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~ '=0"V 0+PV lt" (5.28)

» (5 28), P" stands for charge-conjugate four-corn
ponent spinor. The final group element is ~. In this
classical theory, the three Casimir invariants of O(4,2)
are functions of fysf.

variables do not appear as group elements in O(4), the
space of Bargmann-Fock.

Nambu's realization of O(4,2) is not given by (5.19)
with its Casimir invariant s (~)'. Instead, to form the
group he utilizes S„„of(19a) together with the two
spacelike vectors that complete the Dirac "vierbein, "

VI. CONCLUSION

We have analyzed the classical analogs of wave

theories with infinite-component wave functions. In
a11 cases, the mass spectrum of the quantum theory is

in6nite, although discrete. The classical theories are dis-

tinguished by the fact that special nonholonomic con-

straints couple the space-time trajectory to the internal

variables. In future papers we shall consider theories

predicting mass spectra of elementary particles in closer

agreement with experiment. We shall also analyze

the spectra of higher multipole moments in these
theories.
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The I amb shift in hydrogenlike atoms is treated by algebraic matrix methods using a unitary, in6nite-
component representation of the group SO(4,2). The result for the Lamb shift itself, with its dependence
upon the Bethe logarithm of the average excitation energy, is identical to previous results, but is obtained
more simply. The numerical evaluation of the Bethe logarithm is both simpler and more accurate than by
earlier treatments, as demonstrated by a detailed evaluation for the ground state. Numerical values for
the Bethe logarithm (obtained tcithoet the use of an electronic computer) are p(1S)=2.98412 85559(3),
y(2S) =2.81176 98932(5), and y(2P) = —0.03001 67089(3) for the three lowest states, with the figures in
parentheses giving the number of units of estimated error in the last decimal place. A series of appendices
presents the needed properties of SO(p, 1) and SO(p,2) representations, the SO(4,2) formulation of the
hydrogen atom, and an alternative treatment of the Bethe logarithm which may also be applied to other
operators such as the Coulomb Green's function.

INTRODUCTION AND SUMMARY

~

~

~ ~

~

LTHOUGH recent developments in particle
physics (e.g. , current algebra, inGnite-component

Geld theories) are employing to an increasing degree the
algebraic methods associated with the Heisenberg rep-
resentation, these methods have not yet been used in

atomic physics to any appreciable extent. Except for
Pauli's' early use of SO(4) synunetry in treating the
energy levels and Stark effect in hydrogen, most atomic
calculations have been based on a more or less explicit
analysis of the wave functions of the Schrodinger repre-
sentation. This has been true even for those treatments
which exploit the SO(4) symmetry of the hydrogen
atom, such as Pock's' four-dimensional momentum
transform of the Schrodinger equation, and Lieber's'
recent nonrelativisti. c calculation of the Lamb shift.

* Supported in part by the National Science Foundation.
~ W. Pauli, Jr., Z. Physiir 36, 336 (1926).
~ V. Fock, Z. Physik 9S, 145 (1935).' Michael Lieber, Phys. Rev. 174, 2037 (1968).

This has led to the widespread conviction that analytic
methods are more fruitful for quantum mechanics than
are algebraic Inethods, especially for numerical applica-
tions. A further result is the dearth of experience in

applying algebraic methods to the well-understood area

of atomic physics —experience which would be useful in

attempting to apply similar methods to the less-well-

understood areas of particle physics or even nuclear

physics.
In view of the above situation, the purpose of this

paper is threefold: 6rst, to demonstrate that algebraic

methods can be superior to predominantly analytic
methods in some cases, even for numerical work; second,

to provide more experience in applying algebraic
methods in atomic physics with the expectation that
this experience will prove useful in other areas of

physics; and, third, to suggest that, since the calcula-

tion of the Lamb shift is so greatly simpli6ed by this

approach, some additional atomic calculations which

are presently considered impractical may be made
feasible.
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FIG. 1. Fluctuation and vacuum polarization diagrams, which
give the Lamb sMt to lowest order in the radiation field. The
wavy lines denote virtual photons, while the double lines denote
electrons moving in the external potential.

Previous authors~' have obtained operator expres-
sions —of lowest order in both the radiation field and the
external Coulomb potential —whose expectation values
with respect to an arbitrary bound state yield the Lamb
shift for that state for hydrogenlike atoms. Prior to
numerical evaluation, these expressions have always
been reduced in the past to alternate forms whose
expectation values are to be taken with respect to non-
relativistic Coulomb wave functions, with results
equivalent to the original in lowest order. Since this
reduction is required for the present calculation also,
it is described briefly, in an intuitive, rather than
rigorous, manner, in Sec. I, in the form most suitable
for subsequent translation into the SO(4,2) matrix
algebra formalism. In Sec. II, this translation is per-
formed and the resulting expression for the Lamb shift
is evaluated. The major portion of this section consists
of an algebraic simpliGcation of the Bethe logarithm of
the average excitation energy, followed by an explicit
evaluation for the ground state plus results for the 2S
and 2I' states. A series of appendices makes this paper
self-contained. Appendix A is an introduction to the
needed properties of SO(p, i) and SO(p, 2) representa-
tions, including some new results, as well as earlier re-
sults not readily available elsewhere. Appendix B, in
which the SO(4,2) form of the Schrodinger equation and
several relevant operators are obtained, is primarily
a summary and extension of the recent results of
Fronsdal. 7 Appendix C contains the details of an evalua-
tion of several SO(4,2) matrices. Appendix D treats the
Bethe logarithm by an alternative procedure which may
also be applied to other operators and matrix elements,
such as the Coulomb Green's function.

I. PRELIMINARY CONSIDERATION
OF LAMB SHIFT

A perturbation operator is sought, whose expectation
value relative to a particular state gives the Lamb shift
hE for that state, correct to lowest order in the radia-
tion Geld. To this order, the only two Feynman diagrams
which contribute (in the bound interaction picture) are
the fluctuation diagram and the vacuum polarization or

4 H. A. Bethe, Phys. Rev. 72, 339 (1947).
5 H. A. Bethe and E.K. Salpeter, in Handubch der Physik, edited

by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. XXXV, pp.
175-193.

6 M. M. Jauch and F. Rohrlich, Theory of Photons and electrons
(Addison-%esley Publishing Co., Inc. , Reading, Mass. , 1955), pp.
345—361.

' C. Fronsdal, Phys. Rev. 156, 1663 (1967).

(A lql»') (~'lqlW
(1.1)

Here, q denotes the momentum operator, I N) the initial
(and final) state, and

I
S') the intermediate state, with

Schrodinger energies E~ and E~ . The superscript c on
the summation symbol indicates that an integration
over the continuum states is to be included in addition
to the sum over the bound states. The second term in
the large parentheses is the required mass renormaliza-
tion term. By applying the completeness relation

Z' I&')O'I =1,
N'

(1.2)

Kq. (1.1) reduces to

2A
QE(—

3~9 o

where II is the Hamiltonian.
For hE~, relativity becomes important, but the bind-

ing decreases in importance. Thus we need keep only
the lowest-order terms in an expansion in powers of the
potential strength Zo. as illustrated in Fig. 2; with the
result

AE&- —-+in Iy IVsVIX)
3s.li' 30 8 2)t.l

s (Adl& vvlx—d—). (1.4)
4m@

Here v is the gradient operator,
I
Xd) denotes a four-

component Dirac wave function, and I1V) denotes the
corresponding Coulomb wave function as in Eq. (1.1).
The occurrence of

I
1V) in the first term of AE&, rather

than the expected IXd), is explained in the following

tadpole diagram, illustrated in Fig. 1.Of several equiv-
alent treatments of the Lamb shift, that of Ref. 5 is
most useful for our purposes. The contributions of the
fluctuation diagram are separated into two parts ac-
cording to the energy k of the virtual photon. Thus, we
write AE= AE~+AE&, where AE& includes those con-
tributions from the fluctuation diagram with A&X„
while AE& includes those contributions from the Quc-

tuation diagram with k&) ., plus the complete contribu-
tion of the vacuum polarization diagram, with X, the
separation energy.

If li(Zts)'«)t, &(ls, where the potential energy of the
electron is V= Zn/r, —and y, is the electron mass, then
~E& may be calculated. nonrelativistically by second-
order perturbation theory using Coulomb wave func-
tions throughout, with the result

(xlq(.v') (x'Iqlx)
Ada Q'

i+ &+Eiv —Ex



SIM PL IF IE D CALCULATION OF LA M 8 SHIFT 1369

way. [Note that (Ndl V'VINd) is not even defined for
s states, because then

I 1Vd) diverges at the origin. ]The
result V'V is correct only for the low-momentum com-
ponents of the potential and is an overestimate for the
momenta greater than the electron mass. Thus,
O'V=4sZnb'(r) should be replaced by an operator
which is nonvanishing in a region of the dimensi. ons of
X„the electron Compton wavelength. Since the large
components of INd) diGer significantly from I1V) only
in a much smaller region, and the small components of

I Nd) are smaller than
I N) by a factor of order Zn, we

may replace INd) by I1V). But IiV) is itself slowing
varying over a region of the dimensions of 1i,/Zu»X„
so that the extended operator may in turn be replaced by
v'V.

Since the SO(4,2) calculations are to be applied only
to the Schrodinger states, and not to the Dirac states,
we must reexpress the second term of hE&. For this
purpose we denote the large and small components of
I1Vd) by IN+) and IN —), respectively, and note that

7
77

7
P.n~

g

FIG. 2. Expansion of the Quctuation and vacuum polarization
diagrams to lowest order in the external potential strength Zn.
The erst term contributes only to mass renormalization, while the
remaining four terms yield hE&. The wavy lines denote virtual
photons, the double lines denote electrons moving in the external
potential, and the single lines denote free electrons.

r—' replacement may also be made for s states, and Eq.
(1.4) reduces to

Za2 (19 p ) 3C
~E)= -(N

I I

—+» I4~~'(r)+
3x-p' (30 21',) 4r'

where
C—=J(J+1)—L(L+1)——,

' = L.e

With

irlN —) = (2p+«/r) '[q+iqXo jl1V+). (1.5)

(0
4—e 0)'

and J and L are the total and orbital angular momenta.
Although Eqs. (1.3) and (1.10) are the most con-

venient expressions for SO(4,2) calculations, a further
treatment of AE& will facilitate comparison with previ-
ous results. Integrating in Eq. (1.1) yields

we obtain

—(Ndl& vVINd=(N+IQ'IN+), (1.6)
where

Q'=i(2p+Zn/r) '(V V) (q+iqXe)

+i(q —'qX ) (2p+Z / )
—'(VV) (1.7)

1 i 2 dV
=I v — —vv I+- (rXq e)

2p+Zn/r ) 2p+Zn/r dr

(Zn)' 1

(2p) r'(r+Zn/2p)2

(Zn) 1
+2I —

I

— — L g. (].9)
k 2p) r'(r+Zn/2p)

2A
Z'(NlqlN') (N'lqlN)(E~ —E~)

3'~ &'

~c+EN' EN
Xln (1.12)

Since the important values of
I E~ E~l are of —order

p(Zn)', the numerator of the logarithm may be replaced
by X,. An equivalent approximation, which we shall
adopt, is to take the limit X, —+~ in BE&+DE). We
define a parameter y(N, L), the Bethe logarithm, which
is the same as the quantity ln(2E0/pZ'n') used in Ref. 5:

~(N*L) Z'(N OlqIN') (N'lqlN, O)(E~ —E~)

—=g (N LlqlN'). (N'lqlN, L)(E~ —E~)
N'

The first term of Q in Eq. (1.9) diGers from V'V/2p in
being signi6cantly difterent from zero in a region of the
dimensions of ZnX. , while IN+) differs significantly
from

I N) only in a much smaller region. Therefore this
term may be replaced by V'V/2rN provided IN+) is
first replaced by I N), by the same argument as used for
the Grst term of AE&. The r dependence of the second
term of Q in Eq. (1.9) diGers from r ' in a similar way,
and, except for s states, may be approximated by r '
after replacing IN+) by N). For s states, neither
(1V+ lr 'I1V+) nor (Nlr ~ N) exists, but the second
term of Q gives zero contribution because of the factor
L e. Subject to the somewhat unesthetic prescription
that this term be set equal to zero when L a=O, the

Xln (1.13)
2p(Zn)'

2 2'(NlqlN') (N'lqlN)(E~ —E~)
N'

= —(NILq [q,&j]IN) =(NI4~Z~~'(r) IN) (1.14)

with Eqs. (1.12) and (1.13), we obtain, as the final ex-

In Eq. (1.13) we have explicitly designated the angular
momentum of the initial state, with

I
1V,O) denoting the

s state with principal quantum number S. Note from
Eq. (1.13) that p(N, L) is independent of Z. Using the
relation
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pression to be evaluated,

hE(N, L) = (Zn'/3zr p'),
X ( (N, L l

[(19/30—2 lnZn)4zrh'(r)+3C/4r']
l
N L)

—~(N, L)(N,014~@(r)IN, O)), (1 15)

with p given by

2P,
y(N, I)(1V,ol4zr5'(r) l1V,O) = lim ln

i,~oo p(Zn) z
and

) —=2X,/zz(zn)',

EN =2'—r/Iz(zn)' = 1/N—',
(z—= (z/zzzn,

(2.7b)

(2.7c)

(2.7d)

Proceeding now to the evaluation of y(N, L), we in-
troduce the dimensionless quantities

k= 2k/zz(zn)', (2.7a)

3' p
X (N, L l 4zr8'(r)

l N, L)——AE~
Zo,'

and hE& given by Eq. (1.3).

H= 2H/Zz(zn)'= (I'p —I'4) —'[d'(rp+ I'4) —2(P]. (2.7e)

(1.16) Equations (1.3) and (1.16) now become, with Eqs.
(88a) and (820),

II. EVALUATION OF LAMB SHIFT
where

y(N, L) = lim 5r„pink+ dk Qp(N, L), (2.8)

Q, (N, I.)= (N, LlDlN, L& (2.2)

Q, (N, L)—=—;n(N, L,
l
C(r, —r.)-'l N, I.), (2.3)

with the matrix D def(ned by Eq. (828). The states

l
N, L) are the physical states, with principal quantum

number N, and with normalization given by Eq. (819);
while the states I N, L)) used below are the eigenstates
of r„with eigenvalue E, and with normalization given
by Eq. (817).Applying (820), (A20), and (C15) in suc-
cession yields

Q (»L)=& ' '((N, LIR '(~ )DR(tl ) IN, L&)
= KN'(z'e""((N, L l D l N, L))
=4(z Zn/N) S,,p (2 4)

Similarly, for L/0,

Q, (N, L) = 3(pzn/N)'/2L(L+1)(2L1), (2.5)

while Qp(N, L) vanishes for L=O, because then C=O.
Thus, Eq. (2.1) reduces to the familiar" Lamb-shift
result

4zz(zn) 4n

AE(N, L) =

The desired SO(4,2) expression for the Lamb shift is
found by inserting Eqs. (87), (811), and (827) into
Eq. (1.15) to obtain

hE(N, L) = (Zn'/3zrpP)[(19/30 —2 lnZn)Qi(N, L)
+Q, (N, I.) 7(N, I.)—g, (N,o)], (2.1)

where

Q(N) = —,', 1V 'kh, (ro —) ', (2.13)

where 6„is the second-difference operator defined by

f(v) = f(v—+1) —2f(v)+ f(—v 1) . (2—.14)

Two alternative procedures are available at this point.
The first yields Qp(1V, L) either as a Fourier transform
of a single diagonal matrix element of an SO(4,2) rota-
tion operator, or as aconite sum of hypergeometric func-
tions. This appears to be more useful for formal manipu-
lations than for the actual evaluation of y(1V,L), how-

ever, and is presented in Appendix D.
The second alternative, which yields Qz(N, L) as an

infinite sum, will be followed in evaluating y(N, L). Since
the basis vectors

l n, L)& are eigenstates of Q(1V), we may
apply Eq. (818) to Eq. (2.13) to obtain

Q, (1V,I.)=—((N,L l
R—'(gip)QR(e ) l N, L)) (2.9)

and

Q—=—,'(INr;[k(H+k —E )-i—1](r,—r,)-ir;. (2.10)

Rotating through an angle 8„=ln(1/(zv), with
v—= (k —Ezr) 'I' then yields

Q(N) —=R-'(8„)QR(e,)
= (N/4 )r;Pk '(rp —) —(rp —r4)-i]r, . (2.11)

The r; dependence is eliminated by applying Eqs. (A17)
and (A19), while the r4 dependence is eliminated next
by using the Schrodinger equation [cf. Eq. (815)]

[ 'E~(ro —r ) —(I',+I' )+2 ]R '(0,) l 1v,L)=0, (2.12)

with the result

[19/30—2 lnZn —y(N, O)], for L=O

3C
y(N, L), for LA—O.. 8L(I,+1)(2L+1)

Q (N, L) =:.N"k 2 l((n, L—IR(~)IN, I&&I'
2.6 n=L+1

XA„(n—v)
—' (2.15)

Note that Lieber' did not obtain this result because he
treated only the hE& contribution and ignored com-
pletely the AE& contribution.

=—,', Nv'k g (n —v) '
n=L —1

X~.l((n, LIR(O) IN, L&&l, (2.16)
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where
8—=8~—8„=ln(v/N) . (2.17)

and
x—= (N —v)/(N+ v) (2.18a)

(2.18b)

we find that Eq. (2.8) reduces to

y(N, L)= Q J (N, L),

where, except for the case m= —i, L=O,

(2.19)

In Eq. (2.16) we have used the fact that the matrix ele-
ment vanishes for n& L. A signiicant advantage of the
SO(4,2) approach over the earlier one may be seen at
this point. The sum over the intermediate states in Eq.
(1.1} consists of an integration over the continuum
states in addition to the discrete sum over bound states,
while the corresponding sum in Eq. (2.16) consists only
of a discrete sum over the basis vectors ~n,L}).(Note,
incidentally, that the alternative procedure of Appen-
dix D shows that this in6nite sum over n could be per-
formed explicitly, to yield either a hypergeometric func-
tion having a k dependence in its parameters as well as
its argument, or a finite sum of such hypergeometric
functions. ) Changing to the variables

From Eq. (C18), we obtain for the 1S state

I (x)=x'"-'(1+x)
&&((1—x')' —(1—A)(1—x')j/{x+A), {2.25)

with A =m/(m+2). As the Grst step we evalus, te

to yield, with Eq. (2.24),

yo=—I i+Ja= 2 ln2+19/12= 2.970. (2.26)

It will be seen that 70 exceeds the final value for 7 by
only 0.5%, an amount comparable to the errors already
introduced by the various approximations of Sec. I.
A similar result is true for S states in general, since the
corresponding figures are 2.5% for the 2S state, and 8%
for the limit E —+. 8

It is only the presence of the denominator x+A which
prevents our obtaining a simple, easily-summable ex-
pression for the integral of I (x). Therefore we apply
the relation

(1+x)/(x+A) =1+(1—A)/(g+A) (2.27)

to Eq. (2.25), thrice to the 6rst term and twice to the
second, thereby obtaining a remainder

I (N L)= Cg I„(x), (2.20) I~,i(x) = —(1—A)'x'"(1 —x)/(x+A) (2.28)

x(1+x) after separating the denominator-free partI (x)=-
(m+L+1+N) (1—x')'(x+A) I„,i(x) =x'"—'(1—x')' —(1—A)x'"(1—x')

—(1—A)'x' (1—x), (2.29)X&-I &{m+L+1,Ll&(8) IN, L})I', (2»)
whose integral is

A —= (m+L+1 N)/(m+L+1+—N), (2.22)

aQd
cosh'= 1+2x'/(1 —x') . (2.23)

1
~m, l =

m(m+1)(m+2) (m+2)(2m+1)(2m+3)

The case ms= —1, I.=O involves the term ink, and the
upper limit xo =—1—2L(XN'+1)'I' —1) ' on the x inte-
gral cannot i'.ediately be taken in the limit X ~~ as
it has been in Eq. (2.20). From Eqs. (C18) and (2.23),
we obtain for this case

(2.30)
(m+1) (m+2) {22m+1)

The integral of I,~ is seen to behave like J,~
—+es—'

for large m, compared with J ~ m '. To furtherim-
prove the convergence, we apply the relationxo g2A' —1(1+g)-

Qx
(1—x) (*+A)-i= (1+A)-iL1+(1—*)/{x+A)j

(2.24)
to Eq. (2.28) three times and obtain a remainder»1 1

=2 g —— ——in2N ~.
;=i i 4N ) I:,2(*)= —t:(1—A)/(1+A) j'x2™(1—*)'/(*+A) (2 32)

I,2(g) = —(1—A)'x' Q L(1—g)/(1+A)]' (2.33)

' Refezence 5, pp, 40A —406.

Although an explicit evaluation in the general case in- plus a denominator-free part
volves quite complicated expressions, the calculation is
actually rather simple for the low-lying states. Ke will 3

demonstrate this simplicity, as well as show the method
to be used in the general case, by evaluating y for the
ground state.
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TABLE I. Sequence of extrapolated partial sums p, defined by
Eq. (2.41), which converge to the Bethe logarithm 7 for the ground
state. The rapidity of the convergence is illustrated by the succes-
sive difFerences in the last column.

10"(v —v -r)

TABLE II. Vales of the Bethe logarithm p for the IS, 2S, and
2I' states, with results of this calculation compared with those of
previous authors. The figures in parentheses give the number of
units of estimated error in the last decimal place. The last column
gives the number of y terms, either evaluated for this calculation,
or required to duplicate the stated accuracy of previous results.

whose integral is

2.98412 92620
2.98412 85344
2.98412 85528
2.98412 85554
2.98412 85558
2.98412 85559

—7276
+184

26

1

State

2.98412 85559(3)
2.98412 85(3)
2.98414 9(3)

2.81176 98932(5)
2.81176 9883(28)
2.81176 98(3)
2.81179 8(9)

Source

This calculation
Lieber'
Harrimanb

This calculation
Schwartz-Tiemann'
Lieber'
Harriman b

Terms

J
2(m+1)'(m+2) (2m+1)

—0.03001 67089(3)—0.03001 6697(12)—0.03001 675(6)—0.03001 637(i)

This calculation
Schwartz-Tiemann'
Lieber
Harrimanb

4 1 ( 3
I
4+ . (2.34)

m+2 (m+1)(2m+3) i m+1

The sum g (J &+J,o) may be evaluated exactly by
resolving the summand into partial fractions, and using
the relation

"Michael Lieber, Phys. Rev. 174, 2037 {1968).
b J. M. Harriman, Phys. Rev. 101, 594 {1956).
e C. Schwartz and J. J. Tiemann, Ann. Phys. {N.Y.) 2, 178 {1959).

to obtain the extrapolation term

J,o=—Q JI,o
k=m+1

and the Riemann zeta function

(2.35) (2m+2''(2m+3 2

(2 40)
(2m+3) i 7 3(2m+3)l

The sequence of sums

with the result

i(~)=—P «-",
k=1 'Ym= Voo+ g Jk,o+Jm, o

A:=1
(2.41)

goo=—To+ 2 (J .t+J,o)

= io Pf (4) +f'(3)+15/(2) —12 ln2 —15+oj (2.36)

=2.98596 90535.

Finally, the integral of I,2 is given by

Jm, 2 Jm, 1 Jm, 2 y (2.37)

where the integral of I,l is easily found to be

(1—A)'J .t= —(1+A)(1—A)'
2m+1

-om —t (—A)' 1+A—+A-''" ln-
'=o 2m —z

(2.38)

2 f(«)=
k n+1 +l/2

1 (if
dk f(k)+

24 dk
(2.39)

Few of the J,o need be calculated since J,o
—+ (m+ 1) '

for m~~, but even~~ofewer are~required if we use the
approximation

thus rapidly converges to the desired value of 7, as
shown in Table I.The rate of convergence is seen to be
much more rapid than that obtained by I.ieber, ' and
results from the application of Eq. (2.31).

The calculated values of y(X,L) for the 1S, 2S, and
2I' states are presented in Table II and compared with
several previously calculated values. Also listed in
Table II are the number of y terms evaluated for the
present calculation and the number needed to duplicate
the accuracy of the previous calculations. Equation
(2.31) was applied a suKcient number of times to yield2,o-+ (m+1) ' for the 2S state and J,o~ (m+2) "
for the 2P state. It should be noted that this evaluation
did not employ an electronic computer, nor would it be
practical to do so unless far greater accuracy were de-
sired. This is an unlikely desire, since the accuracy of
the present calculation already exceeds the current ex-
perimental accuracy' by over six orders of magnitude.
Such numerical accuracy was obtained only to demon-
strate the simplicity and capability of algebraic methods
in general, and the SO(4,2) formulation in particular,
in atomic physics.

9 W. E. Lamb, Jr., and R. C. Retherford, Phys. Rev. 72, 241
(1947); 75, 1325 (1949); 79, 549 (1950); S1, 222 (1951); 85, 259
(1952); S6, 1014 (1952); S. Triebwasser, I".. S. DayhofF, and W. E.
Lamb, Jr., ibid 89, 98 (1953);89. , 106 (1953).
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APPENDIX A: REPRESENTATIONS OF
SO(p, 1) AND SO(p,2)

We begin by considering SO(p, 1), the group of orthog-
onal transformations (without refiections) in a P+1-
dimensional space with a diagonal metric g~~ given by
g"= 1 and g"=g"= ~ ~ =g»= —1." Many calcula-
tions involving this group are most conveniently per-
formed by employing the Gnite-dimensional irreducible
representation given by the symmetric and traceless
Nth-rank tensor in a (p+1)-dimensional space, "

pA )Ab" AN= BA pAa
' '

BAN & (A1)

~here s~s =—g sos~= 0. In this basis, the infinitesimal
generators s&& are given by

tt' 8 8 )
~h Q —t Sg= Zg )

8sc BsB)
(A2)

which act on the basis vectors as follows:

ZSBC'IPAi "AN

N~A (gcAgiPBAb ~ AN gBAgfcAb AN) ~ (A. 3)

Here S~~ denotes symmetrization in the S indices
Ai AN, i.e., (N!) ' times the sum of permutations.
The reduction of this representation with respect to
SO(I') is given by either of the expressions

|t'Ag "AN ~A Q QAi "A(
t=0, 1, . . . n=t, t+2, . . .

b, (N, t,n)

XgA(+)At+a' ' 'gAa &AagAa+Z
' ' 'gAN (A4)

= sAN p pA, ...A, p c„(N,t,n)
t=0, 1.. . , n=t, t+2, . . .

XgA(+gA(+b' ' 'gAa yAagAa+i
' 'gAN ) (A5)

where gg~
—=gz~ —gg gao. The irreducible representa-

tions of SO(p) have basis vectors given by the traceless
symmetric tth-rank tensors

4 A =rA"(gA '. gA 'g '+' g N6 B ) (A6)

where w&& denotes the projection operator which picks
out that part of its operand which is traceless (relative
to jAB) in the indices Ai A, . Note that pA, ...A, is also
traceless relative to g since it vanishes if any of its
indices equal zero. Requiring the right-hand side of Eq.
(A5) to be traceless relative to g"B yields a recursion
relation for the coefFicients c(,Nt, )n, whose normaliza-

"The treatment, and especially the notation, in this Appendix
follows that of Ref. 7.

"The following notation for indices is used throughout these
Appendices: A, 8 ~ ~ =0, 1, 2, ~ ~ p a, b, ~ ~ ~ =1, 2, ~ ~ ~ p.
z J ~ ~ ~ —1 2 ~ ~ ~ p —1
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tion is determined by inserting Eq. (A5) in Eq. (A6),
with the result

where
c,(N, t,n) = a~(N, t,n)/(t+n+P —2)!!, (A7)

&she iai a'c ~ c~ 'a (tgcaikbab" ai tg habit'cab ag) q"

t(iV+ t+p —2)
&SOcfaz ai =~ (~~ t)4cai" at+

(2t+p —2)

(A10)

t—1
@a gcaA'ab" at gaiabpcaa" a~

l
. (A11)

2t+p —4

Note that the expression in the brackets in Eq. (A11) is
just the traceless projection of I '!t„,g„...„(relative to
d"B) in the indices ai, , a,. (The traceless projection
in the indices c, ci, ~ ., u, is zero, of course. ) Although
Eqs. (A10) and (A11) were derived only for non-
negative integral variables of E, they in general provide
an irreducible representation of SO(p, 1) for any com-
plex N. Further, Kqs. (A3)—(A11) are valid for any
traceless symmetric tensor, iPA, ...AN, and not just for
all the polynomials in sA defined by Eq. (A1). The in-
variant scalar product is defined by Q l|t)—=g"'B'
g"N NP*A, ...ANiPB, ...» and may be expressed in terms
of SO(p) components by using Eqs. (A4) and (A5). The
generalization to complex E may be shown to be, after
dropping some insignificant t-independent factors, '

(t —N*—1)! (2t+p —2)!!
(&l&)=Z — (—g"b) . .

c=o (t+N+ p 2)! t!—
X( g"')j*...—...,jb, b, (A12)... .

For positive integral N, the same expression holds, ex-
cept that (t N* 1)!is r—eplace—d by (—)'/(N —t)!, and
the t summation runs from 0 to S. It can be seen that
the coefFicients in Eq. (A12) are positive and real, and
the representation given by Eqs. (A10) and (A11) equiv-
alent to a unitary one, only for the principal series

N= 2(P 1)+—ip, —p real

and the supplementary series

—(P —1)&N&0.
"'This complex-type scalar product is invariant only for E real

or for the principal series. The corresponding real-type scalar
product is invariant for complex E in general, which fact follows
almost trivially from the definition of the group.

c„(Nt, n) = ( go—o)
&" ""—(2t+p 2)—!!N!/

t!(n—t)!!(N—n)!. (A8)
A similar procedure yields

b„(N,t,n) = (2N+ t n+ p —3)!!a„—(N, t,n)/
(N+t+ p 2)!.—(A9)

From Kqs. (A3), (A5), and (A6), the action of the
generators on the basis vectors is found to be



1374 ROBERT W. H UFF

)site, r~ j=i rag~a &Fcg—~B, (A13)

with Fo sat»fy»g

rtttp„...at= (t+ 2P —1)tp„...at.

For the special case S= ——,'P, which will be called
the Majorana" representation, there exists a set of
matrices Fg which transform among themselves under
$0(p, 1) in the same way as the sz, i.e.,

tions in the 0-a plane. The operator R(8)=—e """,with
8= tanh 'P, generates the transformations of Eq. (A1S),
and thus gives

R—'(8)(rtt~r, )E(8)= (1+P)(1—P')—'"(rt&&r,)
= e+'(r pa I'.) . (A20)

The $0(p, 1) representation may be further reduced
with respect to $0(p —1) with the result

It then follows from Eqs. (A11) and (A13) that SaQI, ''', Gt ~aC 'Y +I"'0 L
L=o, a, .. . n=L, L+2,

b~ i(t,l.,e)

t(2t+p 4)—r„j......,=(t+-', p)4...-',— g t

2(2t+p —2)

t —1

XI gcattl'ab at "gatabpcat "a,
I
. (A»)

r2t+p —4
where

0 ], c ~ ~ n=I, I+2, ~ ~ ~

XgaL+laI+t gaa laagaa~t gat t (A22)

XgaZ+lay+b' ' 'gaa iaagaa+i ' ' 'gat (A21)

c„,(t,r„n)

Also, from Eqs. (A11), (A14), and (A15),

Lrg, Fsf = tsga—,

~ c ~ ~ ~

gab—=gab ga"gap )

(AI6) j t= & rt l(g bt. . .p —bzgbb+t. . .g btp b ) (A23)

which shows that this irreducible representation of

$0(p, 1) is an irreducible representation of $0(p, 2) with
generators sg~ and s 1,A= I'A.

One useful SO(p) invariant is the operator Q—= —
g "Fb

Xf(r,)F„where f(F,) is any function of the matrix Ftt.

It follows from Eqs. (A14) and (A15) that

gj......,=-,'L(2t+ p)(t+P —2)f(t+-'P)
+t(2t+p 4)f(t+ 'p —2)3&."'-.—

Applying Fq. (A14) then yields the oPerator relation

—g "rbf(ro)r. =k 2+ (Foal)
XLF.~-,'(p —2)jf(r.~l). (A»)

A second useful relation may be derived by taking

f(rb) = (rtt)c, and applying a rotation through an angle
gang 'p in the 0-tb plane, i.e. , by making the
substitutions

and
r, (1—p')-'t (r,ypr.)

(1—p') '"(r.+pr )

in Eq. (A17), with the remaining Fb's remaining un-

changed. Finally, by taking the limit p —+ +I, we obtain

and the coeKcients are again given by Eqs. (A7)—(A9),
with gpp replaced by g» in Eq. (AS). From Eqs. (A21)
and (A22), the SO(p)-invariant scalar product is found
to be

( gatbt). . . ( gatbt)y tWp

(2K+p —3)!!
=t!(2t+p —4)!!Q'=' (t+I-+p 3) jL!(t I-)—!—

X(—8"") ( f."".)—&' -'b'*ktt-tb' (A 4)

The L-independent factors cannot be dropped here,
because Eq. (A24) is to be combined with Eq. (A12) to
yield the $0(p, 1)-invariant scalar product in terms of .

$0(p —1) components.
For the Majorana representation, it follows from Eqs.

(A15), (A22), and (A23), that the matrix F„actson the
$0(p —1) tensors as

P &I'"'tL Q iI ~ ~ ~iL

(t—L)(t+L+p —3)+ Mit "iz ~ (A25)
2(2tgp —2)

provided, of course, that (Ftt&r,)' is defined. It can be
shown that (rtt&r„)', and therefore (rtt+F )' in gen-
eral, exists for integral values s) —-', (p —2), but not for

2(p —2)—
A third useful relation involves the behavior of the

frequently occurring combinations F0&I' under rota-

I t+kp —1, L))=—(2t+p —2)!!

X((2L+p —3)!!
(A26)

2(t+I-+p —3)!L (t—I-)!

—gs'r~(r, +r.) r, From Eqs (A12) and (A24) it is seen that the normal
=a(s+I)(s+p —2)(rostra)', (A19) ized tensors, with respect to which the generators s

and ~g are Hermitian, are given by

"E.Majoranat Nuovo Cimento 9, 335 (1932). Inserting these normalized tensors into Eqs. (A14) and
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(A25) gives

rpln, L»=nln, L», (A27)

r„ln,L&)= o[(n+L+-', P —1)(n—L,—,'P+2) j'"
X

l
n+1, L»+-', [(n+L+ lP —2)

&&(n —L—'op+1))'~'ln —1, L)), (A28)

where n= o'P —1, ~oP, . . . , are the eigenvalues of I'o

Finally, consider the function

(t —1V~—1)! (2t+p —2)!!
f(s)—=Z

~=p (t+JV +p 2)! —t!

X( )&f (s )N—&s« ~ ~ ~ s~t (A29)

where the coefficients f„...„aresynunetric in their in-

dices, traceless relative to g ~, and transform under

SO(p, 1) like the tt„...„.Then it follows from Eq. (A12)
that f(s) is transformed by an element G of SO(p, 1) ac-

f()-Gf() =f(G-") (A30)

Note that f(s) is a homogeneous function of degree 1V

in the s". The SO(p, 1)-invariant scalar product of two
such functions, f(s) and h(s), is given in terms of their
coeKcients by Eq. (A12), but we also wish to find an
integral form for this scalar product. The integral

b(s's )do+'s f*(s)h(s)

is an obvious candidate because it is manifestly invari-

ant, but this integral has the unfortunate defect of not
existing. However, it can be shown that

For representations in the principal series, the integral
I is seen to reduce to the scalar product of Eq. (A12).
But for the Majorana representation, the right-hand
side of Eq. (A34) has one more factor (t+op —1) than
does the scalar product. A comparison with Eq. (A14)
thus shows that the integral

I'= 8—(s"sg)(so)'d"s f*(s)I' 'h(s) (A35)

or

g'—=&*'/(so —s4),

g'= A '= &'(so+ s—4)/'(« s4), —

s;= 2spag;/(q'+ u'),

(g' —')/(g'+ '),

(82a)

(32b)

(33a)

(83b)

with a an arbitrary positive parameter. Note that
s~s~ ——0 and that the factor (sp)

—' in Eq. (31) causes
p(s) to be a homogeneous function of order IV = —o'p
= —2 in the s~. From Eqs. (32), it follows that

is a suitable SO(p, 2)-invariant scalar product.

APPENDIX 3: SO(4,2) REFORMULATION OF
THE NONRELATIVISTIC HYDROGEN ATOM

The familiar Schrodinger theory for hydrogenlike
atoms is easily translated to SO(4,2) form by expressing
the momentum wave functions p(ti) in terms of func-
tions Q(s) which transform according to Eq. (A30):

j(s)=y(q) (q'+ a')'/2&2 (s,)'g't
where

I ~ '-= o(s~s~). d&ss ~ . s'-

= (—)"~'(so) "+& 'V [n!/(n+p 2)—!!n!!g

)(8 &(g«+o. . .d+a—1 e) (A31)

for n even, and I'I"'&=0 for n odd, where
thus becomes

8 ltt) =— d'g4'(q)tt (q)

d'g = 2spa'8(s "s~)d's/(sp —s4) ',
and the physical scalar product

(84)

.(85)

V~—= B(1+j bx,xb)d"x.

b(s"sg) d&s
I= — — f*(s)h(s)

(s )N+N~+p2-
(t—A'*—1)!(t—A' —1)!(2t+p —2)!!

(t+IV +p 2)!(t+IV*+p 2)!t!— —

(A33)

X(—g«b&) . ( g~"')f., «*hog—b~ (A34).

It therefore follows that
t!V„(—)'

o oI«" «bi "bi' —g«, (sp)o&+u —o

(2t+p —2)!!

Xr "S '(g""" d"") (A32)
and consequently,

(&ltt) = &("»)sodom*(s)k(s) (so «) (86)—

This differs from the invariant scalar product of Kq.
(A35) by a factor of I'o(so —sb)/so, which transforms like
(I'p —I 4) under SO(4,2). Therefore, we adopt the rela-
tion

8 l~) =(4I(~.-~.) l~& (87)

g, =a(r, —1.)-'r, ,

q = 8 (I'p I'4) (I'p+I'4) .

(88a)

(38b)

between the two scalar products. It is necessary that
r,—r4 be positive dehnite, but this- can be shown easily
from Eqs. (A27) and (A28).

Similarly, in Eqs. (82) we replace sz by I'z to obtain
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For the position operator ri we obtain

ir,—g(s) = [(go+up) p/4ap" (s,)'5 g(q)

/ a 2s;)„
I~()

kaq; asp)

2zi ~za
iar; = ———+a

Zp Bgi BZ~

s;Ir a) /a s, a)=—
I
2+s I+(so —«) I

+-
sk as) &as; s, as, )
s, ( a) a a a)=—

I 2+s~ - I+(so —s4) +s, +
s, k as~) as' as4 asp)

= [r,,(r, -l', )5.

Application of Eq. (A19) then shows that

pro = —g2r~r, .= (I'Q I'4)P

or

(89)

(810)

From Eq. (A2), and since sz(a/as&) is a Casimir opera-
tor of the group with eigenvalue E= —2, this reduces to

variant scalar product

((+', L', Lz'I rr, L, rz»= an ar.r. &r,zr, z (817)

These basis vectors form a complete set

I ~,L,Lz&&((~,L,Lz I
=1. (818)

I N, L&= ~rrR(8rr) IN, r&& (820)

with 8~=in(pZn/aN). The normalization constant is
determined from

1= l~ I'((N, LIR-'(8 )(1.-1 )R(8 ) IN, L&&

I

'e '((N, L
I
(I—'o —I',) I N, I»

= N IK Ir'r

Further, let the solutions
I p& of Eq. (816)be denoted by

IN, L,Lz&, where N is the principal quantum number,
and L and Lz are the angular momentum quantum
numbers, with normalization given by the physical
scalar product

(N L Lz
I
(I'o I' ) IN L L &=brrrr'br. r.'ar. . (819)

For convenience we will suppress the Lg dependence of
these basis vectors and physical states. From Eq. (816)
it is seen that the solutions R '(8) Ig& are eigenstates
of Fp with eigenvalues E= 1, 2, . . ., and energies
Err = rr, (Zn)'/—2N', i.e.,

af Fp I4) (811) or

since ar is required to be positive definite on physical
grounds.

From Eqs. (88) and (811), it follows that the
Hamiltonian

becomes
H = q'/2p —Zn/r (812)

[E(1'o—I'4) —(~'/2r )(I'o+ I'4)+«~5
I 0&= o (814)

From Eq. (A20), application of the rotation operator
R(8)=e'"p4 yields—
[E(I'o I' )e ' (a'/2—rr)e'(I'p+—I',)+Zna5

&&R-~(8) lq&=0. (815)

For 8=-,' 1n(2pl EI/a'), and E(0, this reduces to

[El'o+(pal EI)'"Zn5R '(8) Ip&=0. (816)

Let le,L,Lz)& be an eigenstate of I'o, L'= (sop)'+ (so~)'

+(sqp)', and sqm& with eigenvalues n, L(L+1), and Lz,
respectively, and with normalization given by the in-

H = (I',—I' ) '[(u'/2p) (I'o+ I',) —Znu5. (813)

Note that the matrix form of H staisfj. es the physical
requirements of being Hermitian with respect to the
physical scalar product of Eq. (87), as a result of the
matrices Fg being Hermitian with respect to the invari-
ant scalar product. The Schrodinger equation now as-
sumes the form

KN = (rrZrs/aN') '". (821)

Although the basis vectors IN, L&) form a complete
set, the physical states IN, L& do not, because R(8rr) is
E-dependent. In order to complete the set, it is neces-
sary to include the positive-energy continuum states,
to obtain the matrix expression corresponding to Eq.
(1.2),

P IN, r.)(N, r. l(i o
—r4) =1.

X,L
(822)

D'= r(a/ar) =ir g— (823)

and write the Laplacian operator in spherical coordi-
nates,

V' = r—'[D'(1+D') —L'5.

The Laplacian of a spherically symmetric function U(r)
can thus be written as

(V' U) = [V', U5 —(2/r') [D', U5D'. (824)

As in Sec. I, the superscript on P' merely indicates that
the continuum states are included in the summation.
This completeness relation is the only point in the
present study which explicitly involves the matrix form
of the continuum states, and they need not be considered
further at this time.

One remaining operator to be expressed in SO(4,2)
form is the Dirac 5 function. For this purpose, we intro-
duce the differential operator
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47(b'(r) = a'(Fp —F4) '([(Fp+I'4), (I'p —F4) 'j
+2(F —I',) '[D', (I' —F ) 'jD'j, (825) APPENDIX C: EVALUATION OF SEVERAL

SPECIAL MATRICESwhere, from Eqs. (88a), (810), and (A19),
D'= —[F;,(F,—F,)j(F,—F,)-'F;=[F„F,]—1. (826) For the Majorana representation of SO(P,2), we

evaluate the reciprocal matrices, G~=—(Fp&F~) '. If
ln, I.)) is represented by the monomial f„x"x ', where

From Eqs. (A13) and (A16), or by direct calculation
with Eq. (C6), it follows that [D'(Fp —F4) 'j
= —(Fp —F4) ', and Eq. (825) reduces to f =—[(n+E)!/(n —E—1)!j'~', (C1)

By setting V= —1/r, and using Eqs. (88b) and (811), of D, defined with the physical scalar product of Kq.
we obtain the desired result (87), are required to vanish. Since the matrix (F,—F4)D

is identically zero, this physical requirement is satis6ed.

where
4vrb'(r) = a'(Fp —F4) 'D, (827) K=L+,'p ——2, -

D=—[(I'p+ I'4), (Fp —F4) (j
—2(F,—F,)—'[(Fo—F )

—'D'j. (828)

Note that the order in which the various factors
(Fp—F4) ' are combined is crucial, because (Fp —F4) '
is unde6ned. on the manifold of states with L= 0. %hen
the multiplications are performed in the order indicated
by the square brackets, the matrix D is well defined.
The remaining factor of (Fp —F4) ' will be cancelled by
the (Fp —F4) factor in the physical scalar product of
Kq. (87). Although D is merely the matrix form of
4mrb'(r)/a', it is (contrary to what one might expect)
not identically zero. Only the physical matrix elements

G„(x)=P((m, LlG ln, L))f x" x ', (C3)

then the equation (Fp& F„)G~=1 becomes

DgG„(x)=f„x"x—
with the solution

(C4)

then Kqs. (A27) and (A28) are satisfied if Fp&F& is
represented by the differential operator

D~= a-'(I+x)-px(a/ax)(lax)'(x+') (C2)

If, in addition, G~ln, L&) is represented by the poly-
nomial

G (g) —(1~@)—P(x+&) ~2f„dg(1~@)Pxg~—x—)+C„~'

2f )gp z (--
(n K 2—)!(n—+K 1 m—)!i—

~(n —K—1) p (~)"~"-x-'-- -- -- l+C„,(1~x)-p«+»
(2E+1)k 1&@ (n —E—2 —m)!(n+K)! I

2 n—1 00 C„,~'
2 (+)" "~" x '(f )'/f-+2 (~)" "&=x 'f I+ — — Z (~&)" '(f )'

2K+1 tp=Ic+) m=a ) (2E+1)!~ xy(
(C5)

Thus, G~= G~'+G~", with

((m, LI G; I.,L))

2(W)"—" f„/f„,K+1&'m&n& ~—X
2K+ I f„/f„,E+1&n&m& ~

and

(C6)

((m, LIG+"ln, L»=(~)" x 'C-,~'f /(2K+1)! (C7)

Since (Fp&F„)is a symmetric n)atrix, the requirement
that G~ also be a left inverse reduces to the requirement
that the transpose G~ also be a right inverse. This re-
stricts the integration constant to be of the form
C„,r, '= (W) "f„CL,. However, unless CI,——0, not only will

G~ be unbounded, but no higher powers of G~ will exist.
We therefore take Eq. (C6) as the desired inverse.

Note that for m —+~, f has the asymptotic form

Then, as a result of the in6nite summations involved,
integral powers of G~ will have the asymptotic form

((myL l (Gy) l n, L)&~m (C9)

m—1 /n+Kq
~i—= + f.'= (2K+1)

n=E;+1 x+s &2K+1J=

m+E
=(2K+1)

I

(2K+2)

and will exist only for M&-,'(p —2), thus proving the
assertion made in conjunction with Eq. (A19).However,
when restricted to the manifold of basis vectors having
a given value of I,, (G~)~ is def'ned for M'& I+ p (P —2).

The evaluation of (G~)' is straightforward, and in-
volves the two sures

(f )
—P~m —(PL+@-P) (C8) =:(m+E—1)f '/2(E+1) (C10)
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Note that in obtaining this result for L= 0, the in6nite
sum of Eq. (C11) does not contribute, because each
term of the sum is zero as a result of the vanishing of the
coeKcients ~„.

In order to evaluate the matrix R(8) =e "'4, we note
from Eqs. (A13), (A16), (A27), and (A28) that the rep-
resentation of the operators —il"4, is04, and F0 in the
~n, L)) basis is precisely the same as the familiar repre-
sentation of the SO(3) generators L„L„,and L.. Thus,
we merely need the analytic continuation (in indices and
ar ument of the function"

and

(Q—E) t

1/f '=
~=m+r (++K+1)!

X(1, cV E+—1; E+K+2; 1)

(C11)= (M K—)/2Kfsr' EAO.

Thus, for E/0
(r,~l'.) 'Imp L))

g )
2(w)~ " M m

d .''(@)=—((L m
~

8-' "~!L,m'))

where 3.f—=max(mt, m&) and m—=min(m, ms). For SO-
(4,2), we merely have E=L.

The D matrix of Eq. (828) is easily evaluated once we
observe (via direct calculation) that

((n,L i
(I' —I' )

—'D'im, L))
8n, L

~
(I'p —I'4)

~
m, L)), (C13)

where

1 I'(Ljm+1) I'(L —m'+1)

I'(m —m'+1) I'(L+m'+1) I'(L—m+1)

I+&~m+m' I &~
m—m'- 1/s

2) 2)
X( L+—m, L+1+m; m —m'+1; rs(1 —pp)), (C16)

where ~= cosP. Upon using the identity1
2)

for the hypergeometric function, we obtain the desired
(C15) result((m„LI DI m„L))=4(m,m, )'~'gi, p

n= ns

= —L n&m. (C14)
2+1(~,&; c; s) = (1—s)' ~ ' P't(c —a, c—b; c; s) (C17)

Again using the summations of Eqs. (C10) and (C11),we
obtain

((n, L
i R(8)!X,L))=d„~i( i8)—

(n L—1)!(n+L)!/ 2 s++
pp 1 s s11 2—

(n —N)! (1V L 1)!(1V+L—)!l—a&+ I 2

XsFt(L+1—/!7, —L /V; n —X+1;—,'(1——co)), (C18)

where co=—coshe. and 8 is given by Eq. (2.17). Since the SO(4,2) rotation
operator may be written in the Euler angle form

APPENDIX D: ALTERNATIVE EXPRESSION
FOR y(N, L)

Gl=s' r'R(p)e'~rp (D5)

((1V,L i E(P) i E,L))
=

t 2e/(1+co)gs'
Xspt(L+1 —&, -L—E; 1; —,'(1—)), (D6)

(I'p —v) '=8, id' e"&~0—"~ (D1)
0

with where
D2g3

—1/(c-ps' 1)'
~
—gi(~+y) (D7)

andThen Eqs. (2.9) and (2.13) reduce to

Qs(E,L) =r's¹skh,B,
co=—coshp.

We easily determine the relation of rr, p, and 7 to g and
8 by taking the vector representation of Eqs. (D4) and

sdg s "((JV,L~e~Z, L)), -(D3) "J.Strathdee, J. F. Boyce, R. Delbourgo, and Abdus Salam,
Trieste Report No. IC/67/9, 1967, pp. 54-55 (unpublished).
Minor typographical errors in this report have been corrected in

(D4) Eqs. (C16) and (C18),
where

(R g-l(g)&is rpg(g)

the matrix element in Eq. (D3) becomesSince I'0 has an integer spectrum, the factor jI"0—vj '
in Eq. (2.13) may be expressed as (pr, L~ g!,~,L))
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(D5), with the results

o) = (1—cos8) sinh'8+1, (D9)

e= (1+o)) 'P(cos8+1)+(cos8 —1) cosh'8

+2i sin8 cosh8j. (D10)

Changing to the variable s=e" and to the variable x
given by Eqs. (2.18a) and (2.23), with associated inte-
gration upper limit x()=1—2L(XN2+1)'12 —1$ ', we
obtain

By using the expansion

)2N —1+my
(1 x2s)—2)v ~smxsm (D2p)

-sk m )

and integrating by parts 2n+2 times, we obtain

(2N —1+m) (222+2)!(N+m+22 —v —2)!
E =g/ X2m

m ) (N+m+22 —v+1)!

where

Q,.(N,L)—=x(1—x') 28„

=L(M —I—v —2)!/(N+I —v j1)!g
X2Ft(2N, N —22 —v —1;N+22 —v+2; x') . (D21)

For the ground state, Eqs. (D12), (D18), and (D21)
ds s ' "(1—s)'((N, L~(R~N, L)) (D12)

and
v =N(l —x)/(1+ x) . (nip) Q.(1,0) xB /de =s ' ."(1—x's) '

The matrix element in Eq. (D12) is given by Eq. (D6)
with =Lv(v —2)(1+v)j '

(D22)

2e/(1+. o)) =s(1—x2)2/(1 —xss) 2

-', (1—(d) = (1—s)'x'/s(1 —x')' (D15)

while the s-integration contour runs around the unit
circle from s= e to s= e'~'

Although Eqs. (D3) and (D12) may well1be the most
convenient forms for Qs(N, L) and Q,(N, L) for some
purposes, the integrals can be replaced by a finite sum
if desired. Since

2Ft/L+1 —N, L N; 1; 2(1—o)—)g—
N—L—1

where
(N I. 1q /N+Lq— —

Eq. (D12) may be written as

Q (N L) P x2e+1(1 x2)2(N—n—1)j7 It (x) (D18)

with

Ir (x)—=8 $d» s~-"- '(1—s)"+'(1—x's) '~ (D19)

&(2F2)2, —v, 3—v, (1—v)'/(1+v)'j, (D23)

the latter expression similar to that obtained by
Fronsdal" for the related process of Compton scattering.

Unfortunately, the x dependence of the parameters as
well as the argument of the hypergeometric function
makes these results too cumbersome to be of much use
for the actual evaluation of &(N,L). However, Eq.
(D12), and possibly Eq. (D18), may be useful for pur-
poses- of formal manipulation. A similar treatment may
be applied to other operators and matrix elements. For
example, the Coulomb Green's function operator G(E)
and its matrix elements may be written in a form similar
to Eq. (D12). This corresponds to the result of
Schwinger" with respect to the use of the s integration,
but the latter result does not possess the formal sim-
plicity which is made possible by using SO(4,2) opera-
tors. Further evaluation yields the matrix elements

((N~ G(R) ~M)) as a finite sum of hypergeometric func-
tions, corresponding to Eqs. (D18) and (D21), and, for
bound states, the physical matrix elements (N

~
G(E)

~
M)

can be written as a finite double sum of such hypergeo-
metric functions.

2' C. Fonsdal, Phys. Rev. 179, 1513 (1969).
2' J. Schwinger, J. Math. Phys. 5, 1606 (1964).


