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Field of an Arbitrarily Accelerating Point Mass
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A metric of the Kerr-Schild type is derived which contains four arbitrary functions of time. Xt is a gen-
eralization of Vaidya's shining-star metric, and permits arbitrary acceleration of the source.

u(x) =u(y), X&(x) =)o(y) .

I, INTRODUCTION necting x with the curve. Let the null vector be a"(x)

S INCE 1924, ithasbeenl nownthatthe SchwarzschBd
and let y be the Point of contact. Now the dehnitions
of u and X&(u) may be extended off the world line by

vacuum solution can be written in the particularly setting
slIIlple form

ds'= du'+2du dr r'(d—B'+sin'B dQ') —(2rrt/r) du'. (1)

The coordinate I is retarded time and is obtained from
the usual Schwarzschild time I, by the transformation

u = t—r —2m ln(r —2tst) .
This coordinate system is intrinsically related to one
of the two principal null congruences of the Riemann
tensor. The vector field

Thus the Gelds I, OI', and X& are well defined every-
where and may be differentiated. To obtain expressions
for their derivatives we 6rst note that, even o6 the
world line, I measures proper distance in the X& direc-
tion. Thus we have

X~Q, p,
=1.

Because 0„ lies in the null surface u=const. , 0.„and u, „
must be proportional:

lII, =N, ~
= (1,0,0,0) where

Q, II,
=P' Op ~

—2

is a principal null vector, and r is an affine parameter
along l„:

Furthermore, the Schwarzschild metric may now be
written as

g„.= rt„„—(2ttt/r) 1„/„

where g„, is a Qat-space metric. Kerr and Schild' have
found all vacuum solutions of the form

g„„=rt„„+H/„l„,
with

q"l l =0 l~ /0.
and. Debney, Kerr, and Schild' have generalized these
results to include Einstein-Maxwell Gelds.

"n this paper we wish to exhibit metrics of the same
form as Eq. (4) that are neither vacuum nor electro-
magnetic, but still possess physical interest.

II. WORLD-LINE GEOMETRY

Consider an arbitrary smooth world line I in
Minkowski space that is everywhere timelike (see
Fig. 1). Let u'be the proper time along the curve. Let
X"(u) denote the unit tangent vector at any point,
directed toward the future. For each point x in space-
time, the past null cone at x intersects I. exactly once. 4

Hence there exists a unique retarded null vector con-

r A. S. Eddington, Nature 113, f92 (1924).
s R. Kerr and A. Schild (unpublished report).' G. Debney, R. Kerr, and A. Schild (to be published).

The single exception, which we exclude, is when the world line
is asymptotically null at'I = —~.

The vector )j." depends only on u, and applying the
chain rule to it gives

X&,„=(BX&/Bu)u, .
=t-9 ~&„Vy

where the dot denotes a u derivative. Finally, the
derivative of 0& is obtained by di6erentiating the
relation

and using the chain rule on y. We get

&~ —b~ —r ')~~
v

III. CURVED-SPA. CE METRIC

The metric we wish to consider is

gimp
=g~p

—2' r~o'p
~

—3

FIG. 1. Unique retarded null
vector e~ connecting an arbitary
point x to the timelike world line L.
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where m =m(u), and the other quantities are defined as
in Sec. II. This metric reduces to the Schwarzschild
metric, Eq. (3), if I. is a straight line and m=const. To
avoid confusion we will require that a.", X", and X" be
given initially as contravariant vectors and that indices
will be raised and lowered using only g„„.Appearances
of g„„will be explicitly written out.

We may now calculate the Christoffel symbols and
Riemann tensor using Eqs. (5)—(8). The results are

I pp
= 2mr 'gppg

+mr (3Xpapa +3Xpapa agape )
+3mr '(1 ho —)a„o„o'+2.m'r 'a„a a'

+mr 4o„a„o',.

R„„.,=4' 'gt„t,g, )„)
+12mr 'r][„[,a,]X„]+12mr 4r][,[~X1]ap]'

24mr s—a[„k„]a[,X,]+12mr 'r][„[,a, ]a„]
+8m'r 'qt~[ a ]a]+4' r][v[ a ]a]

12mf (X a~) ]][g [gag]ap] p

R„„=2mr 4a„a„6mr s(X —a )a„a„.

(10)

(12)

'The Wey] tensor turns out to be the same as Eq. (10), but
without the last two terms. Hence it is "quasistatic, " identical in
form to the Weyl tensor for a Schwarzschild field, and therefore
Petrov type D.

1

In general, the metric is not a vacuum metric, but
has a Ricci tensor proportional to 0.„0, A Ricci tensor
of this form could be produced, for example, by an
incoherent cloud of zero-mass particles streaming out
from the world line. Their distribution is not necessarily
isotropic, but generally of the form A (u)+B(u) cos0(u).

The source at the center undergoes a net loss of mass
and of linear momentum. The recoil it suff ers is manifest
in the acceleration of the world line. By integrating the
outQow of T„„atinfinity, one may verify directly that
the central source at any instant carries momentum
P"(u) =m(u)X"(u), in agreement with the principle of
equivalence. In the particular case X 0- =0, we recover

Vaidya's metric for a shining star. ' Note that our
metric has four arbitrary functions of time, namely,
m(u) and the three independent components of the
acceleration X"(u).

IV. COORDINATES

For some purposes it may be more convenient to have
the metric written in a particular set of coordinates
rather than the vector form given above. Quite general
coordinate systems based on an accelerating world line
have been described by Newman and Unti. ~ One such
system, which is suitable for our purposes, results in
the metric

g„„=1 2ar cos0 —r'(f'+—g' sin'0) 2m—(u)r ',
g„„=1, g„s=r'f, g„~ r'g sin'0, ——
geg= —r gyp= —r sin 0,

where

f= —a(u) sin0+b(u) sinP+c(u) cosp,

g =b(u) cot0 cosg —c(u) cot0 sing, (14)

and a, b, c, and m are all arbitrary functions of u. It may
be seen that 0 and P are spherical coordinates which
rotate so as to keep the north pole 0=0 pointed toward
the direction of acceleration at all times. The quantity
a(u) is the magnitude of the acceleration, while b and c
describe the rate of change of its direction. For uniform
acceleration, a =const. , and 6 =c=0.
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