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The Hamiltonian methods of Arnowitt, Deser, and Misner can be applied to homogeneous cosmological
models, and prove to be an eKcient way both of constructing the Einstein equations and of studying their
solutions. By using an appropriate form for the metric, one Gnds that the constraint equations for these
models can be solved explicitly, and the resulting problem in Hamiltonian mechanics resembles that of a
particle in a potential well. The most unusual feature of the Hamiltonian is that it is explicitly time de-
pendent. There is an easy and attractive choice of factor orderings which allows one to pass on to a quantum
theory (by imposing canonical commutation relations on the independent canonical variables) while main-

taining the signature of the quantized metric. For the closed-space cosmological model (Bianchi type IX)
which is studied in most detail, a classical (high-quantum-number) state remains classical as the wave
function is followed back in time toward the initial singularity. There is no tendency for significant con-
tributions from states of low quantum number to develop even when the radius of the universe is much
less than (Gh/cs)&= 10 "cm.

I. INTRODUCTION

HE methods which Arnowitt, Deser, and Misner'
(ADM) developed with the aim of quantizing

Einstein's theory of gravity can be applied, as this paper
will describe, to models of the Universe as complicated
as any which have been studied in classical general
relativity. The result is a quantized model of the
Universe in which our main interest is directed toward
quantum effects on the singularity at the beginning of
time, which was discussed in the preceding paper. It
appears from this calculation that quantum effects do
not significantly modify the nature of the initial singu-
larity in relativistic cosmology. In particular, I find no
suggestion of anything which would allow a contracting
closed universe to pass through a quantum phase and
emerge as an expanding universe.

The quantized model universe presented here has
somewhat the relationship to a full quantum theory of
gravity which the harmonic oscillator has to the quan-
tum theory of the electromagnetic field. One may
Fourier-analyze the free electromagnetic field, find that
the amplitude of a single mode satisfies a harmonic-
oscillator equation, and thus learn something of the
quantum properties of the electromagnetic field by
solving the Schrodinger equation for a harmonic oscil-
lator. For the gravitational case where we wish to retain
nonlinear effects near the cosmological singularity,
Fourier analysis is not the appropriate tool, but some-

thing similar is achieved by imposing a definite space
dependence on the metric (corresponding to a high
degree of symmetry) and then letting quantum theory
govern the time dependence of the remaining ampli-
tudes. The method has, in common with Fourier analy-
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R. Arnowitt, S. Deser, and C. W. Misner, in Gravitation: An

Introduction to Current Research, edited by L. Witten {Wiley-
Interscience, Inc. , New York, 1962), Chap. 7.

' C. W. Misner, Phys. Rev. 186, 1328 (1969), accompanying
paper.

sis of free fields, the property that the single mode is an
exact solution in the classical theory. It differs from
Fourier analysis of free 6elds in the treatment of non-
linearities. For the modes we do include (two degrees of
freedom in the present example) the mutual and self-
interactions are treated completely. For the modes we
omit (infinitely many), the interactions with the modes
under study are ignored.

The two degrees of freedom in the gravitational field
which our model includes may usefully be described'4
as the two polarization states of a gravitational wave
mode whose wavelength is the maximum possible
(lowest wave number) in this closed universe. The
omitted modes are gravitational waves with any higher
wave numbers. The classical exact solution' ' is ob-
tained by simultaneously setting to zero both the ampli-
tudes ("coordinates") and momenta of all these higher
modes. This is, of course, not possible in quantum
theory, so the model of a quantum theory of gravity
presented here is just that, a model. It is not an exact
description of a subspace or quotient space of the full
theory of a quantized metric field. There is, however,
some reason to expect that this model may approximate
behaviors which would arise in the full theory. Most of
the modes which have been neglected are those at high
wave number. But precisely in the limit of high wave
number, good approximations' 9 are available in the
classical theory which show (a) that different modes of
high wave number do not interact with each other in the
first or second order of approximation, and (b) that
these short-wavelength gravitational waves inhuence
the "expansion of the universe" modes (which our model
retains) in just the same way as do electromagnetic

~ D. R. Brill, Nuovo Cimento Suppl. 2, 3 (1964).
4 j. A. Wheeler in Conference Internationale snr les Theories

Retatioistes de la Graoitation, edited by L. Infeld (Gauthier-
Villars, Paris, 1964), pp. 223—268.' C. W. Misner, Phys. Rev. Letters 22, 1071 (1969).

C. 'W. Misner (unpublished).
7 D. R. Brill and J. B. Hartle, Phys. Rev. 135, B271 (1964).
8 R. A. Isaacson, Phys. Rev. 166, 1263 (1968);166, 1272 (1968).' Y. Choquet-Bruhat (unpublished).
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waves. Hut expanding-univel se models containing
electromagnetic radiation have been studied exten-
sively" by many authors, and one finds that while the
energy density of radiation increases as (volume) et' as
one approaches the initial singularity, (volume) —+0,
the energy density of the lowest (anisotropy) modes
increases more nearly as (volume) '. These lowest
modes, which our quantized cosmology retains, are
therefore expected to be the dominant inQuence near
the initial singularity. Thus, near the singularity, the
lowest modes are effectively decoupled from the high-
wave-number modes and the results of quantizing just
the lowest modes should be the same (i.e., parallel to
Fourier analysis of free fields) as if the highest modes
had also been included. The major uncertainty in the
significance of this model calculation, then, concerns the
possible effect of including modes of intermediate wave-

lengths, where the size of the universe would be just a
few wavelengths.

The model presented here is significant for two other
reasons, beyond its implications for the nature of the
cosmological singularity, namely as an introduction to
ADM' Hamiltonian techniques in classical cosmological
theory, and as a testing ground for methods, concepts,
and interpretations in the theory of quantized geometry.
The model is attractive for these purposes primarily
because of the relative simplicity of the Hamiltonian,
which reads

&= (p+'+P-'+ '"D'(P+ P-)—Ij&'" (1 1)

Here P~ are the amplitudes of the two independent
modes, p~ are their conjugate momenta, and Q is the
time coordinate so that Hamilton's equations read
dP+/dQ= etJsl/r)P+, dP~/dQ= i)H/c)P+, etc—., and dH/dQ
=i)H/c)Q. The function V(P+, P ) is a certain positive
definite combination of exponential functions which is
defined and described in detail later. This Hamiltonian
presents, then, a textbook-type problem in classical
mechanics or quantum mechanics. Because it does not
reduce to a one-dimensional problem, it is more difficult
than the classical central-force problem, and is perhaps
comparable in difficulty to the study of charged-particle
orbits in an axially symmetric but nonuniform magnetic
field (magnetic-mirror machine). Consequently, a
qualitative description of the solutions can be given,
and reliable approximations can be used to compute any
quantitative information that is desired.

With a Hamiltonian as simple as Eq. (1.1),perplexing
questions in the quantum theory of space-time geometry
can be modelled in a very concrete form. For instance,
the theory is given here with a particular choice of a
time coordinate 0 chosen so that the volume of space at
a time 0 is proportional to e '". The usual cosmic time
t, which is proper time for the standard class of ob-

'f) See, for example, Refs. 28 and 6.

servers, can be related to 0 by

dt= —IX 'e '"(2/3sr)'t2(lQ (1.2)

» P. A. M. Dirac, Phys. Rev. 114,924 (1959);in Recent Develop
ments in General Relativity (Pergamon Publishing Corp. , New
York, 1962), p. 191;in Flnides et ChamP Gravitationnel en Relativite
Generale (Centre National de la Recherche Scienti6que, Paris,
1969), p. 13. For a recent development in the Dirac and ADM
type of quantization, and for further references, see A. Peres,
Phys. Rev. 171, 1335 (1968).

~ J. A. Wheeler in Battelles Recontres 1967, edited by C. M.
DeWitt and J. A. Wheeler (W. A. Benjamin, Inc. , New York,
1968),pp. 242—307; in Relativity Groups and TopoLogy, Les IIouches
1M3, edited by C. DeWitt and B. deWitt (Gordon and Breach,
Science Publishers, Inc. , New York, 1964), pp. 517—520.

But the Hamiltonian II is an operator in the quantum
theory, so the coordinate time 0 and the cosmic time t
cannot both be c-numbers. At least one of them must be
an operator. Equation (1.2) thus models the problem of
qgaetmm covariomce. In the present paper we will not
make use of cosmic time t, and it seems natural and
straightforward to treat the coordinate time 0 as a
c-number. But we are led to ask if there is another
formulation of the theory in which t could be treated as
a c-number. Are the quantum theories based on t time
and 0 time equivalent? Is there some evenhanded way
to treat both t and 0 simultaneously as operators, with
the present treatment corresponding simply to a choice
of representation where 0 is diagonal? It would seem
that further study and extension of the model theory
presented here promises to shed some light on these
questions. Other questions which could be simplified,
made concrete and calculable, and illustrated working
from this model are the relationships between the
various techniques and emphases of Dirac, " ADMy'
and Wheeler" in their approaches to quantizing general
relativity. It is also possible that the classical analogy
between the cosmological singularity and the one which
occurs at r =0 in the Schwarzschild metric (i.e., as the
endpoint of Oppenheimer-Snyder stellar collapse) can
be extended to the quantum domain and will suggest
some other relatively simple quantum theory models
like that presented here, but with particular relevance
to stellar collapse.

It may appear anomolous that as a first example of a
quantized cosmology I choose a rather complicated
cosmological model, ' ' a closed space with different
expansion rates along the three different axes. The
reason for this is that the ADM Hamiltonian is so
powerful that simpler models look implausible. For a
radiation-dominated Robertson-Walker (RW) universe
with Rat space sections, for instance, which is the stand-
ard model of the early hot big-bang universe, the
Hamiltonian is H=I'~'e ", where F is a constant. This
Hamiltonian is an explicit function of coordinate time
0, but does not depend on any canonical coordinate or
momentum since the system has no unconstrained
gravitational degrees of freedom. The general RW
cosmology containing pressureless matter and Quid
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radiation is similar. The Hamiltonian is

(pe
—sQy ~e

—80 pe
—4Q) l/2 (1.3)

II. CANONICAL FORMALISM

The approach to quantum theory of gravity with

which I am most familiar is the ADM canonical

method. "' This approach in many ways closely

parallels the earlier Hamiltonian methods of Dirac.""
The correspondence has been described in greatest
detail by Kimura'~ and Anderson. ' The principal
di6'erences are that ADM imagine that the constraints

» B.S. DeWitt, Phys. Rev. 160, 1113 (1967).
'4 K. Kasner, Am. J. Math. 43, 217 (1921).
"R.Arnowitt, S. Deser, and C. W. Misner, Nuovo Cimento

15, 487 (1960}."P.A. M. Dirac, Proc. Roy. Soc. (London) A246, 333 (1958).
' T. Kimura, Progr. Theoret. Phys. (Kyoto) 27, 747 (1962).

J.L. Anderson, Rev. Mod. Phys. 36, 929 (1964).

where again there are no canonical variables and no
Hamilton equations apart from dH/dQ= c/H/r)Q. The
constants I' and p, are determined from the total number
of radiation quanta and massive particles, respectively,
in the universe, while k =0, &1 gives the space curva-
ture. Thus these RW models contain exclusively the
unfamiliar features of quantum gravity, namely, the
treatment of constraints, but none of the familiar
features of ordinary mechanics or quantum mechanics.
These RW models will probably prove useful in further
studies of the unfamiliar parts of quantum cosmology,
and the 0=+1 model has already been subject to such
a study by DeWitt. "It should, however, be helpful to
see something familiar before approaching deeper
problems, so we move on to models which do contain
some independent dynamical variables. A simple model
for this purpose is an empty expanding universe with
Rat space sections which have different expansion rates
in different directions (the Bianchi type-I anisotropic
homogeneous cosmology) which gives the Kasnerr4

metrics in classical cosmology. In this case the Hamil-
tonian becomes

(p 2+p 2)1/2

with p~ the momenta conjugate to Geld amplitudes p~.
Thus Hamilton's equations read dP~/dQ = BH/Bp~
=p~/H, dp~/dQ= —r/H/c/PJ 0, and dH/dQ=——r)H/r)Q
=0. This is the familiar problem of a free particle, and
the classical solutions can be written down immediately,
but in quantum theory it has the drawback that H has
a continuous rather than a discrete spectrum. To avoid
this technical difhculty and make it possible to speak of
discrete eigenfunctions and of quantum numbers, we go
to a closed (type IX) cosmological model for which we

will derive the Hamiltonian of Eq. (1.1). Another
reason for preferring the closed-universe model is that
this model oGers some prospects for understanding the
homogeneity of the Universe, ' ' so the closed universe
models may turn out to be physically more significant.

I= (16s-)—' R(—g)»'d'x

is written in the form I= fgd4g, with'r

(16~)Z= w'~ (ag,,/a1) NC'' N,C' — (—2.1).
In this variation principle one varies g;;, x", X, and E;
independently, and the C& are defined by

CO — (g)1/s(sg+g —1Lr (~s„)s ~i/~. j}
C'=——2m "t;. (2.2)

All notations in Eq. (2.1) and subsequent equations are
three dimensional with g;; the spatial components
(i, J, k, etc.= 1, 2, 3) of the space-time metric, so g'&' is
the matrix reciprocal to g;, and 'E is the scalar curvature
computed from g;;. Indices are raised and lowered with

g;;, and the vertical bar in x"~; indicates a covariant

~9 J. Schwinger, Phys. Rev. 82, 914 (1951);91, 713 (1953).
3) See, for example, S. S. Schweber, An Introduction to Rela-

tivistic Quantum Field Theory (Row, Peterson and Co., Evanston,
Ill. , 1961), Chap. 9."J.Schwinger, Phys. Rev. 130, 1233 (1963); 132, 1317 (1963).

2' C. W. Misner, Rev. Mod. Phys. 29, 497 (1957)."H. Leutwyler, Phys. Rev. 134, 81155 (1964).
24 R. P. Feynman, Acta Phys. Polon. 24, 697 (1963).
2' B.S. DeWitt, Phys. Rev. 162, 1195 (1967); 162, 1239 (1967),
26 S. Mandelstam, Ann. Phys. (N. Y.) 19, 25 (1962).
2~ Units are chosen so that G=k=c=1.

have been solved, eliminating the extraneous degrees of
freedom, and show how the remaining independent
degrees of freedom can be put in canonical form, with a
Hamiltonian giving rise to equations of motion in the
conventional way. Dirac assumes that the constraints
remain a part of the statement of the theory, the
amplitudes and their conjugate momenta are thus not
independent, and the way in which the Hamiltonian is
used to construct the equations of motion is modified.
The ADM approach anticipates quantization of the
Schwinger type' without subsidiary conditions; the
Dirac approach anticipates a quantization with sub-
sidiary conditions" defining the physical subspace of
state vectors, and uses an indefinite metric in Hilbert
space. Both methods have been used successfully and
are equivalent for electrodynamics. The Dirac approach
was used by DeWitt" in the only previous study of
quantum cosmology that I am aware of. Other closely
related methods are Schwinger's work" along ADM
lines, and the Feynman sum-over-histories approach to
quantizing gravity" which Wheeler" uses and whose
relationship to Hamiltonian methods is discussed by
I.eutwyler. 23 Manifestly covariant quantization methods
have been developed by Feynman, '4 DeWitt" and
Mandelstam. "For a discussion of the applicability of
these different approaches, and for references to the
pioneering work of Rosenfeld and of Bergmann,
consult DeWitt's paper. "

In the ADM method which I adopt, the variational
principle for Einstein s equations, bI=O with
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derivative formed using g;;. Also, g is the determinant of

g;;, and satis6. es 'g—=detg„„= —E'g. As described in
Ref. (1),varying the ten quantities g;, , 1V, and E; in this
Lagrangian gives the ten Einstein equations, while
varying the six x'&' gives equations relating the m" and
the Bg,;/Bt.

The four equations C&=0 obtained by varying E and
E;in 'Eq. (2.1) are the constraints or initial-value
equations. They show that the g;; and the ~'& cannot be

specified arbitrarily, even as initial conditions. Let us
assume then that four quantities formed from the g;;
and x'~' are expressed in terms of eight others by solving
the constraint equations C"=0 given by Eq. (2.2). The
variational principle then has a very simple appearance,
for from Eq. (2.1) we now find.

particle mechanics,

(2 7)

rather than Eq. (2.6) for field theory. The steps by
which Eq. (2.3) is reduced to the form (2.7) are given
in Sec. III for two particular types of cosmological
metrics.

III. COSMOLOGICAL MODELS
UVe will consider two classes of homogeneous cosmo-

logical models, one for which the computations are
extremely simple, another for which the results are more
interesting. The metric for the simpler model is"

(16m )Z =vr'&(rig;;/rit), (2.3) ds = dt'+ —R'(f) (e'~),,dx'dx' . (3.1)

but the z" and g;,. can no longer be varied independently.
The Lagrange multipliers E and Ã; which one uses to
go from Eq. (2.3) to Eq. (2.1) also play another role in
the theory; they are used to construct the full metric
4g„„from a knowledge of g;; and m.".The relationship is

'go =A 'goo= —(Ã' 1V E')— (2.4)

The reduced Lagrangian (2.3) does not give any in-
formation about A and E;, but actually the Lagrangian
(2.1) also allows arbitrary values for E and X, in the
solutions. The values of E and E, are determined only
by coordinate conditions. In the Lagrangian (2.1) one
might choose X;=0, S= 1 as coordinate conditions. In
the Lagrangian (2.3) the coordinate conditions will be
expressed in terms of the g;, and x'&' and chosen in such
a way as to assist in reducing the variational principle
to canonical form. In this case the combinations of g;,
and x'&' restricted by the coordinate conditions can no
longer be varied, and the equations for their time
derivatives must be stated separately from the vari-
ational principle and serve to determine the E and 31;.
In our applications these will be combinations of the
equations

&g;;/~&= 2&g '"(~v kg'~~M+&'u+&w~' —(2 3)

which follow from Eq. (2 1) by varying 7r".
A canonical form is a restatement of the variational

principle BI=0 in a way that puts the action integral in
the form

8$ X 7l
7 g d $~ (2.6)

where 3C is then the Hamiltonian density. For our app1i-
cations to homogeneous cosmologies, the 6eld alnpli-
tudes and momenta are defined as functions of time
only, so that the integration over space coordinates is
carried out and the canonical form is that familiar from

Here p,, (t) is a diagonal traceless matrix, so e2&=diag
(e'&»,e'~», e'~») and det(e'e) =e"'~= 1 Thus R'(i) is
proportional to the volume of the universe at time t.
The homogeneity of this space is expressed by the
invariance of the metric (3.1) under the Abelian group
of simple space translations (t,x') —& (i, +xa'). This
group is type I in Bianchi's classification" of the three-
dimensional local Lie groups, so that Eq. (3.1) is said to
define a type-I homogeneous cosmology. "

In the action integral

I= (16~)-' 7r'~ (Bg;;/Bt)dt'd'x, (3.2)

the integration over space coordinates can be done,
since x"as well as g;, is taken to be a function of I, only.
To obtain the same numerical factors here as in the
closed universe we will treat later, let the standard
coordinate volume in this space be chosen" so that
J'd'x=(kr)', rather than, for instance, using a u»t
volume. Then Eq. (3.2) becomes

I=7i 7l Qg (3.3)

and in this we can insert the form (3.1) chosen for the
metric, namely, g;, =R'( ~)e;;, to find

dgg;= 2g;,d lnR+2g, adPpy (3.4)

' C. W. Misner, Astrophys. J. 151, 431 ('1968)."L.Bianchi, Mem. Soc. It. della Sc. (dei XL), (3) 11, 267—352(1897l; reprinted in L. Bianchi, Opere (Edizioni Cremon ese,
'

1952-1958), Vol. 9, pp. 16-109.' O. Heckmann and E. Schucking, in Gravitation: An Introduc-
tion to Current Research, edited by L. %itten {Wiley-Interscience,Inc. , New Vork, 1962), Chap. 11.

"This choice aKects the commutation relation and would haveto be reconsidered before quantitative results could be deduced forthis type-I universe. In an open universe where there is no discrete
lowest-mode graviton, one should consider all suf6ciently weakinfrared gravitons together. Alternately, one could suppose x' arecoordinates on a three-torus (periodic boundary conditions) tomake this universe closed and the mode with g;; independent ofx becomes a discrete mode.
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I=22r 2r'idpi, ;+vriid lnR. (3 5)

In this action integral not all the variables are inde-
pendent, and variations must respect the constraints

'Rg+-', (2r"i)2—2r'i, 2r",= 0 (3 6)

—2x "(g——0. (3.7)

The momentum constraints (3.7) are satisfied identi-
cally in the present case since the x'~ are functions of t

only, and the three-space covariant derivative reduces
to an ordinary derivative (g,; is independent of the x ').
The Hamiltonian constraint (3.6) also simplifies be-
cause the three-space metric from Eq. (3.1) is flat,
giving 'R=O. We can therefore solve Eq. (3.6) alge-
braically to give x~1, in terms of the other traceless
components of 2r'i, and thus reduce Eq. (3.5) to a form
without constraints. To do this we set

P+ =Q(u'+u ,'—)/-(u'+u+1),

P =F3 (u+-', )/(u'+u+1),
(3.16)

where u is a constant, —~ &u&+ ~.
Although the above discussion gives the complete

solution of the variation problem (3.3) subject to the
constraints (3.6) and (3.7) in this case, it. does not
determine the metric (3.1) completely, as the original

time coordinate t dropped out of the discussion when

we wrote (Bg;,/Bt)dt =dg, ; in Eq. (3.3), and a, different

choice of 0 for the time coordinate was suggested by our
determination. to write Eq. (3.5) in the canonical form

(3.12). There are two equivalent ways to proceed. We
can try to find 0 as a function of t, or we can accept 0 as

the time coordinate, write the metric in the form

p plane. Since p can be set to zero at any one time by
rescaling the coordinates x'~ (e ~0),,x' in Eq. (3.1), it
is sufficient to consider only lines through the origin

P =0. In one standard parameterization, then, the solu-

tions are

2r'i, ——(22r) 'p'i, +-2'8'i2rii, (3.8) d,2= —»2dQ2+R 2e 2" (e2s-) dx'dr~ (3.17)

where p"1,=0, and then write'2

P;r, = diag(P~+P v3, P~ PV3, ——2P~),
6P'~= diag(p++P ~~, P+ P~~, 2P—+), —

as well as

and

(3.9)

(3.10)

and try to find» as a function of Q (Ro is a constant,
R=Rot, ").We choose the latter course as described. in
connection with Eqs. (2.5). The metric (3.17) has been
chosen so that gg =R02e '" is a specified function of the
time coordinate Q. Thus we need from Eqs. (2.5) an

equation for 8 (gg)/BQ. For any time coordinate t, one

has

The result is
H = (22r)2r'2. (3.11) 8+g Bggj

'(V'g) g" =-2»~ "i+(V'—g)»"; I (3 1g)
Bt Bt

P~dP++P dP HdQ. —

(3.19)»=II 'e '"(122rR02).This variational principle is now in the canonical form
of Eq. (2.7) and p+, p are the two field amplitudes
(generalized coordinates), p+ and p are their conjugate
momenta, II is the Hamiltonian, and 0 is the inde-
pendent (coordinate time) variable. The solution of
Eq. (3.6) with 'R=0 for H= (22r)2r"2 in terms of p+ and
p~ is

This equation, together with Eqs. (3.16), then speci«s
the metric (3.17) completely. To recover the usual

forms, we solve dt = —XdQ to find

(3.20)t = (42rRO'/H) e

In our case with t=Q, gg=R2't, '", and»'=0, this3.12

gives

(p 2+p 2)1./2 (3.13)

Hamilton's equations, dP~/dQ= —BH/BP+ and dII/dQ
= OH/BQ, show that p+, p, and H are all constants of
motion. The velocity equations, dP~/dQ= BH/BP~ give

p
'—= (dp /dQ)=p /II, (3.14)

which can be used in Eq. (3.13) to obtain the condition

~P ~
=(P '2+-p '2)»2=1. (3.15)

The general solution of the variational principle 8I=0
from Eq. (3.12) is therefore a motion of the point
p=—(p+, p ) with unit Q velocity along any line in the

Let us choose I'o so that this reads t=e '"; then the
metric (3.17) using the solutions (3.16) and the defini-
tions (3.9) becomes'4

d~2 dt2+R 2(t2ygdg2+t2ypdy2+t2p2ds2) (3 21)

pi ———u/(u'+u+1),
P2 = (u+1)/(u'+u+1),
p, =u(u+1)/(u2+u+1). (3.22)

We now wish to repeat much of the preceding analysis
for a metric of Bianchi type-IX corresponding to an

"Note that these choices dier by a factor of 2 from Refs. 5 and
28, but agree with Ref. 6.

"E. M. Lifshitz and l. M. Khalatnikov, Advm. . Phys. 12, 185
(1963l.
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ds' = E—'dO'+-,'R'(e's);, rr, rr;,

where again E.~ e ", and

(3.23)

anisotropic closed universe. The metric in this case is as in type I, although this would no longer be true if we
were to consider a nondiagonal P,, niatrix. In Eq. (3.6)
we set gg=(rs)R' since dete'a=1 as a result of Pi, s=0
as before, but we now have

a i ——siniPd8 —cosrP sin8drtr, R = (6/Rs) (1—V), (3.26a)

a s co——srPd8+siniP sin8drti,

a, = —(drP+cos8drl. r) .
(3.24)

The space dependence of the metric here is the only
difference from the previous case, and rejects a more
complicated homogeneity group, which is now left
translations in the group of unit quaternions, '4 the
covering group for the familiar rotation group 50(3),
whose structure constants appear in the relations (in-
volving the exterior derivative d and the Grassman
wedge or exterior product n, )

where

V(P) =-', tr(e4a —2e—'a+1)
= -s'e4~+ (cosh4v3P —1)+1

—se '~+ cosh2v3P +se @'+ (3.26b)

Thus when we solve Eq. (3.6) for II= (2ir)s. "r„addi-
tional terms arising from 'R arise, and we now find

LP 2+P 2+a—4Q(V' 1)]r/2 (3.27)

To avoid numerical factors in this Hamiltonian, we
have set

1
fI0 i = 2 &ij A j + 0 k &

(3.25) R = (2/3ir)'"e "=—(2GA/3s. c')'"e ". (3.28)

which the diGerential forms o-; satisfy. The coordinates
$8$ are Euler angle coordinates on SO (3), taken over to
the covering group by letting rP have the range 0&&
&4ir, while 0&8&m and 0& g(2sr as usual. The
numeric 4 in Eq. (3.23) is chosen so that when P;;=0, the
space part of the metric is just the standard metric for
a three-sphere of radius R and circumference 2'. Thus
for P=0 this metric is the Robertson-Walker positive
curvature metric.

The action integral (3.2) in this case reads

I= (16ir) ' r"dig;;~a. i Arrs burrs)

with the metric components g,, =4R'(e'~);; referred to
the 0-; basis vectors. Since

The determination of E proceeds as before from Eq.
(3.18), again with X"=0, and gives

H—le—sn(2/3~)1/2 (3.29)

The metric is, therefore,

ds'= —(2/3')H 'e '"dQ'+(6m) 'e '"(e'~)r"rr, a;. (3.30)

The equation dt = —Ldll cannot be integrated explicitly
in this case to give the cosmic time t, since H is no longer
a constant.

The classical solutions of the dynamical problem
posed by the Hamiltonian of Eq. (3.27) are discussed
by these Hamiltonian methods in Ref. 6 and by other
methods in Ref. 5. Ke point out only a few of the most
essential features here. The velocity equations P+'
=BH/8p~ give as before

aihasna&= sin8dgd8dg=(4ir)', dP, /do =p,/H. (3.31)

and since m" and g;; in this basis are functions of t or 0
only, the space integration is carried out with Eq. (3.3)
and subsequent steps leading to Eq. (3.12) proceeding
as in the previous case. The constraint equations (3.6)
and (3.7) must be restudied, however. The forms of
Eqs. (3.6) and (3.7), which are the Gs&=0 Einstein
equations, are known from previous studies of this
metric, " or they can be computed directly. One 6.nds
that x"~; vanishes identically when both g;; and x" are
diagonal in the 0-; frame and independent of the space
coordinates. Thus Eq. (3.7) is satisfied automatically

34 See, for example, C. W. Misner and A. H. Taub, Zh. Eksperim.
i Teor. Fiz. 55, 233 l1968) LEnglish transl. : Soviet Phys. —JETP
28, 122 (1969)j."C. W. Misner, Gravity Award Essay, Gravity Research
Foundation, New Boston, N. H. , 1967 (unpublished); see Refs. 5
and 6; M. Ryan, J. Math. Phys. 10, 1724 (1969); C. G. Behr,
Astron. Abh. der Hamburger Sternwarte 7, Xo. 5 (1965); Heck-
mann and Schucking, Ref. 30; A. Taub, Ann. Math. 53, 472
(1951).

1 —
P r2+P r2+II—2a—40(V ] ) (3.32)

in place of Eq. (3.15).Also, the equation dH/dQ = 8H/80
now gives

d lnH'/dQ = —4 (1—P") . (3.33)

Near the singularity, i.e. , for 0~ oo, Eq. (3.32) reduces
in first approximation to P"~1, and so Eq. (333) gives
H=const as for the type-I metric. A closer inspection
will show that these approximations are valid only for
finite 0 intervals, roughly while

~ P ~

(-',0, interrupted by
epochs where the potential V does play a role. The
anisotropy potential V(P+, P ) is positive definite with
V=8(P+'+P ') near P=0. The potential walls rise
steeply away from P =0, with the equipotentials forming
equilateral triangles in the P+P plane, as shown in Fig.
1. One of the three equivalent sides of the triangle is

By using these equations to eliminate p+ and p from
Eq. (3.27), one finds the relationship
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described by the asymptotic form

V' ise s~+, P~~—oo, (3.34)

which is valid in the sector ~P ~
(—&3P~. As 0 ~~,

the space curvature terms e~"(V—1) in H can only
play a role if t/'))1, so we will use the asymptotic form
(3.34). The condition that V be important is easily seen
from Eq. (3.32) to be H 'e '"V=1 or e 't"+'e+'=3H' or

P~ ~P„,tt = ——,'0 —
s ln(3H') . (3.35)

Thus P,tt defines an equipotential in the P plane
bounding the region in which the potential (space
curvature) terms are significant. When P is well inside
this equipotential, one has

~

P'
~

= 1 and H =const,
consequently, from Eq. (3.35), ~P„,»'~ =—,'. Thus the
P point moves twice as fast as the receding potential
wall, and at finite intervals as 0 —+~, the P(Q) tra-
jectory will collide with the potential wall and be de-
flected from one straight-line (type I) motion to
another.

Ke will need a few details of this "bounce" later, so
let us derive them from the Hamiltonian using the
asymptotic form (3.34). Then

H = fP '+P '+ s exp (—8P+—40)1'" (3.36)

shows that H is independent of P in this approximation
(i.e., the equipotential is asymptotically a straight line)
so p will be constant during the bounce. Another con-

FIG. 2. Angles 8; and Hf are the angles of incidence and of reQec-
tion for a bounce from one of the three equivalent walls of the
triangular potential V(p). Because this wall moves to the left with
speed P~,n'~ =—', while the system point p(Q) moves with speed
~p'[ = 1, one has a limit ~e;

~

&60' in order for a bounce against
this wall to occur. In other cases, the bounce will occur on a dif-
ferent wall (not shown). Note also that er)90' is possible because
of the motion of the wall.

stant can be found by comparing the equations

P+' —— BH/8P—+ +4(3H——) 'e s~+ 4"

and
H'=8H/80= —2(3H) 'e se+ 4"

with the result E =const, where

ip +H ip +(p 2+p 2+ ie se+—4Q)1/2 —
(3 37)

These two constants of motion allow us to find P~' and
P

' after the bounce in terms of their values before.
Since ~P'~ =1 well before and well after the bounce, we
can parametrize P as follows (cf. Fig. 2): initially
(8 ');=sin8;, (P+'), = —cos8;, and in the final state
(P ')r=sin8f, (P~')f=+cos8f Then. the constancy of

p and E gives, respectively, since P~' p~/H, ——

H; sine;=Hf sin0~ (3.38)

H;( ——', cos8~+1) =Hf(—', cos8f+1) . (3.39)

These can be combined to give an equation for Of in
terms of 0;,

S1118f—Sl»8~ = s Sill(8~+8') ) (3.40)

which is sufhcient for the application in this paper. (In
terms of the Lifshitz-Khalatnikov parameter u of Eqs.
(3.16) and (3.22), the relationship (3.40) is just' '
NJ

——I;—1 to within some permutations of the axes,
and' Hr/K = (ur'+uf+1)/(u, s+u, +1) The firs.t com-
putation of a formula for Hr/H; was given by Ryan. ")

IV. QUANTIZATION

The canonical form (3.12) for the classical equations
leads us to choose as basic commutation relations

FIG. 1. Equipotentials of the function V(p) are sketched here in
the p plane from the asymptotic form of Eq. (3.34). (Equipoten-
tials near the origin, not shown, are closed curves for V(1.)
Between successive equipotentials on this diagram, which have
separations Ap= j., V increases by a factor of e =3&&10'. From
Eq. (3.32), the systein point P(fi) moves with velocity ~dP/dD

~

= l
except when it approaches a limiting equipotential V= H'e4". This
limiting equipotential moves outward with velocity ~dP ~ n/
dti~ = —', except during the brief period when the system point P
bounces against it. The velocity dp/dQ changes its direction in an
ergodic way as a result of these bounces.

[l a)Ps)=18~&,

which can be satis6ed by choosing

+
i 8P+

36 M. Ryan (private communication).

(4.1)

(4.2)
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The eigenfunctions @„of the Hamiltonian (3.27) are
then just the eigenfunctions of

cjl2 82

+s "LV(P)—1j,
8P+' 8P

(4.3)

and the eigenvalues E„of II are obtained from those
ofH)

H'y. =E„'y„. (44)

Since II is explicitly a function of 0, the eigenvalues
will also depend on Q, E„=E„(Q).The wave function
will be a linear combination of eigenfunctions

(4.5)

with time-dependent amplitudes. We will not attempt
here to obtain a wave function P with any precision. We
are merely interested in a erst glance approximation to
indicate the conditions under which the classical limit
(high quantum numbers e))1) is inadequate.

For large 0, near the singularity at 0= ~, only the
asymptotic form of the potential V(P) is relevant, and
we see from Fig. 1 and Eq. (3.34) that V(P) is a poten-
tial well with a triangular base and very steep (ex-
ponential) walls. It will be a good approximation to
treat the potential walls as infinitely steep, and then the
eigenvalue problem (4.4) is just that which the Schrod-
inger equation gives for a nonrelativistic single particle
confined in a triangular box in two dimensions. For a
square box the eigenvalues and eigenfunctions are
elementary, and one has H'P = (7r'/L') (m'+e')g, where
L' is the area of the square, and the quantum numbers
ns and e are positive integers. We estimate that the
eigenvalues for a triangle will be essentially the same as
those for a square, and thus we take E„=

~

e
~
/L, where

~
m~ corresponds to (m'+n')'~'. The area of the triangle

we compute from Eq. (3.35) in the simplified form
P„,ii= —-,'Q which holds for large Q since lnH is nearly
constant. The area of the triangle is therefore L'
=3&3P„,iP =4v3Q', and our estimate of the eigenvalues

becomes

HgQf =H;0;. (4.7)

But Fig. 5 also shows that Q; Q43/4sin8y=0. 62Q,
where 0 gives the time at which the bounce occurs.

bounce, H decreases as described by Eq. (3.37) and the
direction of P' changes as described by Eq. (3.40). Our
problem is to estimate the long-term mean rate of
decrease of H, averaged over a large number of runs and
bounces as 0 —+~. For almost all initial conditions, the
direction of P' changes ergodically as a consequence of
this bouncing around. Thus the long-term average rate
of decrease of H will be the same for all these ergodic
motions. We make the assumption that the long-term
average rate of decrease of H is in fact the same for al/
initial conditions Lexcepting only (P )s ——0= (P ')s and
two permutation equivalent sets of initial conditions for
which P is always confined to a single axis of the triangle
giving a one-dimensional motion]. By this assumption
we are able to compute the average behavior of H by
following it for any single t,ommmemtly chosen set of
initial conditions.

Consider therefore an orbit P (Q) for which, at the first
bounce, 8,+8i =60'. Then, by the geometry shown in
Fig. 3, 0; for the second bounce will be exactly the same
as it was for the first bounce, and similarly every sub-
sequent bounce will have, conveniently, the same 0;.
From Eq. (3.40) we find that 8~+8' ——60' implies 8;
= 15.5'. (The corresponding e parameter is"' u
=—',+-,'+5.) A sketch of this quasiperiodic orbit is given
in Fig. 4. As a further simplification we let the bouncee
take place at the midpoints of the midpoints of ths
sides of the triangular equipotentials. At each bounce
H decreases according to Eq. (3.38) by a factor (Hi/H;)
= (sin8, /sin8~) =0.382. For an accura, te way to see the
average behavior of H on this orbit after many bounces,
I am indebted to a suggestion from Dr. Jacobs" -who

pointed out on the basis of Fig. 5 that the times 0, and
Qf which measure the duration of the "runs" before and
after a bounce are in the same ratio Q,/Qf ——sin8;/sin8q
as H~/H;. Thus

E„-(-', )'"i iQ
—'. (4.6)

We will use this formula to deduce how the quantum
number m changes as a consequence of the changes in
H or E„, which can be computed from the classical
theory when n is large.

Let us return, therefore, to the classical solutions for
the Hamiltonian H of Eq. (3.27). We have seen that as
Q —+m, P(Q) changes in a series of constant-velocity
"runs" from the potential wall on one side of the tri-
angle to that on another, and that these runs are each
terminated by a bounce against the potential wall. The
potential wall is constantly moving outward as de-
scribed by Eq. (3.35). During the runs H is constant,
~P'~ =1, and the direction of the velocity P' can be
specified by a parameter u as in. Eqs. (3.16). At each

e„
FIG. 3. The normals to two sides of an equilateral triangle meet

at 120, so the angle of reflection Hf after one bounce, and the angle
of incidence 0'; for the following bounce are two angles in a triangle
whose third angle is 120'. Consequently, Of+0 =60'. The condi-
tion for the simplest quasiperiodic orbit, namely, 8; =6; where all
bounces have the same incident angle, thus requires Of+8;=60',
and leads from Eq. (3.39) to 0;= 15.5'.

s' K. Jacobs (private communication).
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Suppose this bounce was the eth in the sequence, with
Q=Q„ the time at which the bounce occurred, and
H =H; the value of H just before this eth bounce. Then
we have Q;=0.62Q„. But Q~ is the duration of the run
preceding the (m+1)th bounce, so Qr ——0.62 0„+t,' and
Hr=H„+t is the value of H just before the (I+1)th

FIG. 5. Geometrical relations between two successive steps in the
quasiperiodic orbit of Fig. 4. Because the potential walls move out
with velocity dsw, ||/dQi =-'„we can take the position of the left
hand wall to be ip~,||i =—,'Q at the time Q at which the bounce
occurs. This distance —',Q in the P plane here is seen to be a common
side for the two similar triangles shown here, whose large angles
are 120', and whose other angles are 8;= 15.5' and 0~ ——44.5'. The
lengths of the sides opposite the 120' angles are computed from
the velocity idP/dQi —= (P+"+ii ")'"=1 to be just the elapsed
Q time between successive bounces, i.e., Q; prior to the bounce
shown (at time Q) and Qy after. The law of sines then gives
(sin120')/Q; = (sing~)/(2'Q) for the smaller triangle and (sin120')/
Qy= (sin8;)/(-,'Q) for the larger triangle so that Q; sinter =Qr sins;
holds, leading to the adiabatic condition of Eq. (4.7).

Fro. 4. The simplest quasiperiodic orbit is sketched in the P
plane. The system point P(Q) approaches the midpoint of the
potential wall with an incident angle of 8;=15.5', and is reQected
at op=44. 5'. Then it proceeds toward the next side of the tri-
angular potential. Because the strength of the potential is decreas-
ing (equivalently, the potential walls are moving outward), the
next bounce, although the angles are as before, occurs at an. in-
creased p distance from the origin.

bounce. In these terms, Eq. (4.7) reads

H„+gQ„+g=H„Q„, (4.8)

(HD) =const. (4 9)

and shows that HQ returns to a fixed, constant value
just before each bounce. Thus, although HQ is not a
constant, it is an adiabatic invariant whose value does
not drift in a secular way as Q —+~. By taking an
average over many runs and bounces, we may conclude
that

V/e will now use the above results to estimate how
quantum numbers change as Q —+00 at the singularity.
From Eq. (4.6) we see that E„Q= (2~/3'14)

i

tsar,

so that
when e is large, the classical calculations with H E„
apply. These calculations tell us that e is an adiabatic
invariant. Thus the time dependence of the Hamiltonian
will cause transitions from one (instantaneous) eigen-
state of H to others, and e will vary with time, but not
in such a way as to give long term secular changes of m.

On the average, m remains constant as Q —+~:

(e)=const. (4.10)

In particular, if it is assumed that the present state of
anisotropy in the expansion of the Universe is classical,
so

i
Ni»1 now, then it follows that as we extrapolate

back toward the initial singularity 0~~, hei remains
roughly constant and the quantuIn state of the Universe
remains classical (ivy»1) all the way back to the
earliest times when the radius of the Universe was very
much smaller than 10 "cm.


