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Under some suitable hypotheses the general solution
of Eq. (42) can be given in terms of Green's functions.
More precisely, one has to assume that there exists the
inverse Laplace transform of the analytic continuation
of H(x,y; t), with respect either to x or y. If this holds
true, we can assume H(x,y; t) in the form' s

or

H(x,y; t) =
TQ+'Ccrc +00

dx' dy' H(x', y'; 0)

XG&(x,y; t
~

x',y'; 0), x)Rex', (47b)

H(x,y;t) =
where ro is the abscissa of convergence relative to the

dvH, (& „ t)eeoc—v (45a) analytic continuation of H(x,y;0) with respect to
x ory, and

Lwherexg( —oo, +~) andy'(a, +~)j, or in the form

H(x,y; t) = dv Hs(ts, v; t) e &*+'"v,—(45b) X exp) —(x—x')'/v'Dt —v(y —y'))v —'dv, (48a)

H(x,y; t) = dy' H(x', y'; 0)'
GO T Q

—'Loo

XGt(x,y; t
~

x',y', 0), y) Rey' (47a)

' The following developments are due to J. Perina and V.
Perinova (private communication).

wh«e xC(&, +~), yE(—~, +~) (and the corre-
sponding relations for x or yg( —~, a)1. Substituting
Eqs. (45a) or (45b) into Eq. (42), we have

Ht, ,(ts,v, t) =Ht, s(tc,v; 0) exp( ——,'Dts'v't), (46)

so that, through standard algebra, Eqs. (45a) and (45b)
reduce to

Gs(x,y; t
(
x',y'; 0) = (2i7rst'D"'t"')-'

expL —(y —y')'/tc'Dt —ts(x —x') 7tc-'dts. (48b)
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The complete set of geodesics is obtained for Robertson-Walker universes with arbitrary R(t), from
those geodesics whose spatial projections pass through the origin, by inducing a translation of origin through
the rotation of a hypersphere whose stereographic projections form the space sections. The results are
applied to the calculation, in a Milne universe, of the angular displacement of a particle initially projected
at high velocity accross the line of sight. This displacement proves to be bounded, the upper bound being
attained reasonably fast, on a cosmic time scale.

I. INTRODUCTION

ITH their present random velocities of 100
lUn/sec, galaxies cannot traverse a significant

portion of the Universe during its evolution. There are
reasons, however, for wanting to know the various tra-
jectories of free particles with large peculiar velocity
(i.e., not ]ust the "mean fluid velocity" ) over a very
long period. More and more extreme examples are being
found' of galaxies with peculiar velocities of the order of

*,:Work supported in part by the National Science Foundation,
under Grant No. GU 2921.' E. M. Burbidge and G. R. Burbidge, Astrophys. J. 134, 244

thousands of km/sec. Furthermore, it is expected that
in the distant past, all random velocities of free objects
were much larger, roughly in proportion' to R ', where
E. is the curvature radius of a space section of a Robert-

(1961);P. W. Hodge, ibid. 134, 262; W. L. W. Sargent, ibid. 153,
L135 (1968);and various papers in the Santa Barbara Conference,
Astron. J. 66, No. 10 (1961).' G. B.Van Albada, Astron. J. 66, 590 (1961).If there is drag
due to intergalactic matter, the velocities would have been much
bigger than given by the 1/R law; however, at the relativistic end,
the opposite holds. Sturrock has also suggested that QSO may be
in relativistic motion. See P. A. Sturrock, in P/asm@ Astrophysics
(Academic Press Inc., New York, 1967), p. 338 and especially
p. 361.
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where

dr'+r'dH'+r' sin'8 (AP
GN =

(1+ptkr')'

dx'+dy'+dz'dg'=, r'=x'+y'+z',
(1+-,'kr')'

(1.2)

(1.3)

x=r sin8 cosp, y=r sinB sing, z= r cos8. (1.4)

We refer to geodesics of fixed 8= Hp and P= @p as "radial"
geodesics or geodesics through the origin (meaning the
spatial origin). ' If we define

L„(co)=2 tan-', to, Lp(to) =so, L (to) =2 tanh-', so, (1.5)

we have in the cases k = —1, 0, and 1, respectively, for

I H. P. Robertson, Rev. Mod. Phys. S, 62 (1933).
4 J. D. North, The 3feosnre of the Unsperse: A History of Modern

Cosmology (Clarendon Press, Oxford, England, 1965),pp. 117-131.
This is to include geodesics whose spatial projection, prolonged,

intercept the origin; initial conditions may prevent physical
interception.

son-Walker universe. ' Finally, in the Kddington-Le-
maitre models, 4 a very long time is available for migra-
tion of material across the Universe.

An example is worked out in Sec. III that may be
relevant to the assertion that it is "unlikely" for galaxies
of large relative velocity to remain in visual alignment,
so as to be seen as a group.

The geodesics for Robertson-Walker universe were
given by Robertson' for the special case of particles
moving directly toward or away from the origin, i.e.,
particles whose geodesics have spatial projection passing
through the spatial origin. Since the space sections
(t= const) are homogeneous, the restriction to radial
motion appears to offer no special problems; if one wants
a geodesic corresponding to a particle moving across the
line of sight, one merely chooses a new origin through
the world line of that particle and applies the old
Robertson result. However, this procedure is nontrivial,
since the equations for transforming origin are not
readily available; in fact, it is the purpose of this paper
to derive such equations and apply them to the geo-
desics. For any practical application, there is no way to
avoid this process, since the origin of celestial coordi-
nates is fixed by experimental procedure in the neigh-
borhood of the earth (e.g. , the earth or centrum of the
solar system). All the cosmological equations are written
in this system, and if one wants to introduce a new ori-
gin, one must have the explicit transformation.

Clearly, the case of Euclidean space sections is trivial;
an ordinary Cartesian translation may be used. Thus,
effort will concentrate on the cases of positive (k=1)
and negative (k= —1) curvature. The metric will be
written in the form

ds'= c'dt' R'(t) dg'= —c'dP do'—
where the auxiliary metric dN' assumes one of the stand-
ard forms

the radial geodesics, '

r =Lp(to),

8=8p, y=yp,

In (1.7), Q is a constant specifying the velocity of the
particle at some chosen time; for photons we have
Q

—+op, while for slow particles Q is small. ' Taking into
account Q and the constant of integration, say, r(tp), we
have a four-parameter family of geodesics. The space
should admit a six-parameter family. There are various
way=- to introduce the two remaining parameters, which
must describe geodesics not passing through the origin.
For example, one could use the coordinates x and y at
which the geodesic meets the s=0 plane, although this
would fail for a small family of geodesics that do not
intercept this plane. It is a litt1e more convenient to set
up the additional parameters as follows:

In practice, one is most likely to want to treat par-
ticles that start at a common origin and diverge, as in
studying the expansion of an unbound galaxy cluster.
Thus, it is more convenient to pick some new origin, say,
at (xp, yp, zp), with new coordinates (r, 8,&) or (x,g,z) .
Equation (1.7) gives the geodesics through the old ori-
gin, which may be suitably located in the barred system
by proper choice of (xp, yp, zp). This procedure results in
one redundancy among the parameters, since we are
left with xp, yp, zp r( pt), Q, Hp, and pp. This sevenfold
set of parameters describes the sixfold set of geodesics.
In applications, this produces no difficulty, and only
makes it easier to fit boundary conditions. If one wants,
for example, the set of geodesics for a swarm of particles
released from a point at various directions (Hp, gp) at a
common time to with a common initial speed, one simply
fixes all parameters save Hp slid gp, setting r(tp) = 0.

In Sec. II the translation of coordinates is explicitely
constructed. In Sec. III, the results are applied to the
determination of the angular displacement of a particle
ejected from a fixed source.

II. DISPLACEMENT OF SPATIAL ORIGIN'

Although the spatial homogeneity of the Robertson-
Walker space times is well known, it is certainly not
manifest from the metrics (1.1) or (1.2), except for the
trivial case k=0. In that case, which we discuss no fur-
ther, a translation of origin is accomplished by the trans-
formation x"=x"—xo", which obviously leaves the form
of (1.1) or (1.2) invariant. A transformation of this type
is obviously not useful for k=~1, because the new
metric would not be of type (1.1) or (1.2). Thus (1.7)
could not be applied in the barred coordinates. In this
section we construct coordinates x"(x",xp ) such that
the form of the metric is invariant to the transformation.

If we dehne V as the physical velocity da./dt for the particle,
where do. =Mu is the spa4a/ line element, then at all times the con-
stant Q is given by Q= R(t)Py, where P = V/c and y= (1—p')-»2.
See Sec. III.
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In other works, we must have

dx'+dg'+dz' dr'+r'd8'+&-' sui'8 dP'
dl =-

(1+-'kr')' (1+-'kr')'
(2.1)

The key to finding the desired transformation is to
embed the three-space (t= const) as a sphere or pseudo-
sphere in an auxiliary four-space. I follow the embedding
method of Adler, Bazin, a,nd Schiffer. ~ ' The four-dimen-
sional coordinates will be denoted X' (before translation
of the origin) or X' (after translation); the fourth co-
ordinate X' has nothing to do with time, but is an arti-
ficial coordinate introduced for symmetry. As shown by
Adler et a/. ,

' if one sets

Z and Z

0 0
(the earth)

FIG. 1. Schematic of the old (OXI'Z) and new (OX') coordi-
nate systems, not showing the curvature. r* and co* are determined
by a, according to Eqs. (1.6) and (2.13). When the motion of a
specific particle S is considered, its coordinates may be subscripted
S in the text.

(2.2)
successive transformations:

then the metric (1.2) may be written7

dl'= g (dX')', (2.3)
x~ -. X*' -.X' -. x~, (2.9)

(2.6), (2.7) (2.8) (2.6), (2.7)

1—~kr'
X'=R

1+-'kr'
(2.7)

It is simple to introduce motions in the (X') system
that preserve the quadra, tic forms (2.2) and (2.3), and
which therefore preserve the form of the metric. Any
rotation will do. Clearly, rotations leaving X' fixed only
amount to rotations about 0, but any other rotation
will displace 0, where 0 is the origin of the x&. It is
simplest to choose one convenient rotation in X' and to
introduce any further generality by compounding this
with rotations in the x& system. Ke choose the rotation

Xo= Xo cosa.—X3 slna, ,
X'=X'»nn+X' cosu, all other X' unchanged. (2.8)

The "angle" a. must be imaginary if k (0.Schematically,
the full transformation from x& to x" is obtained by the

~ Greek indices run from 1 to 3, roman, from 0 to 3.
R. Adler, M. Bazin, and M. Schi8er, Introduction to General

Relativity (McGraw-Hill Book Co., New York, 1965),~p.346-349.
9 Our r is equivalent to u of Adler et al. , and our R to their R;

the tilde is used to avoid confusion with R(t). p cannot be used
beyond r =2, even if 4 =1.

where restriction (2.2) is imposed on the differentials
and where we identify r with '

2kll2p 1LR (R2 p2)1/27 p2 R2 (XO)2 (2 4)

If R is real, so are all the X' and p. In that case X and p
must be less than R. If R is imaginary, p must still be
taken real and it takes the range (0,~). Then X' is
imaginary, but the XI" are real. In both cases, we have

X'= p sin8 cosP, X'= p sin8 sing, X'= p cos8. (2.5)

Thus, we obtain

x"/XI'=r/p=2k I "LR (R —p)'i j/p'—
= (1+-,'kr')/Rk"'. (2.6)

We shall also need the results derivable from (2.2)
and (2.4): It is worth noting that

1+-'kr'= 2(1+-,'kr')/E. (2.12)

Combining (1.4), (1.7), and (2.11), one formally ob-
tains all the geodesics through point

x=g=0, z= (2/gk) tani2n (old origin). (2.13)

These will be written in detail only for one example.
One should also remember that, under the elliptic identi-
fication (in the case k=1), points beyond r=2 (co=-,'m-)

are identified with other points having r&2. Thus, for
example, (2.13) will be redundant beyond n=7r. It has
been asserted" that infinitely many different topological
identifications of this sort are possible; these will not be
considered here.

III. AN EXAMPLE

The application of the above results is generally
cumbersome, especially since to reduce the results to

'0 Bars placed over an equation number means that it is to be
written in the barred system.

"O. Heckmann and E. Schucking, in Gravitation: An Intro-
duction to Current Research, edited by I. Witten (John Wiley R
Sons, Inc., New York, 1962), p. 439.

where the relevant transformation equations are indi-
cated beneath the arrows. "

The new spatial origin (x&= 0) is at X'=R, X&= 0. In
the old system one finds from Eqs. (2.6)—(2.8) that the
new origin 0 has coordinates (see Fig. 1):

x=y= 0, s= —2k '" tan-,'n (new origin) . (2.10)

The transformation seems to be of sufhcient generality
for all practical cases.

The explicit equations resulting from (2.9) are

x = 2x/I', g= 2y/P,

2=2Ls cosn+k ' '(i1 4kr')—sinnj/E, (2.11a)
where

I'= 1+4kr'+ (1——rikr') cosn —sk "' sinn. (2.11b)
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observation one must connect the particle orbits to the
(new) origin by light signals. Here we shall give only
one rather idealized example, in which the angular dis-
placernent of a particle of a certain initial velocity is
evaluated in one model univers" the Milne univers-
as a function of time. The light propagation time is
taken into account, so that only the ejection time and
the observation time enter. However, we specialize to
the particular angle of ejection (90' to the line of sight),
in order to get a simple comparison showing the effects
of space curvature. It is possible to interpret the calcu-
lation as referring to a galaxy which at a time 8 left
a group of galaxies (fixed in the co-moving cosmological
reference frame) with velocity Vs. Again, see Fig. 1 for
the geometry.

From Equation (1.'7), we can derive the result of Ref.
6 for Q, and we shall evaluate Q in terms of Vs and
R*—=R(t*). For these radial geodesics, clearly, do =RCko,

so that
V = Rdni/dt =c(1+R'/Q') "'. (3.1)

Solving for Q yields the result of Ref. 6. From (3.1), we
see that so long as Q))R, then V«c, and the result
V R ' is recovered. It is also worth remarking that
from (1.7), the geodesics have a translational invariance
in co, which rejects the uniformity of the space sections.
A corollary is that two particles projected at the same
"universal" time with the same initial velocity along the
same ray through the origin will maintain a constant
coordAsote distance For from each other. Thus, their
physical separation R bc' will expand in exactly the same
way as the neighboring portions of the universe.

We now proceed to the special case of the Milne
universe, go=a-0 ——0, k= —1.This is chosen because it is
simple and because it is probably not a very bad model
in view of the low density of observed mass in the uni-
verse" and the uncertainty in the deceleration param-
eter." For this universe, R=ct, and Eq. (1.7) inte-
grates to

—(1+c'P/Q') —1-
co=g ln (3.2)+const.

(1+c'P/Q')+1

~jth the use of Eq. (1.6) and much manipulation, Eq.
(3.2) becomes

(3.3)

where
ct/Q, and —Po= Vo/&, (3.4)

"G. C. McVittie, Geeeral Relativity artsd Cosmology (University
of Illinois Press, Urbana, Ill. , 1965), 2nd.ed. , pp. 203—204; G. 0.
Abell, Ann. Rev. Astron. Astrophys. 3, I (1965).

"A. Sandage, Carnegie Institution Year Book 65, 163 (1965);
V. Petrosian, Astrophys J. 155, 1029. (1969); R. Wielen, Z.
Astrophys. 59, 129 (1964).

and the particle has been chosen to depart from r=0
at time I,

* with velocity Vo, so that

(3 5)

An impressive result may be obtained at once: r is
boueded. In fact, passing to the limit t ~~, we see that
r~r „„,where

the last approximation being for PD small. This result
does not involve the intended translation of coordinates,
but could be substituted therein to obtain an observed
maximum angular size. Here we only note two features
of the result: First, it does not imply limited maximal
physical dimensions for an expanding system, because r
must be multiplied by a factor porportional to R(t) to
get physical dimensions. Second, although this result
implies a small final observed angular diameter for a
swarm of point masses ejected at small velocity from a
distant point, one may verify that the situation is not
good for keeping realistic galaxy clusters together this
way, because realistic initial velocities seem too high. "
Thus, gravitational binding seems needed. '

To relate the ejection time 8 with the observation
time (say, ti), and so to obtain the apparent rate of
growth of the opening angle 0, we need the null geodesics
from the trajectory to the new origin O. It is desirable to
have some notation for the time $8 at which the light
received at t~ leaves the source 5, since this would be
helpful in evaluating spectral shifts. To keep the present
discussion brief, spectral shifts will not be evaluated,
nor will we consider in detail ejection angles other than
90', even though, because of light delay and non-
Euclidean effects, 90' will not generally lead to the maxi-
mum apparent separation 0 for fixed Vo, t*, and t~. For
the moment, however, we leave 0 arbitrary and seek the
null geodesics relating tj and f~ with cvz. The t in Eq.
(3.4) is then identified with 1s.

For the Milne universe, the required light rays are of
the form

1 'Ck =in(1t/ts) . (3.7)

I hope to give fuller discussion of this point at a later date.
The situation is worst at very early epochs, and if the cluster can
be bound for a time, after which an explosion, mass loss, etc.,
destroy the binding, the situation is far better.

'6 H. Arp, Astrophys. J. 148, 321 (1967).

Returning to r instead of ~ as a radial coordinate, we
find that Eq. (3.7) becomes

r s = 2 (r—1)/(v+1) r= ti/is. (—3.8)

Note that (r 1) is the—red shift of material in the vi-
cinity of S (but not of S).

Now, Eq. (3.3) for the motion of S is parametrized
with the time t=—$8, which is neither observable nor of
much theoretical interest. Actually, we are interested
in 0 as a function of the distance of the ejection point 0
and t*. Although the latter is not observable either, it
is significant theoretically, as the time at which a system
having 5 as a member became unbound, or was formed.
In an ejection model, such as Ayp's, '5 t~ would be the
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60=e —1, 60= red shift of O. (3.11)

From the results presented in Table i, it is clear that
ho coincides with ti/t* 1at the mom—ent of ejection
(T=1), and that subsequently, ho does not change,
while tj.increases without limit. The Gxity of 60 is true
only in the Milne cosmology. Of course, the "evolution"
described in the table as tj changes so much it is not
supposed to be observable in a reasonable observation
time. Instead, t* is to be adjusted to 6t the presumed or
theoretically derived initial conditions. During the evo-
lution, 7 changes very little, so that the redshift of cos-
mic material near S (not partaking of the large peculiar
velocity of S) is quite close that of O. This is quite rea-
sonable, since S stays fairly near 0, and in this example
it was chosen to move initially at right angles to the line
of sight. If other directions of motion were chosen, we
may expect larger differences in the red shift of material
near S and that of O.

The remainder of the discussion will concentrate on
Table I. The large values of Pp chosen may seem unrea-
sonable, but the system is supposed to be observed, on
the average, at some time t1 much later than t*, so that
the velocities have decayed according to Eq. (3.1).
Choosing somewhat large Pp facilitates evaluation of the
effects of space curvature, as well. These effects seem

ejection time. In principle, the ultimate results are ob-
tained by reducing r in Eq. (3.3) to P Lthrough the use of
Eqs. (2.11)j, eliminating ts between the resulting equa-
tion and Eq. (3.8), and evaluating 0 from Eqs. (2.11).In
practice, it was found helpful to retain instead two pa-
rameters, namely, r and the parameter

T= ts/t*—.
It turns out that by fixing o., pp 8, and T, all other

quantities are determined. These were worked out
numerically for a variety of cases. %e shall not write out
the equations in detail, since they are only specializa-
tions of Eqs. (2.11), (3.3)—(3.5), and (3.8), but we do
wish to indicate the fashion in which the given param-
eters Iead to values for the other variables. The sig-
nificance of $ becomes clearer if we note from Eqs. (3.4)
and (3.5) that

g
—T(P —s 1)ifs (3.10)

Thus, actual evaluation of Q is avoided if T and Pp are
used as variables. Various T values are inserted into Eq.
(3.10), yielding values of P. These are put into Eq.
(3.3) to obtain r, after which r is obtained from Eqs.
(2.11). When 8 is specified (being 90' in the present
illustrative example), x and z are separately determined
in like manner. From r and Eq. (3.8), one obtains ti/ts,
and this, in combination with Eq. (3.9), fixes ti/t,
setting the time of ejection or unbinding. Ke delib-
erately avoid associating a red shift with this ratio, be-
cause the event (O,te) is assumed not to be presently
observed, its light rays long having passed us. The red
shift of 0, as it is seen now, is generally far less than
ti/t* —1, and is given by the formula

Ymr, E l. Angular displacement 8 of 5 from the point of origin,
as a function ot n, t4, and (ti/t*). The red shift Do of the point of
origin and the parameters r and r are also given. At the head of
each group, the values of 0;, Po, and 60 are given, in that order, in
parentheses. Single numbers in parenthesis are powers of ten.

(0.02, 0.02, 0.02)
r 8

(0.2, 0.1, 0.2214)
r 8

1.1
1.2
1.3
1.5
1.8
2.2
3.0
5.0
V.O

10.0

1.z( —3)
3.0( —3)
4.3( —3)
6.3(—3)
8.6( —3)
1.1(-2)
1.3(—z)
1.6( —2)
1 7(—2)
1.8( —z)

6.0 ( —2)
1.s ( —1)
2.1(—1)
3.1(—1)
4.1(—1)
$.0(—1)
5.8 ( —1)
6.7 (—1)
7.0(—1)
7.3(—1}

1.02
1.02
1.02
1.02
1.02
1.02
1.02
1.03
1.03
1.03

1.23
1.25
1.27
1.31
1.4
1.6
2.0
3.0
8.0

12.0

9.6( —4)
2.o(-3)
3.9(—3)
6.7 ( -3)
1 3(—2)
2.4( —2)
3.9 ( —2)
6.0 ( —2)
8.5 (—2)
9.0 ( —2)

4.8 ( —3) 1.22
9.6( -3) 1.22
1.9{—2)
3.3 ( -2) 1.22
6.4( —2) 1.22
1.2(-1) 1.zz
1.9( —1) 1.23
2.9( —1} 1.23
4.0 ( —1) 1.24
4.2 ( —1) 1.25

t /pc

2.8
3.0
3.77
5.0
6.0

12.0
27.0

(1.0, 0.2, 1.718)
r 8

5.8(-3)
2.1(-2)
s.6(—z)
9.1(-2)
1.1(—1)
1.S(-1)
1.8( -1)

4.9(—3)
1.8(-2)
4.7 ( —2)
7.8 ( —2)
9.3(-z)
1.3 ( —1)
1.s(-1}

2.72
2.72
2.72
2.73
2.74
2.76
2.78

ti/t+

V.6
7.84
8.33
9.11

10.0
20.0
80,0

(2.0, 0.4, 6.39)
r

1.1(—2)
2.3(-z)
4.s( —z)
7.6( —2)
1.1(-1)
2.6( —1)
3.8( -1)

3.1{—3) V.39
6.3(—3) 7.39
1.3(-2) 7.40
2.1(—2) 7.41
3.0( —2)
6.9 ( —2) 7.64
1.0( —1) V.9S

appreciable for large pp, ti, and n. For example, in a
Euclidean model, we would expect 0= tan —i(z/o. ), while
in fact 8 tends to be much Iess in these cases. Much of
the increase in 7 is probably due to distortion of the
track of S as referred to 0, so that although S started
out moving perpendicular to the line of sight, it is later
moving away. "

The most striking results, however, are relatively
independent of the space curvature, and are only asso-
ciated with the behavior of the velocity and displace-
ment, as fixed by Eqs. (3.1) and (3.6). In every case,
the particle proceeds relatively quickly to its maximum
dispIacement and then sits there; notice the very un-
even time steps. If we envision a cloud of particles all
leaving a common event, they mill soon settle down to
occupy their maximum allowed solid angle, and the
probability is large that they would be seen at this
stage. A more definitive study of this point would in-
volve allowing 8 to vary. Retardation sects would in-
troduce considerable distortion into the picture. The
sects of space curvature would probably be more strik-
ing, also.

In Table I, one sees that the red shift (7 1) of cosmic—
material near S starts out matching 60, as it must, and
then varies littIe. This is due both to the relatively small
excursion of 5, and to the use of the Milne model, with
zero deceleration parameter at all times. It would be
interesting to investigate the effect of varying the model,
especially the deceleration parameter.
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