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The time evolution of a randomly modulated quantum harmonic oscillator is studied by introducing
the master equation for the reduced density operator s(l). The antinormally ordered representation is
adopted for s(t), and one is thus confronted with the problem of solving the partial differential equation
obeyed by the reduced matrix element s of s(t) Th.e two limiting cases of short- and long-range correla-
tions of the frequency fluctuations are treated in detail.

I. INTRODUCTIOÃ

'HE random harmonic oscillator plays a funda-
mental role in many fields of physics. As a matter

of fact, it furnishes a dynamical model the formal
features of which are common to a large class of
problems. Both for this reason and because of its
simplicity, it is used to illustrate the sensitivity of the
perturbative approach toward inadequacies in the
approximation schemes. In this respect, it resembles
certain limiting cases of statistical 6eld theory which
are of current interest.

In view of the attention recently paid to the applica-
tions of the coherent-state formalism in the frame of
statistical physics, ' it is natural to introduce this picture
for investigating the behavior of a randomly modulated
quantum harmonic oscillator. In this connection, we
remember that the coherent states ~o.) are defined as
the eigenkets of the annihilation operator c with com-
plex eigenvalue n. Their usefulness lies mainly in the
close analogy they allow one to establish between
quantum and classical descriptions. The density
operator p can be in many cases most conveniently
expressed as a superposition of projection operators
tet)(rr~ with weight function P(n, n"), called the P
representation. ' As a consequence of its introduction,
the equation of motion obeyed by p can be often re-
written in a rather simple form. '

In this frame, we remember that the harmonic
oscillator may be perturbed by a random fluctuation in
its frequency, and the corresponding equation of motion
is modified in a manner depending upon the coupling of
the oscillator to the perturbing inQuence. We wish to
treat the case in which the initial Hamiltonian Hs —,p-—
+ sr Q'qs is modified for the presence of the additive term
f(f)q', f(t) being a centered stationary random function
of time. This kind of perturbation may be as well ex-
pressed by means of the creation and annihilation

~ Supported in part by the Italian National Council of Research.
~ See, for instance, P. Carruthers and M. M. Nieto, Rev. Mod.

Phys. 40, 411 {1968).' R. J. Glauber, Phys. Rev. 131,2766 (1963).
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operators relative to the unperturbed Hamiltonian IIO
as by a term proportional to f(l)(a+at)'.

One has to note that the modification of the frequency
can also be introduced by means of a perturbative term
of the form f(f)aat. This case has been actually worked
out by Glauber' as the simplest way to give the oscillat-
ing mode of an electromagnetic field a Qnite bandwidth.
The main physical difference between our model and
this one lies in the fact that the latter does not give rise
to amplitude changes. More precisely, the E representa-
tion for an initially coherent state

~
~n~e") undergoes

only a diffusional motion in 8 (see Ref. 3, p. 168). This
is no longer true in our case owing to the coupling
between different energy levels generated by the terms
u' and ut'. '

As a consequence, our model accounts for some of the
effects of random amplitude fiuctuation as well as phase
diff usion.

We treat our problem by writing the master equation
for the reduced operator s(t), i.e., the equation of motion
for p(t) averaged over the ensemble of the realizations
of f(t). We look for solutions s(l) in the class of operators
which admit an antinormally ordered representation
(P representation), thus being able to reduce our
problem to the solution of a partial diGerential equation
for an ordinary function 8(n,n*, l). We observe that the
possibility of expressing the density operator by means
of the E representation is always preserved in Glauber's
case, while this is not a priori true for our kind of

3 R. J. Glauber, in Quantum Optics and Electronics, I.es Pouches,
7964, edited by C. De Witt et al (Gordon and B.reach, Science
Publishers, Inc., New York, 1965).

'The diQ'erence between the two cases can be clari6ed by
assuming f(t) to be a well-prescribed function of time. The per-
turbation f(t)aat gives rise only to a variation in the phase of a
state (a). Conversely, the perturbation f(t)(a+at)' does not
preserve coherence, even if there is a sense in which a state ~a)
remains coherent when extreme adiabatic conditions are satished
for the rate of change of f(t). This by no means implies that
amplitude variation does not occur. In fact, if the frequency is let
to change very slowly from an initial value 0 to a Qnite constant
value cur, the final state is an eigenket ~ny) of the annihilation
operator relative to the Peal Hamiltonian H~ with
(see Ref. 11).This, in turn, implies that a stochastic perturbation
f(l)(a+at)s gives rise to amplitude variation for P(a) unless f(t)
is an adiabatic centered random process.

1342



RAN DOM LY MODULATE D HARMONIC OSCILLATOR

perturbation. Anyway, we actually work out its ex-
pression, adopting as vector basis the one pertaining to
the unperturbed Hamiltonian.

We are able to find e(u, n*; t) in both cases of short-
and long-range correlations, i.e., when the coherence
time t, of the perturbation f(t) verifies the extreme
relations t,«Q—', t&)Q '. The assumption that the
perturbation is such as to allow one to neglect the
varia, tion of p(t) over an interval f, underlies all develop-
ments of this paper. The reason for this assumption is
that in such a case the evolution of p(t) becomes a
Markovian process.

The problem of a classical harmonic oscillator
perturbed by random Quctuations in its frequency has
received some attention as suitable approach to
dynamics of nonlinear stochastic systems. ' In particular,
attention has been paid to the case in which the
perturbation appears as an additive correction to the
square of the oscillator frequency.

In spite of its simplicity, to the best of our knowledge
no detailed study of randomly driven quantum oscillator
has been presented. ' However, we remember that
examples of harmonic oscillators whose Hamiltonian
undergoes a deterministic perturbation have been
worked out by many authors. We quote the driven
harmonic oscillator whose perturbation has the form
f(t)(a+at), P and the problem of determining the most
general Hamiltonian for which an initially coherent
state remains coherent. " Furthermore, the case in
which the frequency undergoes a prescribed temporal
variation has recently received some attention in the
frame of quantum optics and adiabatic invariant
theorv. "

The main purpose of this paper is to investigate the
explicit form of the master equation obeyed by the P
representation pertaining to the stochastic perturbation
f(t) (a+at)'. We emphasize in particular the role played
by the correlation time of the perturbation. We shall
show that drift and broadening of the oscillation
amplitude distribution are present only for short-range
correlations.

' As an example, the P representation does not exist for an
initially coherent state, if f(t) is a prescribed function.

'R. H. Kraichnan, J. Math. Phys. 2, 124 (1961); R. Kubo,
ibid 4, 174 (1963);.U. Frisch, in Probabilistic Methods in Applied
Mathematics, edited by A. T. Bharucha-Reid (Academic Press Inc. ,
New York, 1968).' R. C. Bourret, Can. J. Phys. 43, 619 (1965).' In principle, one could solve the equation of motion for p by
resorting to the Kubo's method (see Ref. 6) based on the use of
the Liouville operator I However, in our case the statistical
properties of L cannot be simply related to the ones pertaining to
f(t). On the contrary, Kubo's method could have a direct applica-
tion to the case of the perturbation f(t)aat.

W. Louisell, Radi ati on and Xoi se in Quantum Ii /ectronics
(McGraw-Hill Book Co., New York, 1965)."L. Mista, Phys. Letters 25A, 646 (1967); C. L. Mehta,
P. Chand, E. C. Sudarshan, and R. Vedam, Phys. Rev. 157, 1198
(1967)."B. Crosignani, P. Di Porto, and S. Solimeno, Phys. Letters
28A, 271 (1968); J. Math. Phys. (to be published); H. R. Lewis,
Jr. , and W. B. Riesenfeld, ibid 10, 1938 (1969). .

II. EQUATION OF MOTION FOR THE REDUCED
DENSITY OPERATOR

Our physical system consists of a harmonic oscillator
the frequency of which suffers random fluctuations. We
consider the case in which the perturbation appears as
an additive correction to the square of the oscillator
frequency. Thus, the corresponding Hamiltonian reads

&(t)=~p'+l '(t)q'=&o+f(t)q'

where Hp= —,'p'+-', 0'q' is the unperturbed Hamiltonian
and 2f(t) =co'(t) —O'. The equation of motion for the
density operator p(t) in the Schrodinger picture reads

srt(ct/c)f) p= Pa,pj. (2)

It is customary to transform Eq. (2) into the inter-
action picture by resorting to the time translation
operator

expL —ih 'Pp(f —fp)$,

where tp is the time at which the perturbation is turned
on. In such a way, Eq. (2) can be rewritten as

where

it't(c)/ctt)pr(t) = f(t)Lqr (t),pl(t) j,

pr(t) eis pHptP(f)e is rHpt-

q 2(t) eis iHptqpe is rHpp—

(4)

and we have set kp= 0 for notational convenience.
Introducing now the usual annihilation operator u

and its adjoint u~ pertaining to the unperturbed
oscillator, one gets

qi'(t) =-s'0—'tsLar'(t)+itrt'(t)+2ur(f)ttrt(t) —1j. (6)

Since (see, e.g., Ref. 9, p. /5)

ar(])=cia rHptise is inapt e inttt— —

then

qr (t) = '0 'I't (e "-n'a'+e"n'at'+2aat 1) . —

Integration of both sides of Eq. (4) over the interval
(P,t) followed by an iteration immediately gives

P~(t) =P(0) —i& ' f(t')fqr'(t'), p(0)ddt'

« f(t')f(t ')

&&Lq"(t') Lqr'(t"),pr(t")$j, (9)

where use has been made of the relation Pr(p) =P(p).
We average both sides of Eq. (9) over the ensemble

of random functions f(t) (operation hereafter indicated
with the symbol (. ~ .)), thus obtaining the following
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equation for the reduced density operator s(t)—:(pz(t)): Eq. (8), as

t

s(t) =p(0) —2h (f(t'))[ttz'(t'), p(0)]dt' 4Q2 r8

dt'g (t t'—)s„,(t)

t

h—2 dt' «"(f(t')f(t")

X[q"(t'),[q"(t"),pz(t")]]) (

If we suppose f(t) to represent a centered stationary
process, one has (f(t') )= 0 and (f(t') f(t"))= g(t' —t")."
The third term on the right-hand side of Eq. (10) in-

volves the expression (f(t')f(t")pz(t")), which can be
conveniently factorized provided pz(t) does not change
appreciably in a time interval t, [this condition is
verified provided the relation 0 '(f2)')2t,«F(p(0)) is

fulfilled, Ii being a suitable functional of p(0) inde-

pendent on the perturbation]. Indeed, since this
assumption amounts to saying that f(t) fluctuates more
rapidly than pz, we can average pz and f(t') f(t")
separately, thus getting

y (4[ggt [ggt grg~']]+t: """"[g' [gt2 g'gt ]s]

Pe2iQ(t t')[g$2—[g2 grgfs]]+~ 2iQ(t+—V)[g2 [g2 grgts]]

+a2iQ(t+t')[gt2 [g$2 grgfs]]+2a 2ia—t'[ggt [g2 grgts]]

+2e2iQV [gg$ [at2 graft]]+2& 2iat[g—2 [ggt grgts]]

+2tr2iat[a[2 [gg$ grgfs]]) (15)

The commutators appearing in Eq. (15) can be
evaluated in terms of the expression [ g~, g™],which in
turn is expressed via some algebra as

(m) (t2
[ "g, gt]= Q (—1)K+'Ef~

~~

g™Kg~" K, (16)
K=i kZ) &Z

where q= min(m, n). Therefore, Eq. (15) can be re-
written as

(a/at) s(t) =Ms(t), (17)
(f(t )f(t )P (t ))=g(t t )(P (t )).

t

«'g(» —t') [p'(t) [A'(t') s(t')]], (12)
Bt 0

which, in the same order of approximation adopted
before, can be written in the Markovian form

8 t—s= —5 ' dt'g(t —t')[qz'(t), [qz2(t'), s(t)]]. (13)
Bt

I.et us now assume s(t) to be expressed by means of
a convergent ordered series in a and a~ as

s(t) =P s, ,(t)g"g~'. (14)

The possibility of expanding s(t) as in Eq. (14) is
equivalent to the existence of the I' representation [see
Eqs. (20) and (21)]. Therefore, the P representation
exists whenever the solution of Eq. (13) can be given
in the form of Eq. (14).

Equation (13) is then rewritten, with the aid of

Notice that Eq. (11) does not necessarily imply the
weakness of the perturbation f(t).

One then finally obtains, after averaging and di6er-
entiating both sides of the resulting equation with
respect to t,

M playing the role of a generalized master operator. It
thus appears that the evolution of the system can be
described within the framework of the master equation.
Even if this definition is arbitrary when referred to
Eq. (17), where a, quasiprobability distribution is dealt
with, nevertheless it is adopted in order to emphasize
that all probability assumptions are contained in the
existence and character of the master operator. "

1&i. SOIUTION OF MASTER EQUATION
FOR SOME TYPICAL CASES

Even if Eq. (15) is in general ra, ther involved, it can
be suitably simplified in particular cases, according to
whether the correlation time t, of g(t) satisfles the rela-
tions t&)Q ' or t,«0 '. In particular, when t,«Q ',
two limiting subcases are possible. The first one, which
is discussed in Sec. III B, is characterized by a small
variation of s(t) during a time interval 0 '; in the
second one, discussed in Sec. III C, s(t) undergoes a
substantial variation in a time which is very short as
compared to 0 '. %hile the former is representative of
a weak frequency perturbation, the latter is related to
a strong perturbation. In both subcases, however, it is
correct to assimilate g(t' —t") to a 8 function.

A. Long-Range Frequency Correlation

As already remarked, we limit ourselves to consider
times such that t)t, . This relation, together with the

"If t, is a characteristic correlation time of g(t), stationariness
can hold only for t') t„t")t, . In effect, as we shall see, we confine
ourselves to such a case.

' See, for example, M. Dresden, in Stldies in Stat istical
Mechanics, edited by J. de Boer and G. E. Uhlenbeck. (North-
Holland Publishing Co., Amsterdam, 1962), Vol. I.
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disequality t,))Q ', implies that

g(t tt)e+2t'Qt'dtt p (18)

so that we can neglect in Eq. (15) the six terms contain-
ing the above factor. The terms containing e+""' can
also be dropped in the rotating-wave approximation, "
so that Eq. (15) reduces to

to f(t) aa". This is the same Hatmilonian considered by
Glauber (see Ref. 3, p. 168), who finds the same
diffusionlike equation. However, it is worth stressing
that the assumptions of that author are quite different.
In effect, he assumes a correlation time t,= 0, while we
let it to be finite and greater than 0 '. Our problem
differs essentially from Glauber's in the sense that the
frequency Quctuation gives rise to a perturbation
f(t)tt', which reduces to f(t)aat only if t,))Q '.

8—s(t) = DQ s„—.(t)[ atg, [ a~g,
"a~g']],

Bf TS

(19) B. Short-Range Frequency Correlation;
Weak Perturbation

where D= 0 J''Ot g(t —t')dt' is with good approximatino
time-independent because of the relation t& t,.

We recall at this point that an operator admitting a
power-series expansion of the type given in Eq. (14) is
expressed in the I' representa, tion as (see Ref. 15)

In the case t,(&0 ', we are permitted to put t= t' in
the exponential factors appearing in Eq. (15), and then
drop the terms with the factors e+""' e+""' in the
rotating-wave approximation. The master equation
easily reduces to

with

s(t) =7r ' s(n, n*; t) ln)&nl d'n,
8

(2p) s(t) =—Dp s,.—(t)([gat [aat a"at']]
Bt rs

u(n, n*; t) =P s„,(t)n"n*'. (21) +4 l[gt2 [a2 graft]]+4 —1[g2 [gt2 grg)8]]) (26)

[aa', [aa', a"a']]= (r s) 'a"at—', (22)

we can derive from Eq. (19) the corresponding equation
for 8, which reads"

Following now a general method (see, e.g., Ref. 1,
p. 436 and Ref. 15), the master equation is expressed in

the P representation, thus getting a partial-differential
equation for the reduced matrix element s(n, n*;t)
Taking into account the relation

Taking into account Eq. (22), together with the
relations

[a&2,[a' a a& ]]=—4s(ry1)a a&

+2rs(r+s)a' 'at'

rs(r 1)(s —1)a' '—at' '—(27a—)—
2 [a't2 at'a'4]] 4r(s+ 1)atah

+2rs(r+s)a' 'a™
—rs(r —1)(s —1)a~-2at~2 (27b)

0 ~0 a~2
8(n,n*;—t) = Dl n n* —

l

&——(n,n—*;t), (23) and following the procedure previously adopted,
Bt k 0n 0n) Eq. (26) yields

or, equivalently, (0/Bt) s = —Dl.s, (28)

8 8—s(n, n*; t) =D s(n,n*; t),
Bt

(24)

where the change of variables O.=pe", o.*=pe " has
been performed. Equation (24) is the partial-differential
equation for the diffusion of heat on a circular ring,
whose Green's function reads

where the master operator 1.is given by

82 82j—n2 +n@2
BO2 BO.*2

1 B4
+n +n* ———,(29)

BQBQ l9(x ()Q! gQgQ

G(0,t l 0O,Q) =m
' g e ~' ' cosmic(0 —0O) . (25)

or in polar coordinates

We wish to note that Eq. (24) has been obtained in
the case in which the perturbation Hamiltonian reduces

"See, e.g., M. 0. Scully and W. K. I.amb, Jr., Phys. Rev. 159'
208 (&967).

'~ W. I,ouisell, in Proceedings of the International School of
Physics "Enrico Fermi, " Course 42, 1967 (unpublished)."It is hereafter assumed in performing these calculations that,
u* is independent of u.

41 =4p~ +l —6pm+p —+2 l+2 8 1+21/2 (3p)
ap' 5 0p i

While the study of Eq. (28) is in general a formidable
task, it suitably simpli6es if we look for angle-
independent solutions (initial random-phase assump-
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tion). In this case the differential operator L reduces to

g4 83
L= —32 ' +4 '(p —4 'p ')

gp4 /ps

+4 '(—2p'+3+8 'p ')
Op

8
L„

2 a@ a)
(36)

The operator on the right-hand side of Eq. (35) is in
a suitable form to be simplified if all the derivatives
appearing there are assuaged to be bounded. In this
case, we get

I9

+4 '( 6P+—P
' 8'—P ')==Lo (31)

Bp

so that Eq. (28) reduces to

(a/at)s= D( ', a'/ar4-2+ a/a()8. (37)
A simple calculation shows that the operator L,

maintains the normalization of 8, thus preserving its
role of quasiprobability density. In this respect, it is
useful to recall that the hypothesis of 8 vanishing rapidly
enough together with its derivatives (in practice up to
third order) as p —+~ or p~ 0, underlies this and other
following results.

Explicit solutions of Eq. (28) for L = L, can be given
in the extreme case p~~, that is, when the initial
condition is such that 8 is vanishing when

~
oz I (c, z: being

a quantity of the order of magnitude of unity. This, in
turn, implies the same condition for the mean number of
energy quanta associated with the oscillator (see Ref. 2,
p. 2769). The interest of this case arises from the fact
that the quantum-mechanical description in terms of
coherent states tends asymptotically to the classical
one as n —+ ~.

Anyway, we can obtain interesting information
directly from Eq. (31), by con6ning ourselves to study-
ing the evolution of some mean quantities. Indeed, it
is a matter of simple algebra to obtain the following
mean equations of motion for (p) and (p'):

(d/dt)(p) = DL3.2-'(p)+4-'( ')+32 '(p ')j (32)

(d/dt) (p') = DP&(p')+2 j, (33)

This is a Fokker-Planck equation, '7 with negative
drift coeKcient —D, the Green's function of which reads

G(g~ )o,0) = (2xDt) 't expL —(f—$o+Dt)'/2Dtj. (38)

C. Short-Range Frequency Corre1ation;
Strong Perturbation

The relations t,((Q ' and tQ((i allow us to set the
exponentials appearing in Eq. (15) equal to unity,
thus getting

(a/at)s
x'DEa'+—at'+ 2aat Pa'+ at'+ 2aat, arat'2 (39)

These commutators can be evaluated via tedious algebra
and the resulting equation for 8 reads

a 1 -(a' a—s(n, n*; t) = D
i
————

at
' '

4 lan' an*2/

B3 B3 B3 B4—4(n+n*)i — — — +,. ...... , ." ..-)
(a a )'

+4L( + *) —131— I 0( * t) (40)
(an an*)

where

(p) =2zr p'Bdp

or, performing the change of variables n =x+ zy,
A~= S $P')

(p') =2zr p'sdp.
0

According to these equations, the mean amplitude of
the oscillation and the relative variance undergo an
amplification because of the frequency perturbation.

A further insight into the behavior of 8 can be gained

by specializing Eq. (31) to the case in which p —+ zc&:

B4 1 8' 1 8' 3 8
p p2

32 ap4 4 Bp' 2 8p~ 2 8p

Sy performing the change of variable p= t'&, and saving,
as above, only the dominant terms, we obtain

1 8 1 8 1 8 ltII

L„=
32 p4 aj4 4p' a)' 2 BP ap

a 1 a'(a—s(n, n*; t) = D-
i

——4x
i
-s(n, cz*; t);

at
' '

4 ay'(ax

solution s can be also rewritten as e'*'H(x,y; t), H being
the solution of the equation

8
H(x,y;t) =— —H(xy t).

4 Bx'By'
(42)

As before, some kind of information about the evolu-
tion of s can be gained through the mean equations of
motion of (x )=j'x sdx dy and (y ):

(d/dt)(x )=0, (43)

(d/dt) (y~) = Dm(nz —1)(4(x~y ')+ (y~—')) . (44)

' See, e.g., W. Feller, An Introduction to Probab&'lity T/zeory &znd

o s 1
VOL I, p. 358.
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Under some suitable hypotheses the general solution
of Eq. (42) can be given in terms of Green's functions.
More precisely, one has to assume that there exists the
inverse Laplace transform of the analytic continuation
of H(x,y; t), with respect either to x or y. If this holds
true, we can assume H(x,y; t) in the form' s

or

H(x,y; t) =
TQ+'Ccrc +00

dx' dy' H(x', y'; 0)

XG&(x,y; t
~

x',y'; 0), x)Rex', (47b)

H(x,y;t) =
where ro is the abscissa of convergence relative to the

dvH, (& „ t)eeoc—v (45a) analytic continuation of H(x,y;0) with respect to
x ory, and

Lwherexg( —oo, +~) andy'(a, +~)j, or in the form

H(x,y; t) = dv Hs(ts, v; t) e &*+'"v,—(45b) X exp) —(x—x')'/v'Dt —v(y —y'))v —'dv, (48a)

H(x,y; t) = dy' H(x', y'; 0)'
GO T Q

—'Loo

XGt(x,y; t
~

x',y', 0), y) Rey' (47a)

' The following developments are due to J. Perina and V.
Perinova (private communication).

wh«e xC(&, +~), yE(—~, +~) (and the corre-
sponding relations for x or yg( —~, a)1. Substituting
Eqs. (45a) or (45b) into Eq. (42), we have

Ht, ,(ts,v, t) =Ht, s(tc,v; 0) exp( ——,'Dts'v't), (46)

so that, through standard algebra, Eqs. (45a) and (45b)
reduce to

Gs(x,y; t
(
x',y'; 0) = (2i7rst'D"'t"')-'

expL —(y —y')'/tc'Dt —ts(x —x') 7tc-'dts. (48b)
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Geodesics of Robertson-Walker Universes*
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The complete set of geodesics is obtained for Robertson-Walker universes with arbitrary R(t), from
those geodesics whose spatial projections pass through the origin, by inducing a translation of origin through
the rotation of a hypersphere whose stereographic projections form the space sections. The results are
applied to the calculation, in a Milne universe, of the angular displacement of a particle initially projected
at high velocity accross the line of sight. This displacement proves to be bounded, the upper bound being
attained reasonably fast, on a cosmic time scale.

I. INTRODUCTION

ITH their present random velocities of 100
lUn/sec, galaxies cannot traverse a significant

portion of the Universe during its evolution. There are
reasons, however, for wanting to know the various tra-
jectories of free particles with large peculiar velocity
(i.e., not ]ust the "mean fluid velocity" ) over a very
long period. More and more extreme examples are being
found' of galaxies with peculiar velocities of the order of

*,:Work supported in part by the National Science Foundation,
under Grant No. GU 2921.' E. M. Burbidge and G. R. Burbidge, Astrophys. J. 134, 244

thousands of km/sec. Furthermore, it is expected that
in the distant past, all random velocities of free objects
were much larger, roughly in proportion' to R ', where
E. is the curvature radius of a space section of a Robert-

(1961);P. W. Hodge, ibid. 134, 262; W. L. W. Sargent, ibid. 153,
L135 (1968);and various papers in the Santa Barbara Conference,
Astron. J. 66, No. 10 (1961).' G. B.Van Albada, Astron. J. 66, 590 (1961).If there is drag
due to intergalactic matter, the velocities would have been much
bigger than given by the 1/R law; however, at the relativistic end,
the opposite holds. Sturrock has also suggested that QSO may be
in relativistic motion. See P. A. Sturrock, in P/asm@ Astrophysics
(Academic Press Inc., New York, 1967), p. 338 and especially
p. 361.


