the general form of 0 for arbitrary
L, obtainable from (14) (with a slight change of
notation).

@[L=/,L =O, P =(-1) ]
l

l
= g f. (r, x, 8)P (cos8 )cosiQ,(1)

i n' p.
' l2=0

4 [I, = l, L = 0, P = (- 1) ]
l+1

= Z f. (x,r, 8)P& (cos8 )sining.
(2)

i n' p,
' l2=1

P even:
p.

f (1)
( 1)if (1) f (2)

( 1)if (2)
2 2

'
2 2

As in the special cases we note that only gi ap-
pear in (8) for which the azimuthal quantum num-
ber "m" runs from 0 to l and from 1 to l, re-
spectively. Furthermore, we can also see that
only cosmic or sinmg terms appear, and hence
there is no coupling between cosine- and sine-type
two-fixed-center orbitals in Eqs. (12). The

Pf (cos8~) are the usual associated Legendre Poly-

nomials and the fi' '(xz, x&, 8) are internal wave
functions. For the identical particle case, we
have

Even P
p,

g, odd under P&,
f, even, g, odd

Odd P
p,

g, even under P&,
f, odd, g, even

P odd
p.

f -( 1) f f--(-1) f (2o)
2 2

'
2 2

Similarly for I.=2, Lz=0: Case (iii):

4'(L=2, L =0, even P )= ," f (3cos'8 —-1)
z T 1

+g cos8 sin8 cosp+Al sin'8 cos2$,y' r 1

4'(L=2 L =0, odd P )

=g cos8 sin8 sing+A sin'8 sin2$ .
y y' 2 y

Here clearly o, m, 4 are coupled for even PT,.
w, 6 for odd PT. For identical particle case we
again have only even or odd. P& terms coupled and
again

under P~(8- w —8) . One important point about
the above coupling conditions should be mentioned.
Whereas the cosip, sinj p (all i — and j-type) terms
in (8) do not couple because eij, eij vanish for
those terms, and whereas the even and odd P&
states do not couple for the identical particle case
because the coefficient of ei~ vanishes, the fact
that only the first l+ 1 azimuthal, two-fixed-center
states appear in a given I.=l solution, comes not
from the vanishing of the 6" but from the fact that
such a choice forms a self-consistent set of solu-
tions of the coupled equations (12a) (see Sec. IV).
That the above symmetry considerations are in-
deed consistent with Eq. (12a) can be seen by ex-
plicit construction of the matrix elements.



18 ALVIN M. HALPERN

IV. COUPLING MATRIX

186

Let the two-fixed-center solution, "
(r, r ) =- k

&
(x,x, 8) {cosm(t), sinmP),nine n'

ILt, nlrn n' p
'

M. {cosm(t), sinmg],be written where the index i corresponds to the pair (n, I); M corresponds
to m. (21)

The form CMf and SM~ will be used as indices to indicate states of the cosmic and sinmp type, respective-
ly. (We note that CMz states are defined for m & 0; SMf states for m ~ 1). Hence, 6CM. SN. means that
the left-hand-side function in (12c) is M cosm(t and the right-hand-side function is N sinn'. ~ By use of
(13a) and (13b) in (12c) and by integrating over (t), we can evaluate the F&f,g&f, and f&z,g&f. These are evalu-
ated in Appendix A. For I~ =0 states the Bzj and ezj then have the following properties:

OCM SN
= eCM SN

=transposes =0, all M. , N. (22a)

CM. ,C¹ SM. ,S¹' CM. , CN. SM. ,S¹'i' j i' j
(22b)

all Mi ¹jfor which SMi, SNj are defined.

6C N
——6CM CN

——0, unless n ={I—1, I, m+1). (22c)

For the nonzero elements we have (dropping the C and S coefficients)

8M M 1. = — {&(M., [M+ 1].)+ (m+1)b(M. , [M+ I].)} + (yg+ 1)cotes' j 88 rr
(23a)

2c(M. , M. ) dc(M. , M. )
8 = 2c(M. , M. ) + +

d
—d(M. , M. )i' j Bx dy i' jn n n

cot'8
[e(M. , M. ) + m' f(M. , M. )] —m'5 ..i' j i' j ij

n n

9
[ ]

=,{a(M., [M —1].) —(m —1)b(M. , [M —1].] —(m —l)cotb }y

(23b)

(23c)

Similarly, e
[ ]

--{a(M., [M+)].)t (m+1)b(M, [M+1] )] + (m+1)cottt }M. , M+1. 2x i' j z' j ae y
(24a)

6 =c(M. , M. ) + c(M. , M.)+ ' ~ —d(M. , M.)+—[e(M. , M. )+m'f(M. M )]i' j Bx x i' j dx i' j ~ i' j i' jn n n n
(24b)

e
]

--{a(M., [M —1].) —(m —1)b(M. , [M —1].)] —(m —l)cota } . (24c)

(It is understood that in addition to the above; 8 couples only M~, N& states with the same I'& symmetry,
and 8 couples only M, N& states of opposite P& symmetry). The a(M&, N ), . . . , f(M~, N&) and Fi(Mf, N&),.. . , f(M~, N&) are simple integral (over r& space) functionals of the ordered pairs of states Mf, N, and
hence are functions of only one variable xz. They are tabulated in Appendixes A and B." We are now in
a position to obtain the coupled equations (12a) for a given total orbital angular momentum I =/, (Iz =0)
and either parity PT.
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V. FINAL COUPLED EQUATIONS

19

The total solution for L =l, Lz = 0, and the two PZ values can now be written in the form (8) using the
information of Eq. (19).

)I)[L =1 L =0 P =(-1) ] = Q 2 ll (r, 8 )M.( r, r, 8) cosmic,
(1)

0 ll ll d
'

' n r i n P

4'[L=/, L =O, PT=(-1) ]= Z Z )l (r, 8 )M.(r,r, 8)sinmp .l+1 (2)

m =1 all allowed i

(25a)

(25b)

In addition, from Eq. (19) we must have

(r, 8 )=7l (r )Pl (cos8 ), m-l; y (r, 8 )=0, m&l .
2

n'r i n
(26)

A. Equal Mass Case {Identical Particles)

In terms of the properties of the 8 and 8 (12a) can be written as follows, using (23a)-(23c):

2

~
2 ~r I

~

c

8
B, B

singr 'Br n Br r ' sing Bg r Bg
n n n n r r r

m2
2 2+m' + W.(r )+-sin'8 i n

n

+ 7 d(M. ,M.)+2' i

e(M. , M.)2' 2 2
2 +m

n

f(M. , M.)-

n i jgi 2 j

g.{a(M., [M —1].) —(m —1)b(M. , [M —I].)) — —(m —1)cot8
n r j

~, Z[a(m„[))(+(].) ~ (m+1)b(M. , [M+(].))
g

+ (m+Z)cote I)([ [
=Zg

B

j 2' j 2' j Bg r M+1 .
n

(27)

The second term in the first curly brackets contains the angular part of Vr ' and the 8r-dependent part of
the self-coupling term e~. ~.. Hence, all the 8r dependence of the coupled equations are explicitly ex-
pressed in (27). The smallest m value of interest is 0 for solution (25a), and 1 for solution (25b).
We note that

1 B . B
sing

sing B8 r Bgr r r
m2 2 m

+ m P (cos8 ) = —[l(l+1) —m ]P (cos8 ),2
sin'8 l l

B m-1 m
Bg

—(m —1)cot8 P (cos8 ) = —P (cos8 ),l l
(26)

B m+1 m
— +(m+1)cot8 Pl (cos8 )=(l —m)(i+m+1)P (cos8 ).l r l

Substituting (26) into (27) and using (28) we see that we indeed have a consistent set of equations —as we
must. Canceling out the 8r dependence we get for the (l+ 1) types of equation corresponding to different
m values [P = (- 1)l state]

T

0th: —c —, r' — + —, +W r + +Z do. , v. +, eo. , o.1 8, 8 e l(l+1) 2 . 1
Br n Br oi n 2 2 r 2 2 0'2

n n n n n n

e l(l+ 1)Q 8 lt +, Q. fa(o. , w. )+b(o. , )T.)]lf =EX
j4i n'gggj gj r.' j 2' j 2' j rj Gg
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where M. - o .(m = 0), n .(m = 1), b. .(m = 2), etc.
2

mth: —e, r ' +, + W (r )+—+Z d(M. , M.)+8, s ~ [l(l+ 1) —m'] 2

Br n Br Mi n r i' i
n n n n

e(M. , M. ) m2f(M. , M. )—

n n i

6 )t —,Q.{a(M., [m —1].) —(m —1)b(M. , [M —1].)] g[Mj~i
+ [Z(l —m)(l + m + 1)/r '] Q/a (M. , [M + 1].) + (m + 1)b (M. , [M+ 1] .)] y rj i' j i' j [M+1

e(I . , I .) Pf(L. , L.)
lth: —e, r ' +, + & (r )+ + «(L., L.)+, +Br n Br r li n r i i rlg n n n

6L L pL —,Q. (a(L., [L —1].) —(l —1)b(L., [L —1].)]g, , =E)t (29)

where the indices i,j refer to either even P& or odd P& states. The solution for PT=(-1) is obtained
by setting yo. =0 all i, in Eq. (29).

B. Unequal Mass Case

We note that 6M [M 1], 6M M+1 have the same general form as the 8M [M 1], 6M [M+1] terms.
Furthermore, e~ ~has no 6)r epenc, ence. %e now let the indices i and j refer to even P& states, and
the indices r and s refer to odd P& states (Fo.r visualization purposes a superscript s will also be put
on even and odd P terms. ) Again looking at the solution PT=(-1)l and noting that the PZ =(-1)l+1

p,

solution obeys the same equations with yz. ——y~ =0 all i and r, we have for m+-type equations with 0 ~m
&l ~

e(M. , M. ) m'f(M. , M.)

r ' Br n Br Mi n r i' i
n n n n n n n

8 )l —,Q. (a(M. , [M- 1].)- (m —1)b(M. , [M- 1].)g

+[e(l —m)(i+m+1)/r ']Q. la(M. , [M+1].)+(m+1)b(M. , [M+1].))yn j +

spy 8 )t + (eb/2r )p fa(M. , [M- I] ) —(m —1)b(M. , [M —1] )}&[

—[eb(l —m)(i+m+1)/2r ]g (a(M. , [M+1] )+(m+1)b(M. , [M+1] )]7) ]
=E)t

s
(20)

For the m equation the result is the same as above if we let i -r, j-s, and r-i, s-j, and (+) super-
script - (-).

VI. DISCUSSION

It should be noted that the spin-orbit coupling of the electron (muon) has been completely neglected here.
This corresponds to Hunds case B"of angular momentum coupling in molecules. This neglect of the spin-
orbit force in the coupled equations will put significant limits on a highly accurate calculation of electronic
admixtures only for cases where the state is not predominantly a-type. In the 0-type states, which are the
ones where accuracy is needed for both the muonic molecules" and the hydrogen molecular ions, only the
small r state admixture in L = 1 states couples the spin to the orbit, and the spin-orbit interaction can be
dealt with via perturbation theory.

Thecoupled equations(29) and (30) exhibit various well-known molecular phenomena. If we assume 7 is
small and restrict ourselves to an approximate solution of the form XM.gM. ,

"ignoring coupling to other
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electronic states, then the nuclear wave function XM. satisfies an equation where the main rotational ener-
gy term is Z[l(i +1) —m']/rn', which corresponds to the energy of the symmetric top with angular momen-
tum m about the symmetry axis. The main "effective-potential" term for the vibrational levels is [WM (r.n)
+ 2/rn]. The self-coupling terms

Z[d(M. , M.) +e(M , M. .)/r '+m'f(M. , M )/r. ']

represent the modification of the rotational energy associated with the fact that the molecule is not rigid,
and the modification of the nuclear potential due to dynamical effects; i.e. , it represents the coupling of
the rotational and vibrational motion to the electronic motion. If we include the coupling to other electronic
orbitals we get a splitting of the two degenerate opposite PT states: CMi and SMi, since only CMz couples
to 0 states.

In a recent calculation Carter, restricting himself to an adiabatic approximation, demonstrated the ex-
istence of 1, =1(2pvg) p-molecular bound states. In calculating the energies of the two levels he assumes
that the opposite parity potentials have different centrifugal terms: 0 and 2e/rn corresponding to relative
angular momenta of the nuclei 0, 1. The exact form of the coupled equations (29) and (30) for ease m = 1
indicates immediately that the centrifugal term is the same for both parity states, and that the energy split-
ting arises from the v coupling of the odd-parity state, and hence is of order (Z) . Work is presently under-
way to obtain more accurate values for these excited muonic molecules.

Work is also presently underway to use the coupled equations to calculate the effect of the m-state admix-
ture on the various levels of the hydrogen molecular ion, carrying the results of Hunter et al."one step
further. In addition, an attempt will be made to obtain accurate L, =0, L =1 p, -molecular wave functions
(o type) by coupling as many electron states as are available. By observing the rate of convergence of the
energy as more orbitals are included, one could hope to get a more definitive statement about the energy
of those states than via the variational procedure; and a more suitable form of wave function for subse-
quent use. This technique will only work if the convergence rate is sufficient, and if the contribution of
the continuum two-fixed-center states is small.

APPENDIX A

To evaluate the Bg& and 6~& coupling matrices we note that, using Eq. (13), the following integrals appear
in (12c) for the f,g. .;f,g. . :

2' ij ' ij ' ij ' ij

J cosmQcosnQeosQdQ = (w/2)(5 1+5 1+5
0

271

f cosmPsi nnP isn't dP=(m /2)f b —5 +5 j =- v&'

0

27r

f sinmPsinnPcosPdP=(v/2/5 +5
0

(Al)

27r 2m

f . . sinPdP = f cosmgsinngcosgd&=0 .
sinmQ sinn/

2F
We let 5 = 6 +6 5, and write v= f cos'PdP .

rn, n m, n Qrn Sz '
0

Then f
&

--r c'(M. , N. )5 + (8 /r )[-a'(M. , N. )h' —nb'(M. , N )6' ].
CMi, CN& v i' j m, n x n i' j m, n i' j n, m

f =r c'(M. , N. )5 +(8 /r )[-a'(M. , ¹)&' +nb'(M. ,¹)4' ]
z j

(A2)

f
&

=(Q /r )[-a'(M. , N )&' —nb'(M. . , N. )n.' ) —
(&f& cot8 /r )[nb. .b ],

g&M &N
——d'(M , N )5 +(.1/r. ')[e'(M. , ¹)+mnf '(M. , N.)]6 (As)
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cot'9 cotL9&+' [mnb. . b ]+, [—na'(N. , M )6' —ma'(M. ,¹)D' +2mnb'(M. , N. )&~ ]x 2 mjn x j i mn
n j n j j m j n

CMi, SNj

g =d'(M. , N. )5 +, [e'(M , N .)+m. nf'(M. ,¹)]5 +j

Sion

cot2 g

[ bb ]
n

where,

cot8+, [na '(N. , M. )6'
2 n j m8¹

a'(M. ,¹)= f M. cos'pd'ri' j i 88

+ma '(M. , N. )b"j m j n
+ 2mnb ' (M. , N. )6' ]j m n

b'(M , N )=. fM. N..cote cos'pd'yi' j i

8¹ BM. 8N.
c'(M. ,¹)= JM. cos'Pd'x, d'(M. , N. ) = ~ ~ cos'yd3~

p, 2 j ~t 8x Pn n n

8M. 8N.
e'(M. ,¹)= — cos'Pd'r, f'(M. ,¹)= JMN cot'Hc. os'&f&d'x

ag eg p,
' i' j i j

(A4)

Note that for m, n~1 we have 4'm n=4' and 6' = —4', and that SMi is defined only for m~1;
mj n mjnnjmtherefore we get

(A5)

emote that f CM. SN. has no p~ dependence, and that we are dealing with Iz =0 states only; therefore we
have from (12h)

(A6)

Equations (23) follow from (A3)-(A6), where

a(M. , N. ) =a'(M. , N. ), ... , f(M. , N. ) =f '(M. ,¹),for m ~ 1, n ~ 1;i' j i' j ''''' i' j i' j '

a(M. , N. ) =2a'(M. ,¹),... , f(M. , N. ) =2f'(M. , N ), for m a.nd/or n=0 .i' j i' j ' ' i' j i' j '

Similarly (CM m & 0;SMf m & 1)

=~ e'(M. , N. )K + i [a'(M. , N. )~' +nb'(M , N )~' . ],.CMi, CNj SMi, SNj n i' j m, n x i' j m, n j m j n

f = P [a'(M. , N. )4' +nb'(M. , N. )A' ]CM;, SXj r i' j m, n j m n

f
&

—P [a'(M. ,¹)A' —nb'(M. , N. )b,' ),SMi CN. r i' j nm i' j mn'

m cot8'r g (M N )~gj n j m
n

mncotg~ b, (M N )j m j

gCM SN, 8SM,
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where
8¹

a'(M. , N. ) = fM. sin8+
z j z -Bx y

P

8¹- M. ¹

88 p.
' i' j x sin8 p,

'cos'Pd'r, B'(M , N. )=.J . cos'pd'r
P

BN.
c ' (M. , N. ) = f M.

P

8¹—sin8cos8 cos'Pd'r
88 -' p.

p.

¹ 8 N.
d'(M. , N. ) = — j cos8 j cos'Pd'ri j Bt BJ '88 p,

n p.

(As)

8~,. 'BN. „,8 8¹
e'(M. N )= . .

8
~ sin8 + ~ cos'Qd'r, f'(M. , N )= f.[M.N. cot8/r sin8j cos'pd'ri' j 88 Bx
p.

88
p,

p,
' i' j i j p p,

As before, note that fgM SN and fSM gN have no &f&r dependence, and that we are dealing with Lz =0
states only, therefore we have from (12b

(A9)

Equations (24) follow from (A7)-(A9), where

a(M. ,¹)=a'(M. , N), . .. , f(,M. , ¹)=f'(M. , N. ), for m~1, n ~ 1;i' j i' j ''' ' i' j i' j '

a(M. , N. ) =2a'(M. ,¹),... , f(M. , N. ) =2f'(M. , N. ), for m and/or n=0 .i' j i' j ''''' i' j i' j '

APPENDIX 8

We transform the integrals a, . . . ,f and a, . .. ,f into spheroidal coordinates, which are the ones in
which the two-fixed-center solutions are usually evaluated.

Let x,x, 8 x, X, p, ,n' p,
' n'

where X = (r +r )/r, p, = (r —r )/r
2P. ip, x ' 2p, ip.

Then r&'sin8d8dr&-(r '/S)(g' —p')dp, dy 1 &y w ~

and letting icos'pdp = w in the integrals of Appendix A, we get

71'f' BN. 8¹
f M. —&(&' —1)"'(1 — ')"' + (&' —1)"'(1— ')' ' d dj 8 i By

(B2)

5'( .M, )N=(mr '/S) f M N (-yp, (g p&.)/.()„1)I (1 p ) I )d~dyi' j n i j
1rg ' BN. BN.

'(M. , N. )= " fM (q & )
( — )»( -u ) j

i' j 8 i Br r BX x Bp.
n S B

~(~'-1) i q(1- ')
i' j S Br r (X' —p, ') BX r (X' —p. ') Bp.

(S4)

j XX2 —i j p 1 —p2 jBN . 2 8¹ 2 8¹
Br r N r Bp,

n n yl
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'lTX (1' —1)'&' (1 — ')'~' ' g1' —1)'&'(1 — ')' 'BM. BM.

'( i Nj)= 8 (~'- p') e~
' (~'- p') ep.

8¹ 8¹
x —p )' —1 '~' 1 —p' ~" ~ + X X2 —1 ~~2 1 —p»j2 ~ dp. dX

BX Bp

f'(M. , N. ) = (m '/8) f M¹.(X'p'(x' —p')/(X' —1)(1—p')) dpdX,

Similarly,
8¹ 8¹

a'(M. , N. ) = J M —. — " (~'-1)'~2(1 —p2)'~2dp A. ,i' j 8 i x BX x Bp,
n n

PTER

n —2 p(X' —1) j 2x(1 —p, ') jBN. 8¹
i' j 8 i r eX r ep

n n
mr ' eM. (, 1)

eM.

j) 8 er r (x2- p.2) e~
n n

BM.
p(1 —p')

(x —p, ) ep,

8¹ 8¹
X

—2 p, (X' —1) j 2X(l —p. ') j dp, dX

n
BX J'n BP.

e'(M. , N. ) = (err '/8) JI 2M. N. (X' —p')/r , (V —1)'~'(1 —p')'~']dp dXi'2 n i 2 n

(B5)

n — (a' —1)"'(1— *)"' ' x(z' —1)'"(1— ')'&'BM. BM.

"M "j'= 8 (V-p, ) e~ (~ -p) e„

8¹ 8¹
x — — — (X —1)'I (1 —p')'i dp. dx

'Y BX t' 8p,n n

f'(M. ,¹)=(m '/8) JM. ¹ (-2Xp(X' —p, ')/r (X' —l)(l —p, ')/dp, dX
2' J1 n 2 n
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Hydrogenic-function and Sturmian-function expansions are examined in both the Schrddinger
and Faddeev formulations for three-body atomic problems. A detailed comparison of their
convergence behavior is made. The difficulty of Sturmian-function expansion in accounting
for the strong coupling between degenerate target states at excitation thresholds does not
arise in the Faddeev formulation. The difficulty with the uncontrolled continuum contribution
in the hydrogenic-function expansion, however, persists in both formulations. An estimation
of the continuum contribution in the hydrogenic-function expansion is made for off-shell am-
plitudes which appear in the Faddeev formulation.

I. INTRODUCTION

It is well known that a three-body scattering
function which has a specified symmetry and angu-
lar momentum but which is otherwise arbitrary
can always be expanded in terms of a complete
set of two-body eigenfunctions. This then leads
to a set of coupled integrodifferential equations
for the three-body system. Since for most phys-
ical scattering processes, one encounters the
scattering to two subsystems, consisting (for the
present three-body system) of an incident particle
and a two-body target subsystem in a certain
bound state, the complete set of eigenfunctions of
the two-body target subsystem constitutes, there-
fore, a natural set for the expansion. '

For atomic systems (with Coulomb potentials),
the two-body target functions are hydrogenic func-
tions which form a complete set only after con-
tinuum states are included. It was, therefore,
generally felt that such a hydrogenic-function
(HF) expansion would converge slowly since it
involves continuum states. To avoid the contin-
uum states, an alternative expansion in terms of
Sturmian functions which form a complete set of

discrete states has been proposed by Rotenberg. '
It was hoped that the Sturmian-function (SF) ex-
pansion, containing no continuum states, would

converge faster.
Subsequent investigation'-' of these two expan-

sions in the Schrodinger formulation have found

that both of these two expansions have undesirable
limitations. It has been observed that the SF ex-
pansion converges in a oscillatory manner and
cannot account for the strong coupling of the l-
degenerate target states at excitation thresholds.
The HF expansion, on the other hand, has the con-
vergence problem associated with the uncontrolled
error from continuum states. In addition, the
straightforward expansion methods have also dif-
ficulties in relation to the correlation problems'
and polarization interactions. '

A more serious drawback of the expansion meth-
od in the Schrodinger formulation is perhaps in the
treatment of rearrangement collisions. For such
a problem, there is no unique set of states avail-
able for the formulation of the clos~-coupling equa-
tions suitable for both scattering and rearrange-
ment channels. The powerful projection operator
method formulated by Feshbach" provides very


