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Some Gedunkenexperimente are considered to illustrate the analogy between coherent superposition of
angular momentum states and coherent superposition of charge states.

HE question of the existence of a charge super-
selection rule and the interference between states

of different charge has recently been discussed briefly,
and the generally accepted view that it is impossible
to coherently combine different charge states has been
challenged by Aharonov and Susskind. ' It would seem
useful to consider this question in somewhat greater
detail and in particular to see how far the analogy
between angular momentum and charge can be pushed.
This will provide further arguments for the Aharonov-
Susskind view that states of different charge can be
coherently superposed.

In order to do this we discuss several Gedaekee-
experimerite to see how close we can make the similarity
between the charge and spin cases.

We consider first an experiment for the charge case
that is closely analogous to the Stern-Gerlach experi-
ment for spin. Before doing this, we review the work
of Aharonov and Susskind, who studied a system with
a large number of identical setups, each consisting of
two containers with charge coherently shared between
them and with a proton beam entering the first. The
beam emerges from the first container as a combination
of neutron and proton beams. For some of the setups
the relative intensity of the two particles in the beam
emerging from the first container is measured. For the
other setups the beam goes through the second con-
tainer and the relative intensity in the beam emerging
from the system is measured. They then show that the
relative phase of the two particles between the con-
tainers can be determined from the knowledge of the
two relative intensities.

Let us now consider what happens in the ordinary
Stern-Gerlach experiment. The beam of particles (of
spin -', ) travels through the first magnet, which produces
a beam with a mixture of spin-up and spin-down states.
It now enters the second magnet, where two things
happen. First, a certain probability of spin Qip is
created. Second, the spin is measured by the magnet.
Specifically, the magnet measures the spin by giving
the particle a velocity parallel to the field of the magnet
whose sign is a function of the sign of the spin.

Clearly we can do an experiment for spin analogous
to the one just described for charge. We now wish to
describe an experiment for charge analogous to the
one just described for spin.
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The basic difference between the two experiments

just described is that Aharonov and Susskind discuss

charge flip and not measurement of the charge, while

the Stern-Gerlach experiment measures spin. We, there-

fore, need an apparatus which will measure charge.
To do this, we take the second container to be of

triangular shape and assume that the mesons obey,
e.g., the ideal gas law. Therefore, there will be more
mesons in the upper, wider part of the container than
in the lower part. A positive particle will be pulled up;
a neutral one will be unaffected; or, to improve the

analogy with the spin case, a negative one will be

pushed down. Thus the charge vill be measured in

exactly the same way as the spin was, by giving the

particle a component of velocity along an axis perpen-

dicular to the line joining the two containers; the sign

of this component of the velocity is a function of the

sign of the charge.
Hence, we are able to get an experiment for charge

that is analogous to that for spin. With this in mind

let us consider further the question of coherence.

One intuitive meaning of the statement that two

states are coherent is that there is, in some sense,
"one state" which is equal to the sum of the two

states. Thus, for angular momentum (spin —',), the

coherent superposition of spin up and spin down

(along z) means that the spin is up along some axis
s'. The second magnet of the Stern-Gerlach experiment

can be rotated so that it is along the s' axis. In this

case there will be only one line on the screen, that due to

the spin-up particles. This is different from the case

of incoherent spin up plus spin down. Thus we can say
for the coherent case that there is only one state,
representing a particle with spin pointing up in the s'

direction.
It is possible to do something similar with charge?

Is it possible to "rotate" the measuring container and

vary the intensity of the different lines and, in fact,
get a "position" for which the intensity of one line is

zeros
First let us review the spin case. We take the

Hamiltonian as
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and the up and down states as

t' e*""cos28 )
hie '«2 sin-'8)

'

(ie'«2 sin-', 8 )
&e *«-2 cos '8/-

(2)

one obtains

dp
2 = 2G) (p cos(]1+20' sing) )

dt

d0
i = ——2'( —ip sing+0 cosP).

dt
(15)

It follows that the wave function is

t =~(t) IN)+p(t) I d&

and

i dP/dt = Hf, —
giving

(3)

and the state, with the state of the containers sup-
pressed, is given by

0=p(t) IP)+v(t) I
~&.

This gives (Q and 8 refer to the second container)

id'/dt= —gQ'~ e
—2"v

idv/dt = gQ"e"p—
and, defining p and 0- with coefficients A, 8, C, and D
to be determined,

Dt2+Bv
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(10)

we get the equations
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Setting

with
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id~/dt = ——'2~ (n cos8+iP sin8), (5)

idP/dt = ', ~(in s-in8+P cos8) . (6)

For no transition, P=O and dP/dt=0, so sin8=0.
Hence the requirement of no transition means that the
spin must be along the s axis, which is the direction in
which the magnet is aligned. Then the particIe is in the
state (e') both before entering the magnet, and after
leaving it. On the screen there is only one line.

Now for the charge case the Hamiltonian (following
Aharonov and Susskind) is

II=g(a+a +o a+), -—

These expressions are exactly analogous to Eqs. (5)
and (6).Again, for no transitions we have o =0 (or p=0)
and sing=0.

This gives the state vectors which remain invariant
under this Hamiltonian as (the state of the containers
is suppressed)

0+=
2 (e*'l P&~ I ~)) (16)

This means that the first container must create a state
with a de6nite relative phase between the p and 2t

which is determined by the second container. So the
relative phase between the two containers is determined
by the requirement of no charge Rip, just as the relative
angle (zero) between the magnets is determined by
the requirement of no spin Rip.

For the spin case, when we found the angle (measured
from the initial position of the second magnet) for
which there were no transitions, we rotated the second
magnet through that angle so that it became parallel
to the spin. At this angle, there is only one line on the
screen. Also note that we spatially separated the two
states, spin up and spin down, by means of the Stern-
Gerlach experiment. What is the analogy here'? Can
we separate the states f+ and f, and how do we
"rotate" the container?

First, let us note that the matrix elements of the
interaction Hamiltonian between the two states are
different. They are

(4+1&14+&=gQ"', 8-le lf-&= —gQ"' (»)
so that the two states have different energy. Therefore,
one way to separate the two states, with different
phases between the positive and negative particles, is
to send the beam through the second container and
put on a strong nuclear field around the container.
The two states will fall with diferent accelerations and
will thus be separated.

In this experiment the separation depends on the
mass difference, while the force is the same for the
two states. In the spin Stern-Gerlach experiment the
force divers for the two states. We now consider a
somewhat more complicated apparatus which will give
for the charge case a diferent force for the two states.

The energy depends on Q, which is the average
charge of the container. We wish now to set up a con-
tainer with a Q which varies in space (in the y direction,
which is perpendicular to the direction of motion of
the charges) and so obtain a space gradient of the
energy: a force. The sign of the energy, and so of the
force, will be di6erent for the two states.
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We shall use a container with a temperature gradient,
and therefore also a density gradient. (Another way of

getting a density gradient is by having a gas of mesons
in a gravitational field. ) Considering each little slice
of the container as a separate container, we see that
each such slice has a different average charge Q and,
thus, Q varies with y.

The reason why the particle in the beam has an
energy which is a function of y is that the number of
mesons in its path, and so the number of mesons it
interacts with, is a function of y.

We also put a charge distribution on the outside of
the container, so chosen that the sum of the electric
6eld owing to this distribution, plus the electric field
due to the meson distribution, is zero. Thus, in the
container, there is a density distribution but no po-
tential gradient.

The reason that this is necessary is that the charge
picks out one "direction" in the space of that phase
which is conjugate to the charge; if there had been a
field, there would have been a separation of a linear
combination of states diferent from the linear com-
bination desired. In other words, the N and p states
would have been separated.

Finally we must consider how to "rotate" the con-
tainer, that is, how to change its phase. This is done by
sending it through an external potential. (The change
in phase equals the potential times the time the con-
tainer is in the potential. ) For example, it can be sent
through a square barrier potential. The phase change
as a function of the width and height of the potential
may be found in any quantum mechanics text.

Experimentally this can be realized by two in6nite
plane plates carrying equal and opposite charges and
very close together. Some distance away is another,
similar pair of plates, with charges reversed. The region
between the two pairs forms the barrier. Moving the
container through this region will give the required
change of phase.

Thus, in exact analogy to the spin case, we are able
here to alter the state of the second container and thus
vary the relative intensities of the two lines made by
the two states. And, in fact, we can get one pure state
and one line on the screen by changing the phase of
the second container by an amount determined by
previous experimental results.

We now summarize the experiment. We send a beam
of protons through the first container, choosing the
time T that they spend in the container so that

cosg QT" =sing QT"' = 1/K2 (18)

and defining the phase of the 6rst container so that
e'~= —i. The state of the particles leaving the first
container is therefore Lcf. Eq. (6) of Aharonov and
Susskind]

We now send the beam through the second container
(with a temperature gradient as described above) and
from there to a screen. For simplicity we choose
singQ'~'T=1 for the second container. Using Eq. (6)
of Aharonov and Susskind, we 6nd the relative in-
tensity of the two lines on the screen to be tan'8, where
8 is the phase of the second container relative to the
first.

The second container is now removed and its phase
is "rotated" by —0. The beam is then sent through
again and on to the screen. We now find only one line
on the screen. Hence the particles, before entering the
second container, are in a single "pure" state in which
the two charges are added coherently.

An interesting point has been raised which deserves
some comment. It can be claimed that what is produced
here is not a pure state of the particle and that, in our
usage, only the particle and the containers has a state
vector. It may also appear that what we mean by
coherent state is different from what is usually meant.
Many people would probably feel that the properties
of a coherent state can be verified with an instrument
that was not before in contact with the carrier of the
state in question, and that this is not the case for the
state produced by the thought experiment considered
in this paper.

In discussing this point we first consider what is
clearly the main idea of the above argument, which is
that the properties of a coherent state can be verified
with an instrument that was not before in contact
with the carrier of the state in question. This view is
(implicitly) disagreed with in this paper and it is
worthwhile to discuss why.

Let us consider the case of angular momentum (the
Stern-Gerlach experiment) where the analogous quan-
tity to the phase difference between the containers is
the angle between the two magnets. Can we measure
the s component of the angular momentum of a particle
with a magnet "that was not before in contact with the
carrier of the state?" In the case in which it was not
before in contact, the second magnet is completely
uncorrelated with the first magnet (and therefore with
the particle which is correlated with the first magnet,
because the spin of the particle is in the direction of the
field of the first magnet).

By the statement that the two magnets are uncor-
related, we mean (among other things) that it is

impossible from a knowledge of the orientation of one
magnet to make any prediction about the orientation
of the other magnet.

Now if the particle is a coherent superposition of two
states (assuming for concreteness spin i, ), then it is
possible to rotate the second magnet so that it is
oriented along some line s and find only one line on the
screen (in a Stern-Gerlach experiment). But what is
the direction of s? It is, of course, determined by the
direction of the 6eld of the first magnet. In other
words, the two magnets are correlated.
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Another way of saying this is to consider how we
tell that a state is coherent. This is done by performing
a large number of experiments on the state (or by
performing one experiment on each of a large number
of identical states). Now suppose the two magnets are
uncorrelated so that for each experiment which is done
to measure their relative orientation there is an equal
chance of getting any angle. Then each time the
second magnet measures the s component of the angular
momentum of the particle, which is along the s axis as
defined by the Grst magnet, there is an equal proba-
bility of the s axis having any orientation with respect
to the second magnet. Clearly, in this case, it would be
impossible to determine the direction in which the
angular momentum was pointing, or even to show that
it points in a definite direction (that is, that the
particle is in a coherent superposition of states as de-
fined with respect to some arbitrary direction).

If the magnets must be correlated, why has the
common assumption developed that correlation is
irrelevant?

The reason is that for angular momentum, which is
the standard example for this type of discussion, the
magnets are rigidly attached to a rigid body, the Earth,
and are thus correlated without any thought being
given to their correlation.

One might object that it is possible to consider the
following experiment. The Sun emits particles quan-
tized along its magnetic Geld, which are then inter-
cepted by the Earth and measured by its Geld. Are
the fields of the Sun and Earth correlated? The answer
is yes for they are both rigidly attached to macroscopic
bodies (in the sense that changes of orientation are
very small in the time interval necessary for the emis-
sion or interception of enough particles required to do
"a large number of experiments"). Clearly the spin
axes of the Earth and Sun are correlated. The reason
for this correlation is that, because of their mass, their
orientation changes so slowly that it is possible for the
Earth to intercept a large number of particles from the
Sun and study their coherence before the angle between
Earth and Sun changes enough to destroy the coherence.

As another example, let us suppose that the magnets
were electrons. A particle would pass the first electron
and its orientation would be determined. It would pass
the second electron, and the orientation would be
measured. Now, in order to see if the particle is in a
coherent state, the experiment would have to be
repeated with the second electron rotated with respect
to the first, whose orientation must remain unchanged.
This experiment would obviously be impossible.

Returning to the phase "not before in contact. . . ,
"

we see that the experiment would be impossible if the
magnets had an unknown relative angular momentum,
and that they have to be in "contact" in order that
their relative angular momentum be determined.

Let us Gnally consider the statement that what is
produced is not a pure state of the particle, but that
only the union of the particle and the containers has a
state vector.

As we have shown above, from an operational point
of view the only state vector is, indeed, one describing
the union of the particles and the container. Yet in the
formalism of quantum mechanics we do use state
vectors which describe "a pure state of the particle. "
These vectors have no direct physical meaning, yet
they clearly have a deGnite formalistic value and
meaning.

Can these formal states be coherently superposed in
the charge case? As we see from above, the analogy
between the angular momentum case and the charge
is very close. Thus, if we endow the formal angular
momentum states with properties allowing them to be
superposed, then for consistency we must also endow
the formal charge states with these properties.

Our basic concern is not with the properties of any
formal "pure states, "but rather with the fact that there
is no fundamental experimental difference, from the
point of view of the superposition principle, between
the charge case and other more familiar situations like
angular momentum. Thus all these cases must be
treated similarly.

All this has been stated, implicitly or explicitly, by
Aharonov and Susskind. '
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