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The Rarita-Schwinger equation in an external electromagnetic potential is shown to be equivalent to
a hyperbolic system of partial dif'ferential equations supplemented by initial conditions. The wave fronts
of the classical solutions are calculated and are found to propagate faster than light. Nevertheless, for
suKciently weak external potentials, a consistent quantum mechanics and quantum field theory may be
established. These, however, violate the postulates of special relativity.

I. INTRODUCTION

HE problem of finding a suitable wave equation
for electrically charged higher-spin particles has

been with us for a long time. Since the pioneering work
of Fierz and Pauli, ' the commonly accepted method,
which avoids algebraic inconsistencies, is to find
Lagrangian equations of motion whose solutions
correspond to free particles of unique mass and spin,
and then to account for electromagnetic coupling by
substituting

'Lclo ~ $8o+8Ao

into the free Lagrangian. A familiar example of this
method is the Rarita-Schwinger (RS) Lagrangian' for
spin-2 particles, which does indeed avoid immediate
algebraic inconsistencies. ' However, a more subtle type
of inconsistency appears when the RS field with an
external potential is quantized.

In the present article, we show that the difficulty is
already present in the RS equation interpreted as a
classical field equation, because the solutions propagate
at velocities exceeding the speed of light for arbitrarily
weak external fields. More precisely, we show that the
RS equation is equivalent to a system of hyperbolic
partial differential equations, supplemented by initial
conditions. Elementary methods then allow one to
determine the wave fronts and ray velocities of the
solutions to the hyperbolic system. One finds that the
propagation of RS wave fronts in an external potential
resembles the propagation of light in an anisotropic
crystal. There is an ordinary ray which travels at the
speed of light and an extraordinary ray which always
travels in some direction at a speed exceeding that of
light. The violation of causality occurs even though the
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free retarded propagator is causal, so that every finite
order of perturbation theory is causal.

Nevertheless, we 6nd that in the weak-field case
Lsee Eq. (2.16)j a positive definite conserved inner
product exists in some, but not all, Lorentz frames. In
these frames a consistent quantum mechanics and
quantum field theory may be formulated. The equal-
time anticommutator is not local in other frames.

The main lesson to be drawn from our analysis is
that special relativity is not automatically satisfied
by writing equations which transform covariantly. In
addition, the solutions must not propagate faster than
light. There are simple algebraic criteria on the coeK-
cients appearing in the partial differential equations
which determine the velocity of propagation of the
signals. These criteria must be applied to other higher-
spin equations which describe interactions, as we have
done here for the RS equation. In this direction, we
have verified that the first-order DuKn-Kemmer-Petiau
formalism for spin 0 and 1 and the YVentzel formalism'
for spin 1 are causal, even though constraints are
present.

2. EQUATION OF MOTION AND
ITS WAVE FRONTS

We begin with the RS Lagrangian density

Z=lt (r —a)4. (2.1)

Here/ is the RS vector-spinor P„, with g"=f"tj; and'

8
Ir„=i +eA„,

Bx)"
(2 2)

with A„a given classical four-vector potential. The
matrices I'& and 8 are given by

(P.~) x ~5e Px~ ~
=g."y Ir —(p„sr"+sr„y")+p„y Iry", (2.3)

B."= —mo.„"= SIS (g„"—y„y") . (2 4)

' G. Wentzel, QNantIsns Theory of Fields (Wiley-Interscience,
Inc. , New York, 1969), p. 90.

6 Our conventions are k=. c=1, g&"=diag(i, —1, —1, -1),
yl'y" +y"y&= 2g&", a= a„y&, and y'= y'y'y'y', so (7')'= —1, &""=1,
g&"=—'(y&y" —p"y&), P =y, and 0.' = (y y') for Z = 1, 2, 3.
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(I ~—B) Q, =o
y (1.~—B)„"=O. (2.5)

Let us analyze Eq. (2.5). Because f has more compo-
nents than needed to describe a spin-~ particle, some
of the 16 equations (2.5) will turn out to be constraint
equations in the sense that they do not involve time
derivatives. In fact, from the form (2.3), we see that
when «=0, Eq. (2.5) contains no time derivative, but
yields, instead, the primary constraint equation

(se—htr) /=0,
where' ~= (srt) Q= Q ') i = 1, 2, 3, and

h= tr ac+Pm.

(2.6)

(2 7)

This Lagrangian is one of a class of possible Lagrangians
for spin a which differ by the substitution f„~f„
+tsar„y P. Variation of the Lagrangian with respect to
the 16 components of ll and p independently yields the
equations of motion

So far we have established that every solution of the
RS equation satisfies the primary and secondary
constraints (2.6) and (2.10) and the new equation of
motion (2.12) or (2.13). Conversely, as shown in
Appendix A: (a) Equation (2.13) preserves the con-
straints (2.6) and (2.10) (i.e., every solution of (2.13)
which satisfies the constraints (2.6) and (2.10) at a
given time satisfies them for all time), and (b) every
solution of Eq. (2.13) which satisfies the constraints
(2.6) and (2.10) at a given time is a solution of the
original RS equation. Thus, Eq. (2.13) contains less
information than the original RS equation because it
does not imply the constraints. However, it is a true
equation of motion because it specifies the time deriva-
tive of P for any given ll.

We will now show that, for sufficiently weak fields,
Eq. (2.13) is a hyperbolic system of partial differential
equations. For this purpose it is sufficient to compute
the normals e„ to the characteristic surfaces, ' which,
for a linear system of the form

Moreover, from the form (2.3) we see that (8/8t)P
never appears at all in Eq. (2.5); nor is P determined by
the primary constraint (2.6), which only involves P,
P, and lie. To obtain an equation for P, one must
differentiate Eq. (2.5). This may be done covariantly
by multiplying Eq. (2.5) successively by p" and sr",

which yields, respectively,

8
(1st) x

Bx"

are determined by

D(st) =
i
(I' )„),ss„i =0. (2.14)

where

2(y sr' —sr) /+3m' /=0,
m(y sr' sr) P—iey'y F"—)=0, .

Ii=Ii "=8 A"—8"A

pd pd v &~ vg p x

(2 8) This determinant is a polynomial in the components of
e„, so it is sufhcient to evaluate it for n„ in the future

(29) cone, and by Lorentz invariance we may take I„
= (ss,0,0,0). Taking the coefficient of it/ctt in Eq. (2.13)
one has after slight rearrangement

Comparing Eqs. (2.8) and (2.9), one finds the covariant
secondary constraint

(2.10) or, in covariant form,,'m 'iey'y —F—a P,

D(~) =
~
(g„&o+', iem F„'-»-g, )

Xy'(go"y'+ ',iem 'g '7'y Fa"-)n
~

= ttr4/1 —(-', em
—')' B'$4

which determines P. Another useful relation is

sr f= —(y sr+ 2m)aiem '7'y F-".f, (2.11)

which follows upon inserting (2.10) into (2.9).
After these preliminaries, we proceed to the main

subject of this section, which is to determine under
which conditions a solution to the RS equation exists
and to Qnd the velocity of propagation of signals. For
this purpose we substitute Eqs. (2.10) and (2.11) for

and sr f back into the original RS equation.
The resulting equation,

(y sr m)f„+(sr„+—army„)aaiem 2P'y F" &=0, (2.12)

can be put into Hermitian form by again using Eqs.
(2.10) and (2.11):

(y sr m)P„+(sr„+,'my„) ',—iem 'y'7 -F" P-—
+saiem 'F„e»'(sr+ ,'mp) P+ ,'iem--

XF„"»'(y sr+2m) ',iem 'y'y F" /=0 -(2.13).

D(N) = (st')')I'+ (-'em ')'(F" ss)'$'=0. (2.15)

(-'em ')'8'(1 (2.16)

is satisfied, and otherwise we refer to the "strong-field
case." To avoid inessential complications we will

suppose in the weak-field case that there exists a single

s R. Courant and D. Hilbert, Methods of Mathematical Physics
(Wiley-Interscience, Inc. , New York, 1962), Vol. 2, pp. 590, 596.

If this criterion were applied directly to the original RS
equation, we would 6nd that every surface is a characteristic
surface, corresponding to the fact, which we know already, that
there are constraints.

This equation determines the normals to the character-
istic surfaces passing through each point.

Before analyzing Eq. (2.15), it is convenient to
introduce the term "weak-held case" to refer to the
situation in which there exists, for each space-time
point, a Lorentz frame such that the inequality
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common Lorentz frame such that (2.16) holds at every
space-time point. It is easy to verify in the weak-field
case that Eq. (2.15) has eight positive and eight
negative roots rP, for any given n= (e*').This establishes
hyperbolicity of Eq. (2.13) in the weak-field case, and
allows the definition of "spacelike 'surfaces" and
"future and past cones" with respect to Eq. (2.13).r
These di6'er, however, from the familiar spacelike
surfaces and light cones of special relativity. In the
strong-field case, Eq. (2.13) ceases to be hyperbolic and
is not suitable for the description of wave phenomena.
Hence, we restrict our considerations to the weak-field
case.

Ke remind the reader that, for hyperbolic equations,
the maximum velocity of propagation of signals is the
slope of the characteristic surfaces. Significantly, the
characteristic surfaces determined by Eq. (2.15) are
not all tangent to the light cone and, catastrophically,
spacelike characteristic surfaces pass through every
point where F„„is nonvanishing. Consequently, signals
are propagated at velocities greater than the speed of
light. To see this, we show that there are timelike
normals n„satisfying (2.15). In fact, choosing
= (1,0,0,0), the second factor of Eq. (2.15) becomes

1—(-'em-2)2B2=0 (2.17)

and whenever F„,/0, there exists a Lorentz frame where
(2.17) holds.

Ke remark parenthetically that the propagation of
RS waves, according to (2.15), resembles light propaga-
tion in an anisotropic medium. There are ordinary rays
corresponding to the first factor of Eq. (2.15), and
extraordinary rays with wave-front velocity exceeding
c corresponding to the second factor. It might be hoped
that the constraints (2.6) and (2.10) eliminate the
extraordinary ray, but we prove the opposite in
Appendix 3, so it is true that wave fronts do indeed
travel at the extraordinary-ray velocity which exceeds c.

As a Anal remark, we observe that the hyperbolic
system (2.13) possesses "spacelike surfaces" Z on which
initial values f(Z) may be specified arbitrarily. Although
these spacelike surfaces differ from those of special
relativity, nevertheless, in Lorentz frames where Kq.
(2.16) holds everywhere, the surfaces t= to are "space-
like" and the Cauchy initial-value problem may be
posed for any it (to). We will see in the next section
that, in such frames, a conventional quantum-mechan-
ical interpretation of the RS equation can be formulated.

satis6es the equation of continuity

(3 2)

Hence, for solutions P that vanish su6iciently rapidly at
infinity, one may define the scalar product

(« I «) f pE.A«", (3.3)

which is conserved and independent of the surface of
integration Z. For a surface t= const, the inner product
becomes6

(y, ~y,)= y,~&or,y,ex= y,~ay, dx

= Ee" e.-( e)'( e.)j&x, (3.4)

with
v /=0, (3 6)

(3.7)

Thus, positivity need be established only on the
subspace delned by the projector

Q;;=8;;—v;t(v vt)—'v;. (3.8)

LNote that v vt= (n m)'+m'+3m' is a positive invert-
ible operator. ] With the help of Q, the inner product
(3.4) becomes

0 I«& ft'& A'& 0=« (3 9)

where f"=(P,g) and Ao=yol'0. Since the zeroth
component of f& does not appear in the inner product,
we retain only the space components and use nonrelativ-
istic notation from now on. Of course, P may always be
retrieved from the constraint (2.10) when the weak-Geld
assumption (2.16) holds:

(I+~em 2e B)p=e Q+xaem '(ty'B —o»(E) ~ g. (3.5)

The inner product (3.4) allows a quantum-mechanical
interpretation in terms of positive probabilities only if
it is proved to be positive de6nite. Because e 0.=3,
this form is in fact inde6nite. However, only those
functions g are allowed that satisfy the constraint
(2.6), implied by the RS equation

3. CONSERVED POSITIVE DEFINITE
INNER PRODUCT

with
V= sg ~ ~ ~ (3.10)

An important feature of the RS equation is the
existence of a conserved current or bilinear form. Let
Pi and P2 be solutions of (2.5); then the four-vector
density

g„(*)=it, (&)r„P,(&)=~t, (&)(I'„)„Q„(&) (3.1)

In Appendix C, the positivity of Q A Q is inves-
tigated, and it is found that Q Ao Q is in fact positive
in those Lorentz frames where inequality (2.16) holds.
It is indefinite, however, in other frames. 4

YVe now have all the elements for a quantum-mechan-
ical interpretation of the RS equation. The inner
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f'(t, x)A'g (t,x)dx

ft (t,x)A'D(t, x; t,x')A'g(t, x)dxdx', (4.6)

product is defined by Eq. (3.4) and the equation of equality holds:
motion is provided by (2.13), with wave function P
restricted by the conserved subsidiary conditions (2.6)
and (2.10). However, we recall that this holds only
when the weak condition is satisfied and only for
surfaces t= to which are "spacelike" for Kq. (2.13).

4. QUANTIZED FIELD FORMULATION

Because the RS equation is linear —corresponding to
the fact that charged particles interact only with a
given classical vertex potential, and not with each
other —the quantum mechanics established in the last
sections may be easily formulated in terms of a quantum
field. I.et to be an early time before the onset of the
potential, and let

Cg (t,x,x') =
C g(t,x; t,x') j,, ,

then we can write, in nonrelativistic notation,

(4.7)

where we have set t'= t in (4.5). Because of the form of
A', LEqs. (3.4) and (3.10)j, only space components
appear in Eq. (4.6) and, if we define the space-space
equal-time anticommutator

satisfying
u;(to, x), u,'(tp, x), (4.1)

ft(t, x) A'g(t, x)dx

p(t, x) =P(a u, (t,x)+b tu'(t, x)j (4.2a)

yt(t, x) =Pea 'u (t,x)+b "u't(t, x)) (4 2b)

satisfy the RS equation everywhere, and, for early
times, coincide with the canonical free in-delds.

Having delned the fields by an asymptotic condition,
we will now compute the equal-time anticommutator.
%'e begin by considering the anticommutator for
arbitrary times,

~(*p )= 8 (~), 4'(*')), (4.3)

which by virtue of the expansion (4.2) takes the form

~(*,")=PL,(~),t(")+, (*)u,'"(*')j. (4.4)

As usual, for any solution f(t,x) of the RS equation, we

have the identity

f(t,x) = 5(t,x; t', x')A'f(t', x')dx', (4.3)

which holds for any t', with A' given by Eq. (3.4).
Consequently, for any solutions f and g, the following

( p+Pm)u;(to) = (p'+m')'"u, (to)

(a p+Pm)u, '(to) = —(p'+m')'"u, '(to),

be a'set pf functions, subject to the constraints (2.6)
and (2.10), which is complete and orthonormal on the
surfac'e t=t, with respect to the scalar product (3.4).
For the initial values u;(to, x) and u (tp, x), the equation
pf mptipn (2.13) determines corresponding solutions

u, (t,x), u (t,x) at all space-time points. Let a, ' and
b "be Fermi annihilation operators satisfying the usual
anticommutation relations. Then the fields defined by

ft(t,x).A'C(t, x,x') A'g(t, x')dxdx'. (4.8)

Because f and g are arbitrary in the subspace defined by
Q t Eq. (3.&)], and because, by virtue of the expansion
(4 4)

we have

~ ~ (4.9)

Q.A'Q= (Q A'Q)C (Q A'Q) (410)

In Appendix C, the inverse of Q A'Q is calculated,
(4.10), we conclude that the equal-time

anticommutator coincides with this inverse. Therefore,
we have

or explicitly
C= (Q A'Q)-', (411)

Cv= ~v —2~;~,+-'.m- (2~;+n;pm)
X(1+3em-'e B)- (2~,+ mp~, ).

This expression coincides with that pf Jphnspn
Sudarshan, 4 who obtained it using Schwinger's canonical
quantization principle. They observed that it is an
indefinite operator in some I.orentz frames, although
it should be positive by virtue of its form (4.3) and (4.4).
However, our derivation and our analysis of Sec. 2
show that expression (4.12) represents the equal-time
anticommutator only on surfaces which are "spacelike"
with respect to Kq. (2.13).For other surfaces the equal-
time anticommutator can only be obtained by solving
the equations of motion and will be nonlocal because
of the faster-than-light propagation of disturbances.
The foregoing holds in the weak-field situation, namely,
when there are Lorentz frames in which (2.16) holds.
In the strong-field situation, Eq. (2.13) ceases to be
hyperbolic and no quantum theory can be constructed
at all.



186 RARITA —SCH WI NGE R WAVES I N ELECTROMAGNETIC POTENTIAL 1341

ACKNOWLEDGMENT

One of the authors (G.V.) would like to thank
Professor Bruno Zumino for his kind hospitality at the
Department of Physics of New York University.

APPENDIX A

We prove that the constraints (2.6),

X—= (m —hn) . /=0,

Taking the discontinuity of the primary constraint
(2.6},we have

I W —Inc W=O
or

e.ng w —0 (B3)

Taking the three-gradient of the secondary constraint
(2.10), and equating discontinuities, we find that w

must satisfy
y w+ 32iem-'y F—d w=0

and (2.10),
v0+—~v'7 F" 4=0,

The discontinuity of the equation of motion (2.13)
yields

0'=0, m- q =0 (A2)

at t=0. Comparing with Eq. (A1), we see that p;=0,
so the RS equation is satisfied at t=0. From X= —y yo
and the second of Eqs. (A2), we deduce that X'= 0 also.
Hence, the constraints are preserved in time and our
proof has shown that whenever the constraints are
satisfied, the RS equation holds.

APPENDIX B

The discontinuities of the derivatives of a solution
to a erst-order system of hyperbolic equations are
known to propagate along characteristic surfaces. ' We
will show that discontinuities which propagate along
the extraordinary ray are compatible with the con-
straints (2.6) and (2.10). For this purpose, we assume
that the external potentials and fields are continuously
differentiable functions. Let I be a continuous solution
of Eq. (2.13) whose derivative has a discontinuity given

by
(m-„u) = e„w,

where (f) means the discontinuity iri f, w is continuous,
and e„satisfies

with X=~3em 'i, are preserved by the equations of
motion (2.13), and that the RS equation is satisfied.
Since Eq. (2.13) is of first order, it is sufFicient to show
that if X and 0 vanish at t=0, their time derivatives
X' and 0' vanish at t= 0. Note first that Eq. (2.13) may
be written

q„+[m( q„+,'l—iF„" q-q5)+ (~„+XF„"qq'q ~)]n
—m-'[~ + XF '~~5]~ ~=0, (Ai)

with
v' —= (I" —&) 4'

Consider the two equations obtained by contracting
Eq. (A1) with y& and also by taking the zeroth compo-
nent of Eq. (A1). Noting that X= —y'yo, and assuming
that X and 0 and their spatial derivatives vanish at
t=0, one finds that

nw„+m„3iem 'y'y Fe w+3i.em 'F„e yy'ir .m
+,iem '-F " yy'n ,iem 'y-'7 F" Ye=. 0 (B5)

By choosing w„=e„f, Eq. (B3) is automatically satis-
fied, and Eq. (B4) becomes an eigenvalue equation for
f which has a nonzero solution when "Eq. (B2) is
satisfied, which is true by assumption. . Then' Eq. (B5)
is satisfied identically.

This shows that there are disturbances', compatible
with the constraints, which do propagate along the
extraordinary ray.

APPENDIX C

We first verify that C, given by Eq. (4.12), satisfies
Q.C= C and C= (Q.A'- Q) '. The positivity of
Q A .Q will follow from the positivity of C. From
the identity

(hn —m) ~ (2m+nPm) =3m'+2en B, (Ci}

one easily verifies that v;C,';=0, with e; given by Kq.
(3.7). Hence, with Q given by Eq. (3.8), one verifies
the equality Q C=C. Then we have, with A' from
Eq. (3.10),

~ ~ ~ ~ ~ ~ QQ ~

=[I—vt(v vt) 'v]
[I—v" (3m'+en B)—'(2m+ mpn)]

=[I—vt(v vt) 'v]=Q. (C2)

This shows that C is the inverse of Q A'Q in the
subspace Q. It is sufficient to show that C is positive on
the subspace Q, and for this purpose we may replace ~
by eh and he on the left- and right-hand sides, respec-
tively. This gives

C=Q {1+-,'n{(2n.m+3Pm)[(3m'+2en B)—'
—(2n ~+3Pm) 2](2n ~+3Pm)}n} Q.

We assume that 3m'+ 2en 8)0. (weak;field condition),
and therefore from the fact that

(2n. ~+3Pm)') (3m2+2en B),
~~+-,'em-2(F' ~)2= 0.

9 Reference 7, pp. 618 and 619.

(B2} it follows that C)Q. Hence, C is positive definite on
the subspace.


