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Back Reflection of Scalar and Vector Waves in Gravitational Fields*
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The back reflection of mass-zero scalar or vector waves passing through a gravitational field is calculated.
In the Newtonian (equivalence-principle) approximation to Einstein's or Brans and Dicks's gravitational
theory, no back reflection occurs. The non-Lorentz part of the spatial metric components (g „g»,g„)
produce the back reflection of the waves. For optimum wavelengths, the reAection coefficient of a wave
passing a mass 3f at distance d is of order GM/c' d.

I. INTRODUCTION

S OON after Einstein predicted that light would be
deflected in a gravitational field, qualitative experi-

mental confirmation of his prediction was made during
the solar eclipse of 1919.

Recently, Shapiro' has detected the change in the
velocity of light when passing through a gravitational
field by measuring the round trip time for radar travel-
ing from Earth to Venus and return when the Earth-
Venus line of sight passed close by the Sun.

One should be alerted at this point to also expect that
light, considered as a wave phenomenon, will be par-
tially back reflected when it passes through a strong
gravitational field, for generally when a wave passes
through an inhomogeneous region, back reflection occurs.

On the other hand, the equivalence principle states
that local experiments do not distinguish between a
gravitational field and an accelerated coordinate frame.
An accelerated coordinate frame does not lead to back
reflection of light, so we might expect that a gravita-
tional field (in lowest order at least) would not back
reflect light.

The equivalence principle, however, is known to only
predict part of the deflection and velocity change of
light, so the answer to the question of the back reflection
of light in a gravitational held is not obvious.

The purpose of this paper is to calculate the back
reflection of light waves in gravitational 6elds. It will

be found that there is no back reflection in the New-
tonian (or equivalence principle) approximation of
gravitational theories, but that the complete linearized
theories of gravitation of Einstein or Brans and Dicke'
do predict back reflection.

II. BACK-REFLECTION CALCULATION

We consider geometrical theories of gravity where
the space-time geometry is "curved" by the proximity
of matter. Letting f(r) be the Newtonian potential pro-
duced by quasistatic matter sources,

p(r')
lt (r) =G d'r',

(r—r'/
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then the space-time Riemannian metric g„„which gives
the invariant interval

ds =g ppdx~ dx" (2)

takes the form (in isotropic coordinates) to linear order;

In matter-free but curved space, we need the co-
variant generalization of the wave equation for the
electromagnetic vector potential:

1 O'A —V2A=0.
c' dt'

The proper generalization is the four-dimensional co-
variant I aplacian

gyve X 0

with the vector potential subject to the covariant
Lorentz gauge condition

A~g ——0

In Appendix A, the curved-space wave equation (4)
is used to obtain the modifications to the wave di6er-

The linear gop metric component gives the New-
tonian gravitational theory. But for the propagation
of light, the linear part of the spatial metric components
(g„,g», g„) contribute equally to the deflection and
velocity change of the light. We have included the di-
mensionless parameter y in the spatial metric so that
we can keep track of how the spatial-metric terms
separately influence the light-wave equation. Also, the
p parameter facilitates applying our Anal result to both
the Einstein and Brans-Dicke gravitational theories.
y (Einstein) = 1, andy (Brans-Dicke) = (1+w)/(2+w)',
where m is a dimensionless coupling constant in the
Brans-Dicke theory,

In terms of the y parameter, the deflection of light
passing a mass at distance d is

0= (1+y)2GM/c' d

and the position-dependent velocity of light is
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2yGM s' sin2ks'ds'
{R(k)=—de (v —1)44

+k
I
1+2(1+~)—~+

ds2 c' c' ds dk

c' o (d'+s")2)2

= —Sy (G3II/c') kE0 (2kd) .

ential equation for the vector potential to linear order given by a Bessel function,
in the gravitational field. The result is

with
y(S) eikI {s)

4 (s'))
I.(s) = 1+(1+&)

c2 )

(6)

g(s) is interpreted as the invariant amplitude of the
wave

A(,~) =D-V(4 ()/")]V(s)""'
with ~g(s) ~

=1 being the zeroth-order flat-space ap-
proximation for a propagating plane wave. s is the
length variable along the wave trajectory.

To first approximation in solving (5), we have

If the wave is of wave number such that kd 1, then
8.(k) reaches its maximum value of about

R(kd 1)~—yGM/c2d.

For an incident wave of very long wavelength, the
reAection coe%cient diminishes as

G3f
lim {R(k) —Sy k ln~—

c' kkd

while for short wavelengths, the reflection coefficient
diminishes very rapidly'.

To better approximation, we look for a solution

@(s)=L1+R(s)]e'kL{*)

which leads to the differential equation for R(z)

d'R P)dR 2iyk dP
+2ik 1+(1+~)—

~

de c23 ds c' ds

(S)

Gm(~k) )&2

lim {R(k) —4y
~

—
~

e 'k".
c2 kd)

We show in Appendix A that a scalar wave undergoes
the same back reQection as the electromagnetic wave
when propagating through a gravitational field.

The practical applications of the back reflection of
wave energy by a gravitational fleld are in situations of
very strong gravitational potential, i.e., where

This differential equation has the inhomogeneous
solution

R(s) ~e 2ikL{z)—
z @e2ikL {z')

ds ~ (10)
c

The complete solution to (5) is then

('y
y(S) eikI {z)+.e ikL{z)~ — e2{kL{z')dzv

~
(11)

kc2 ~„ds' i'
where we have invoked the physical boundary condition
that the incoming wave is coming from s= —~, and
therefore there is no left-going wave amplitude at
s =+~ . Assuming that s = —00 is a gravity-free region,
we can read out the total reQection coefficient of an inci-
dent wave of wave number k

d
{R(k)= —— e'*'L {*'ds'.

c ~ds
(12).

In the Newtonian approximation of gravitational
theories the y metric terms are neglected, and we see
from (12) that there is no back reflection of the electro-
magnetic wave, in agreement with our' intuition con-
cerning the equivalence principle. But it is also seen
that back reQection does occur when the full linearized
gravitational theory is taken into account.

Consider a light wave passing a mass M at distance d.
The reflection amplitude (12) can be evaluated and is

GM/c2d 1.
Then, a substantial fraction of wave energy can be re-
jected. Such strong field conditions are fulfilled in
neutron stars and other near-gravitational collapse enti-
ties in cosmology.

In Appendix 8, a physical optics, intuitive interpreta-
tion of the reflection formula (12) is given.
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APPENDIX A

Consider the covariant wave equation

gpvQ X 0

The Lorentz gauge condition on the vector potential
yields no inhuence on the wave equation to the order
we are solving the problem. Keeping terms in (A1) to
linear order in the gravitational field, we get

k)
g00 +~ss+2I1 X+~ ~zv ~g

r

g~2 a2;z )
BA" 8A"

+2(~""I' ") —(~ "1"..") =0, (A2}
8$
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where qt'" is the Qat-space Lorentz metric. F„„"are the
Christoffel symbols of the second kind;

Integrating (A6) across the boundary, we have

(~gpz ~gzr ~gVzr„;=,'~-~
k»" Bx" »"

to linear order in the gravitational 6eld.
We 6rst insert the lowest-order approximation for the

electromagnetic vector potential for a light wave travel-
ing in the s direction, polarized in the x direction

dz)y kds)
t'(4/ds)++ Aids)-&= -(~-1)Wl (B1)

In each region of constant potential P(s,), the wave
number of the waves is

k;=~kt:1+(1+~)~( )/"3
A*(s,t) =A (s)e'~". (A4) At each boundary we assume an incident, transmitted,

and reRected wave:
The condition on A (s) such that it represent a wave of
constant magnitude (plane wave) is

ez7ziz+r. e zkjz

$ .g&&i+1&

(B3a)

(B3b)
g„(A*)'=const,

which becomes, upon using the metric (3),

I
~ (s) I

=1—v4 (s)/c'.

We assume a solution to (A2) then of the form

A*(s,t) = (1—vg (s)/c') y (s)e*'"

and obtain the differential equation for @(s)

de (y —1)
+k'I 1+—(1+v)4 (s) 14+- g(s)—=o (A6)

ds' k c' c' ds

At the boundary we then have the conditions P+ ——P
and the condition (B1).These give the equations

1+r,=t, ,

i

—k'(1-r') = 1+I
l

—k'+it',
2 2 c' 4 2 ) c'

which can be solved for r; to give

In lowest order, then, the complete reQection coeflicient
for a wave incident upon'a'region of varying gravita-
tional potential is obtained by summing the diGerential
reflections of (B4) with the proper phase lags:

with g(s) =dP/ds. We obtain the same differential equa-
tion (A6) starting from the covariant scalar field wave
equation

6t(k) =g r,e""L'. (B3)

with
g""4 pi. =o,

0 z =~4'/»".

(A&) kl,; is the phase the incident wave obtains in propagat-
ing to s;. Letting

SP,= (@/ds)ds

7
6t (k) — e2z7zL (z') ds&

C

(B6)
APPENDIX 8

Therefore, both scalar and vector electromagnetic waves and rePlacing the sum in (B5) by an integral yields

backscatter in the same manner in a gravitational field.

Here we give a simple physical-optics derivation of
the solution to (A6) for the reflection coeflicient of an
incident wave. Let the gravitational potential P(s)
change in small steps from P(s,) to f(s;+i).

L(s') = 4 (s")
1+(1+y) ds",

C

which is identical to the text's solution (12).


