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The quantum theory of vortex waves is used to study phonon scattering by a vortex in He II.
If the scattering amplitude is expanded in the number of quanta of vortex waves emitted or
absorbed, the resulting inelastic amplitude diverges at long wavelengths. Inclusion of in-
elastic effects to all orders avoids this unphysical behavior and yields a differential cross
section essentially equal to that for elastic phonon scattering.

I. INTRODUCTION

Below 1 K, phonons and rotons in He II form a
dilute quasiparticle gas with long mean free paths
and lifetimes. In this limit, the interaction be-
tween quasiparticles becomes negligible, but
scattering can still occur because of spatial in-
homogeneities. An example of great interest is
the scattering by quantized vortices, '~' which has
been observed experimentally both through the
energy loss of large vortex rings4 and through the
attenuation of second sound in rotating He II. '
Previous calculations' "have treated the vortex
as rigid and thus consider only elastic scattering
of quasiparticles. Such a description cannot be
wholly accurate, however, because a vortex has
internal degrees of freedom corresponding to
waves propagating along its axis. "&" Conse-
quently, inelastic events that alter the internal
state of the vortex must be included along with
the usual elastic ones. Indeed, inelastic roton
scattering has previously been suggested'~' to
account for the discrepancy between theoretical
and experimental values of mutual friction in ro-
tating He II, but no detailed calculation has yet
been carried out.

Inelastic scattering is most simply studied by
quantizing the internal states of the scatterer.
The present problem, therefore, requires a quan-
tum theory of superfluid vortices, which has re-
cently been proposed and applied both to He II"
and to type-II superconductors. " This formalism
will now be used to study the inelastic scattering
of quasiparticles by a vortex in He G. For defi-
niteness, the present paper is restricted to phonon
scattering, where the interaction is sufficiently
weak to permit a first-order calculation in Born
approximation. The same basic formalism also
applies to rotons or He' impurities, but the de-
tailed calculation of the scattering cross section
would be considerably more complicated.

When the vortex is excited to one of its internal
oscillation modes, the altered velocity field modi-
fies the interaction with the incident quasiparticles.
As shown in Sec. II, it is possible to incorporate
both elastic and inelastic scattering in a single
interaction Hamiltonian. The transition amplitude
for phonon scattering is evaluated in Sec. III and
then used to determine the differential cross sec-
tion averaged over the thermal distribution func-
tion of the internal vortex modes (Sec. IV).

II. INTERACTION HAMILTONIAN

Consider an unbounded fluid of density p containing a single vortex line with circulation I(:. For numer-
ical purposes, we shall take w= h/m =10 3 cm sec ', which is appropriate for He II, but the theory is
more generally applicable. If the fluid is at rest at infinity, then the velocity field arises solely from the
presence of the vortex and is uniquely determined by its instantaneous configuration. The position of the
vortex will be specified by a three-dimensional coordinate vector R', which is a function of the arc length
along the vortex. It will be convenient to resolve all vectors in cylindrical polar coordinates R'= (r ', z '),
where r' is a two-dimensional vector in the xy plane, perpendicular to the undeformed vortex axis. The
fluid velocity at point R is then given by"

v(R) = (~/4v) jds'x (R —R')IR —R'1

where the line integral is along the axis of vortex. Equation (1) is a direct analog of the Blot-Savart law.
We assume that the vortex initially lies along the polar axis with undeformed position (0, z'). If the

axis is now slightly deformed to the position [u(z'), z'], Eq. (1) may then be written
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K (z + du/dz '
) x [r —u (z '

) + z (z —z '
)]vR = —

J
dz'

OO [r —u(z')+z(z —z') l'
(2)

Although this expression is rather complicated, it becomes simple in two limiting cases: If u= 0, the
velocity reduces to that of a rectilinear vortex at the origin

v, (r) = (v/4v) jdz'z x r[r'+ (z —z'}'] '~' = (x/2m') (z x r) .

If u is finite but constant, the total velocity is given by

v(R) =v, (r —u) = (v/2)) [r —u [')[z x (r —u)], (4)

where v(R ) is the total velocity field of the vortex and R and P are the position and momentum of the
quasiparticle. If the quasiparticle is scattered from an initial momentum RK; to a final momentum kKf,
then the corresponding matrix element of Eq. (5) becomes

H . = (2Q) h(K +K.) Jd Re f ~ v(R), (6)

because the vortex is displaced with no bending. This result also follows directly from Eq. (2) with
du/dz'=0. For [r[» [u[, Eq. (4) maybe expanded in powers of u, and the linear term provides a good
description of the first far-field correction. Such an expansion clearly fails for )r ) & tu(, however, be-
cause each term becomes singular at r=O, rather than at r=u.

When a quasiparticle is added to the system, it interacts with the vortex line both through the circulating
velocity field and through the altered density near the vortex core. Unfortunately, any study of the effect
of density variations requires a detailed theory of the vortex core. For this reason, we here consider
only the scattering by the fluid velocity and assume that the interaction energy is given by'

H = —,
' [P ~ v(R )+ v(R ) ~ P ] (5)int

where the plane-wave states are normalized in a, volume Q. A combination of Eqs. (2) and (6) yields

Ru, ), -i(Ky —K() 17. . du(u') u-u(u')+u(u —u')
)fi 8mQ f i [r -u(z')+z(z —z') ['

which may be rewritten with a simple change of variables

H . = (h~/8))Q)(K +K. ) Jd'HJdz'[z+du(z')/dz']xRR 'exp{ —i(K —K.). [R+u(z')+z'z]].
'L i

It is now possible to carry out the integral over R explicitly

(8)

= 27)i f R 'dRV [2(KR) 'sinKB]=4viK
K

dR ~ sinKR
(9)

Substitution of Eq. (9} into Eq. (8) gives„.(K +K.)x(K -K. )i i

K
2

z+ exp[- i(u —u. )z —i( I —l. ) u(z)],du(z)
dz — f i f (10)

where we have resolved the three-dimensional wave vector in cylindrical polar coordinates K= (I, y) and
rearranged the scalar triple product. Only a single integration remains, and the superfluous prime has
now been omitted.

To this point, u(z) has been treated as a given classical function with Hfi as the matrix element for a
transition induced by the deformed vortex. We now quantize the theory by interpreting u(z) as an oper-
ator that acts on the internal states of the vortex; in this way, Hf becomes an operator that causes tran-
sitions between the various excited internal states. The details of the quantization procedure derived in
Ref. 13, and only the relevant results will be given here. If the system is assumed to obey periodic
boundary conditions over a length L, along the z axis, the oscillation modes of the vortex may be labeled
by a one-dimensional set of quantum numbers k= 2vs/I. , where s is a positive or negative integer. These
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internal states are equivalent to a set of independent harmonic oscillators with the second-quantized Ham-
iltonian

H = 2Q h(u (a a +aka ).
V

Here the operators ak~ and ak create and destroy one quantum in the kth mode, and they satisfy the usual
boson commutation relations

k' k' kk' (12)

The frequency of the 0th mode is given by

= (~k'/4v) ln(1/1 k l a), (13)

where a is a length characterizing the radius of the vortex core. Although the precise value of a depends
on the model used for the core, vortices in He II are well described by the value a = 1 A. The operators
a and a~ enable us to express the displacement operator u(z) as an expansion in normal modes

u(z) = (I/2pvL)"'Q [(x+iy)a„e + (x —iy)a e ]. (14)

It is interesting to note that this expression differs considerably from that arising in the theory of elastic
waves"; its form reflects the peculiar Hamiltonian in the vortex system, where ux and u& themselves
constitute the conjugate variables.

As an example of the utility of the second-quantized formalism, we compute the following correlation
function of the displacements:

&lu(z)-u(z')I'& = &[u(z)-u(z')] [u(z)-u(z')]& = &lu(z)l'+ lu(z')l'- [u(z) u(z')+u(z') u(z)]&. (15)

Here the angular brackets denote an ensemble average at temperature T= (kIIp) ' over the states of the
vortex

( ' ' '
&

= Tr [exp( —PH ) ' ' ' ]/Tr[exp(- PH )]= Tr[ p
' ' ' ], (18)

where p = exp(- pH )/Tr[exp(- pH )].
5 5 V

The evaluation of Eq. (15) is straightforward and gives

(lu(z) —u(z')l'& = (0/pvL)Q (e —e )(e —e )(a a +a a

= (2h'/p~L)Q coth( —,'PRu )[1—cosk(z —z')]. (18)

With parameters appropriate for He II (z =k/m =10 ' cm' sec ', a =1 A, T =1'K), it is easily seen that
the classical limit is correct for all but the shortest wavelengths (turk«kHT if k& 10' cm '). Equation
(18) may then be evaluated approximately

1 k
(lu(z) —u(z ') l'& = (4/Pp~L) Q ~„'[I—cosk( —z ')] =—

dk, = 8ml z —z ' l/pz'P ln(L/a),
32m t. sin'[-,'k(z —z')]

Ppv'Lln I, a m

0

(19)

where the weak logarithmic dependence on k has been neglected in the third line. The above calculation
assumes that Iz —z l «I., because the integral approximation destroys the periodicity of Eq. (18) in
lz —z l; a more exact expression is obtained by evaluating the sum directly, but Eq. (19) suffices for
our purposes.

The displacement operator [Eq. (14)] may now be substituted into Eq. (10) to give the transition oper-
ator Hyf, which we separate into two terms
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H . =H .&'&+H .&'&, (20)

where
. (K +K .)x (K —K .) ~ z

1 kxi i i -i(k -k.)z -i(1-1.) u(e)
fdze f ' e (21)

. (K +K.) x(K -K.) -i(k —k.)z 1
-i(l —1.) 'u(e) -i(l —1.) ~ u(z)

de dz
(22}

and Eq. (22) has been symmetrized in the noncommuting operators u and du/dz. These two terms are
quite different, as can be seen from the following argument. In the limit u-0, the term Hfi

"& contains
the scattering by the undeformed vortex [Eq. (3)] while IIf t'& vanishes. Furthermore, H i &2& involves the
operator du/dz and is thus insensitive to the long-wavelength modes; in particular, Hfi t & vanishes if u
reduces to a constant displacement, when Hfit'& again contains the total scattering [Eq. (4)]. We noted
previously that Eq. (4) cannot be expanded in powers of u; for the same reason, Eq. (21) must be treated
as given, retaining ter&ns of all orders in u. In contrast, Eq. (22) may be expanded in the displacements,
neglecting all but the leading contribution. Kith this approximation, we obtain the transition operators

(1)
-i(k -k.)e -t(i -i.) u(e)

H. =V fdze f e (23)i 1

(2) f i
-i(k -k.)e

H = Q J dz e (It/2pvL)'~' [kV2 e a —kV2 e a ],&y p ikz 4 ike
z

where Vl =V (K, K.) = (kzi/2A)[(K +K.)x(K —K.) z/~K -K.~'],
1 ' i i 2

(25)

V -=V (K,K.) = -(k~/2fl)[(K +Z.)x(K -K.) ~ (x-iy)/~K -K,~']. (26)

The physical difference between Hfit'& and Hfi'2& can also be understood by noting that u(z) is linear in
the creation and destruction operators. Consequently, an expansion in powers of u is permissible only if
dominant scattering process corresponds to small changes in the occupation numbers of the various normal
modes. In the long-wavelength limit, however, the energy krak per quantum [Eq. (13)] becomes very
small, and the transition involves many "soft" quanta. Thus, any expansion based on small quantum num-
bers is bound to fail whenever long-wavelength modes are important, as in Eq. (21). The present situa-
tion is similar to the "infrared catastrophe" in electrodynamics, "where an expansion in the number of
photons leads to divergences at long wavelengths.

III. TRANSITION AMPLITUDE

In Born approximation, the transition amplitude is proportional to the matrix element of the interaction
Hamiltonian. Equations (23} and (24) already incorporate the initial and final states of the phonon, and we
must now consider the internal states of the vortex. Since B~ represents an assembly of independent
harmonic oscillators, the corresponding complete set of states may be expressed as a direct product
over all normal modes. It is convenient to work in the occupation-number representation, but other
choices are also possible. " If (n} and (n'] denote the set of all initial and final occupation numbers, then
the particular transition (n)-(n') is specified by the matrix element ((n']IHfil(n)). Of the two terms
in Eq. (20), the operator Hfi

"& can only alter a single occupation number, and we readily find

&(n']~H, ~(n)) = fdic e f (k/2pgL)' '

xZ ([ g t&, ][V2ke n "'5, I
—V ke (n + I)"'5, ]]. (27)

pek O' P np, np+ 1

In contrast, Hyg&'& contains all powers of u and requires a more difficult calculation.
Equation (23) involves the operator (lf —li) ~ u(z), which may be rewritten

(1 —1.) u(z) = (0/2p»L)' 'Z [(1 —1.) ' (x- iy) e a„+(1—1.) (x+iy) e a ]
k i k i



132 ALEXANDER L. FETTER 186

=Q (Xe a +X*e a ],i' „-i'
k

(28)

where X = (h/2ptcL)'~ (1 —1.) (x —iy). (29)

Operators referring to different normal modes commute, and the exponential in Eq. (23), therefore,
factors

ikz —ikzexp[-i(1 —1.) u(z)] =g exp[-i(Xe a +x*e a )].
k k k

Furthermore, the eigenstates form a direct product, so that the transition amplitude becomes

&(n']~H . ~(n)& = V Jdze ' ''lI &n' exp[-i(&e'"'a +&+e ' 'a )]~n )

(30)

(31)

involving matrix elements of the form

M, (~, P) = &n'ie ' " ' in).x &a+ a~
n'n (32)

This quantity is studied in Appendix A, where it is shown that Mn &n is proportional to a Laguerre poly-
nomial. " In particular, Eq. (31) may be written

z 1 nknk

containing a product of Laguerre polynomials of argument

(33)

For an order of magnitude estimate, we may take ilf —lil as the thermal wave number of the phonon
= AIN'T/5c; with typical numerical values for He II (c =238 m sec ', p =0.145 gem ', L =10 4 cm), Eq. (34)
becomes i Xi' = —,'x10 ' at T = —,

' K. Since I Xi' is very small, it is tempting to expand Eq. (31)

&(n '] ~{n)) = VI jdze ~ &{n'j~l —iQ (Ae a +X e a )+. . . ~{n]) = V fdz

(35)

Here, the first term corresponds to elastic phonon scattering that leaves the vortex in its initial state,
while the inelastic corrections are formally of order ) X). We shall see below, however, that such an ex-
pansion leads to a long-wavelength divergence, thereby showing that the inelastic processes play an es-
sential role.

In the present approximation, the probability per unit time for a particular scattering event Kz{n]
K(fn'] is given by

2~@ '5(E -E-. ) [&{n')[a .[{nj)['= 2~@-'n(Z -E.)J&(n'][a &»+If &» {n))[2 (38)

where Ef and Zi are the final and initial total energies. An incident phonon at —, 'K has a wave number
=k&T/hc = —,'x10' cm ', which characterizes the maximum wave vector IKf —

K&I that can be transferred
to the vortex. For elastic scattering, the energy of the phonon is conserved, so that Kf =Xi. For in-
elastic scattering, however, the change in the phonon energy must equal the net energy of the vortex wave
quanta emitted or absorbed. It is convenient to consider separately the single-quantum processes and
multiquantum processes. (i) If only a single quantum is involved, then the energy of the quantum must be

(hx/4n')(K —K. )' in(1/~K —K.
~

a)& (Ix/4m)(k Th/c)'I (nh ck/Ta) = 3x10 "erg,
Z
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which is much less then the thermal energy of the incident phonon (=5 x10 "erg). Since Hyg
&»& is linear

in the creation and destruction operators, it follows that any terms of Eq. (36) involving Hyi&»& may be
simplified with the approximation 6(Ey —Ei)-6(bc' —kcKi). (ii) Multiquantum processes are consider-
ably more complicated, because the exact conservation of momentum and energy are expressed by the
equations

k -k. =Q (n -n')k,

hcK —f&'cK. = g I»& (n —n ' ) = Q (n —n ' )(hvk'/4») ln(1/ l k l a) . (37)

Since k can be either positive or negative, there are always processes for which the change in the phonon's
energy 5c(Ky —Ki) becomes comparable with the initial energy hcKi. As a result, the energy of the vortex
waves must be included explicitly in the term of Eq. (36) that involves lan')

lHyi
"& lan]) l'. This calcu-

lation is carried out in Appendix B; the probability of a particular energy transfer turns out to be dis-
tributed about Ky =Ki with a width Ruq, where q is a characteristic wave number q =2»lip —1i l»/p»»Pln
x (L/a) & 10' cm '. For all cases of interest, h~q& 10 "erg is much less than kBT, and the Physically im-
portant inelastic processes transfer a negligible amount of energy. The important conclusion is that the
right-hand side of Eq. (36) may be approximated as

(36)

even when all inelastic contributions are included. This result is understandable because the dominant
multiquantum processes involve "soft" quanta with small wave numbers. The precise form of the asso-
ciated energy [~k' ln(1/I k la)] then guarantees that the total energy is also small.

In any practical experiment, the final state of the vortex is not observed directly, and the physically
interesting quantity is obtained by summing Eq. (38) over all quantum numbers fn']

(39)

where the second line follows from the completeness of the oscillator states. Although the matrix element
in Eq. (39) can be evaluated in its present form, it is simpler to realize that the measured cross section
represents an ensemble average over the initial states of the vortex. We, therefore, compute

2rIf c 6(K —K.)g( )((n] p
~
(nj) (( )n~ H. H .~(n))

= 2»h c 6(K —K )Tr[p H . H . ] = 2wh c 5(K —K. )(H . H .),
Z &&» 2 i i i

where the statistical operator p„is given in Eq. (17).
The operator Hy~ is a sum of two terms, and Eq. (40) thus contains three different contributions

(~ H ( )
~

» ) ~ (~ H ( )»
) + (H

(1 ~H ( ) H ( )~H (1))

(40)

The first term is the most difficult and will now be evaluated in detail

(iH i') = V i'Jdzdz'e
i 1

x g (exp[i(Ae a„+».*e a ] exp[-i(»e a +A*e a )]).ikz ' „-ikz' f . ikz -ikz
k

This expression can be simplified with the identity"

e e = e exp(~»[A, B]),
A B A+B

which is valid whenever [A, B] commutes with A and B. A simple calculation gives

(42)

()&H . (') =
f

V (l'Jd d ze z~ » + (exp[-il&l'sink(z —z')] (exp[- i».(e —e )a —i».*(e(1)»,-i(k -ki)(z-z') ikz jkz ' . ~ -ik~
i 1 k k

zkz
) f])) ~ ~ f (~y -ki)( — ') ~ . ik ik/ -ikz -ikz '

k 1
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where the phase factor cancels identically in the product over positive and negative values of k. The
final ensemble average may be evaluated with a theorem of Bloch, "or with Eqs. (A16) and (A17)

(lH . l') =
l
V l'fdzdz'e f ~ II exp(- IA. I'[1 —cosk(z —z')]coth( —,'Ph~ ))

(1). . . -i(k -k )(z-z')
1 k k

= lV l'fdzdz'8 ' f "' exp(- lzl'Q coth(-,'pm' )[1 —cosk(z-z')]]
1 O'

=
l

V l'fdzdz'e ' ' exp(- —,
' ll —l. l'(Iu(z)-u(z') I')]. (44)

Here, the last line has been rewritten with Eqs. (18) and (34). The summation over k has already been
computed in Eq. (19), and we finally obtain

(45)

where q = 2»li —1 l'/p~'Pin(L/a) (46)

is the characteristic wave number for axial~momentum transfer. In the limit Ilf —1-I -0, the right-hand
side of Eq. (45) is sharply peaked about kf =ki, which reflects the dominant role of the elastic processes;
nevertheless, it is clearly wrong to expand Eq. (45) in powers of Ilf —1;I' because the denominator would
then vanish for kf= ki. This same long-wavelength divergence would occur if Hfi~» were expanded as in
Eq. (35). It is evident from Eq. (44) that inelastic effects reduce the matrix element (IHfi~'& I') from its
value 2vL I Vl I'5(kf —k;) for purely elastic scattering.

The remaining contributions to (IHfil') are easily computed. Consider first (IHfi "I') which follows
from Eq. (24):

( (2)g (2)) ( / )f, -i(kf-k, )(z-z')

I I ~ I

(0/'2p&L) fdz dz, i(kf ki)-(z z-) ~ -2
l

V l, [(a g
)

ip(z-z')
( g) -ip(z-z')]

= (Lk/2ptc)l V
l

(k —k. )'coth( 'P5(u . ). — (47)

Here &ufi denotes the frequency of the vortex wave with wave number Ikf —kil. In a similar way, the
cross terms between

Hfi
"& and

Hfi
"& become

H "'~H (".H "'~H "' —2B. H "'~H "'
fi fi fi fi fi fi

= 2RelV jdzdz ' f (ff/2qvL)' 'Q p[V* (
p

iPz '( -i(lf -i;) ~ u(z))] ) (48)

The ensemble averages may be computed with Eqs. (A16) and (A17)

(a e f ) = (a II exp[- i(&I. e a + A*e a )])
-i(l -1;) u(z) ikz ikz-

P P k

= (a e x[p-i(»e a +».*e a )]) II (exp[-i(xe a +»*e a )])

= [(- i& e )/(e P —1)]II exp[- —,
'

I ». I' coth(-,' Pk~ )], (49a)

(a e f ' = [(-iX*e )/(1 —e P)]II exp[- —,'I». l'coth( —,'Ph&u )].
p

(49b)

As shown below, the final cross section converges even if Eq. (49) is expanded to first order in &&., and
we find
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&II H H H &
= 2Re{V i dz dz ' f z (fz/2ptcL) '~'

xg [-zp(V+~e' /(e I 1-)- V ~+e /(1 —e P))))

= 2Re[-iV (Iz/2pvL)"'L (k —k. )(V*X/(e fz 1—)+ V X*/(I —e f ))]1 f i 2 2

= —2(L'/Pk~ .) (k/2peL)" '(k —k. )Re[zV (V*A+ V A. *}),
z f i 1 2 2

where the condition Rofz «kI3T has been used in the last line. Equation (25) shows that iV, is real, while
the real part of V,*~ is given by

.ReV X = —
& Re{(1 —1.) ' (x —zy) [(k +k. )z x (1 —1.) ~ (x+zy)+(k —k. )(1 +1.)

2 2fl
IK K Iz

z z z z z

x z ~ (x+zy)]) = — Re{(1 —1.) ~ (x- zy)
sic (e/2p~L)"'

IK -Kl'

x;[(k +k. )(i -i.) ~ (~+zy)+(k -k. )(1+1.) ~ (~+zy}]]

[(i +i.)x(i -i. ) ~](k -k. ) = z(a/2p~L)' '(k -k. )V, .
K Kl' z z z z 1

Z

(51)

In this way, we find

&H . H . +H . H . &
= [2L(k -k. )'/pp~ ~, ]IVII' =swLIV, I'/p~ p»(L/~)(2)j. (1) (I)j. (2)

where the logarithmic factor has again been approximated as In(L/a). The sum of Eqs. (45}, (47), and

(52) finally gives

(52)

&H H &
= 2LI v, I'~[q + (k - k )'] '+ [«L/p~ e»«/~}](21 v, l'+

I v21'),

which includes both elastic and inelastic processes. The last two terms remain finite as kf -k, thereby
justifying our approximate treatment of Hfzz" in Eq. (24). It is possible to repeat the above calculation
with the more exact expression Eq. (22), but the additional corrections are negligible.

IV. PHONON DRAG FORCE ON A VORTEX

In Sec. III, the transition probability was summed over the final states of the vortex and averaged over
the corresponding initial states. It is also necessary to sum over the final phonon states, which are
usually not detected; hence the total transition rate becomes

2vS 'c 'Qi Z 5(If -A;) &IH, I'& = fl(2«) " ' J«I dX dk «If -If, )&IH, I'&

= flan(2zz@) 'c'-. 'J dk -&IH .I'& dy =&a&dy I,
2

(54)

where &w& is the rate of transitions per unit length of vortex line into an angular interval between yy and

yf+ dlff. The incident flux of phonons on the vortex is given by E= clz/QKz, and the differential cross
section for scattering of a phonon with incident wave vector K& reduces to

(55)

where lf'=K ' —kf' is determined by energy conservation and the angular brackets again denote an en-
semble average over the initial states of the vortex.
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We now examine the various terms of Eq. (53). It can be seen from Eqs. (25) and (26) that (V, I' and
( V, (' are comparable in magnitude. Furthermore, they both have the same denominator (Kf —K~('

= [(kf —ki)'+ ( lf —li)']' and are peaked functions of Ikf —kil with a natural width Ilf —lil. The additional
factor in the first term of Eq. (53) arises from the inclusion of inelastic effects; it is also peaked as a
function of (kf —ki(, but its width is given by q= 2m( lf —li('/prr'pin(I. /a). The ratio of these quantities is

q/I 1 I.
I

= 2rrl 1 I I/prr'Pin(I-/a) ' 2~(k T)'/@cprr'In(I/a) = 10 '
f i f i 8 (56)

because (lf —1 ( &K =k&T/kc. We see that q is much smaller than (if —1.1; hence the slowly varying fac-
tor ( V, (' in the first term of Eq. (53) may be evaluated at kf =ki, while the second factor is approximate-
ly a Dirae 6 function m6(kf —ki).

The differential cross section may now be found explicitly from Eqs. (53), (55), and (56)

Q~. 2 j ~ dk (2I V '[rr6(k —k. )+4rr/prr'Pin(I/a)] + 4rrl V, l'/prr'Pin(I/a)j
'i 2

I
2

z 2+I y I2

z

(5 )

Here it is essential to remember that lf' is equal to K ' —kf', so that the integrand in the last term of
Eq. (57) is a very complicated function of kf. Fortunately, we need not evaluate the integral explicitly,
because it is of order

[8~K/p"sin«/a)](21 V, I'+ IV, ') =4x Io '(2IV, I'+ V, '), (58)

and hence negligible relative to the first term of Eq. (v7). Consequently, the final differential cross sec-
tion is given by

cot" (X —
X )

2 2rrc l. ' f i
z

(dv/dy ) = (27r/l. )(&K./27ruc) (I VI I
)

k k
[I+0[k TK. /pK ln(I /a)] ]z z 8 z

2 K.' 1(1 +1.)x(1 —1.) z

z l

(59)

which reduces to that obtained previously for elastic scattering of a phonon in the xy plane. ' ' We see
that the inclusion of inelastic processes to all orders alters the differential cross section only by a small
correction of order =(k&T)'/kcprr' ln(I /a) « l.

When a vortex moves through the fluid, it experiences a retarding force owing to collisions with the
thermally excited quasiparticles. For low velocities, this frictional force F per unit length is propor-
tional to the translation velocity v and is given by4

6."= (2rrk) 'v fd'P. (&f /&E. )cP.'sin'O. cosy. f dy (dv/dg ) (cosy —cosy. ),o 2 i -rr (60)

where P = (Pi, Oi, y ) is the incident momentum of the phonon in spherical polar coordinates and f, is the
stationary equilibrium distribution function fO(Ei) = [exp(pE ) —I] . The inte. gration over yf is expressi-
ble in terms of the "transport" cross section

(v*) = f dX [I —c»(X —
X,. )]«v/dX ),

and a combination with Eq. (60) yields

(61)

6'=- cv(2vh) 'rrf dP. (- Bf /&E. )P.4 f dO. sin40. (v*).
Q i 0 i i Q i i (62)

The cross section contains elastic and inelastic scattering, both of which contribute to the frictional
force. Since the inelastic corrections are negligible, however, the elastic scattering is dominant, and an
easy integration with Eq. (59) leads to
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(v+) = (~/2c)'P. (h sine. ) '.
Z

(63)

In this way, the phonon drag force per unit length becomes

F' = (z'v/32m'h c')f dPP'(- &f /&P) f desin'9 = 5(v'v/24m'54c')

x f dPP'[exp(PcP) —1] ' = (~'v/24~'k'c')(k T)'5!g(5),
0

(64)

where f(5) = 1.037. .. is the Riemann f function. The experimentally useful quantity is the energy lost by
a vortex ring in traveling 1 cm, 4 denoted by

n = —,'~S'v '=x'mc '5g(5)(2v') '(k T/hc)'= 1.6T'eV/cm, (65)

where T is in 'K. This expression is slightly larger than that given in Ref. 4 because the differential
cross section [Eq. (59)] depends on ef, but the numerical difference is negligible.

The above calculation demonstrates how to include inelastic scattering effects associated with internal
vibration modes of the vortex. In the particular case of phonon scattering, such inelasticity is negligible
because the mean phonon momentum is determined by the relation kgT =ScK. As a result, the maximum
wave number i' —

I& I transferred to the vortex is much smaller than the quantity (pv'/kBT) 1n(I, /a) in all
situations of experimental interest. A more favorable case occurs for rotons, where the typical wave
number is 2x10' cm ', independent of temperature. Thus, the momentum transferred by a roton can be
considerably larger than for a phonon, and, correspondingly, inelastic effects should be more important. '~'

Unfortunately, a theoretical study of roton scattering is also more difficult than that discussed here, be-
cause the roton-vortex interaction is too strong to use the Born approximation. Nevertheless, the pres-
ent quantum-mechanical analysis of vortex waves should provide a suitable basis for such a calculation,
which would be of great experimental interest.
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APPENDIX A generalized Hermitian property

We here prove several identities that were used
in Sec. II. Let In) be a normalized eigenstate of
the number operator a~a; it then follows directly
from the commutation relation

[M,(o..p)]+=m, (- p+, —o. +).nn' n'n (A4)

The evaluation of Eq. (A3) can be simplified with
the identity"

[a, a ]=1

that a ln) =n' ' In —1),

(A1)
A. +B A. B

e = e e exp(- —,
' [A, B]) (A5)

a In)=(n+1)' 'In+1).

Consider the quantity

valid whenever [A, B] commutes with both A, and
B. With the identifications= —iPa f, B= —ina,
we find

(A3)

where o and p are arbitrary complex numbers.
Direct calculation shows that M has the following

M, (o. , P)=exp( ——,'nP)(nIe e In' ).
(A6)

Expand the exponentials in power series
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,(o., p) = exp(- 2np) g g t
(nl(a ) (a) !n')

I
(- ip)'(- in) (n!n'! )'i'

= exp(- 'np)—g g [( ) (, '
)'],/ (n —sin' —t)

S

(- ip) (- in)n n' . s . t
= exp(- —,'o.p)(n!n'!)"' Q Q, , ( ),S=

(A7)

where the second line has been obtained with Eq. (A2). The remaining analysis depends on the sign of
n —n'; for definiteness, we take n') n. The Kronecker 5 then reduces Eq. (A7) to

n s
M, (o., P) = exp(- —,

'
Po)(n! n!)"'( i)o-"Q, ( ),(, ), ,

s=0
(As)

which is expressible as a Laguerre polynomial. With the definition"

k ~ (-z) [(P+k)1]
p ~0 s!(p —s)!(s+k)I ' (A9)

Eq. (AS) becomes
I I

M,(n, p) = exp(- —,'o.p)(n'!) 'i'(n!)' '(-in) L (o.p), n')n .nn' n

A similar calculation for n )n ' yields
I

, (n, p) = exp(- 2np)(n!)-"'(n't)"'(- ip) I. ,
" "

(op), n on' .nn' n'

The quantities M obey a simple combination law that is readily derived as follows:

(A10)

(A11)

-i(o.a+ pa~) i(ya+ aa~)—
= (lie e In), (A12)

where the last line follows from the completeness of the states !P). The identity (A5) again allows us to
simplify the analysis, and a straightforward calculation yields

(n, P) M (y, V) = exp[- —,
' (o.~ —Py)]M (o. + y, P+ ~)

mp pn pin
(A13)

valid for arbitrary complex values of o. , P, y, or 5. This result can be extended by induction to include
three or more factors on the left-hand side; when combined with Eqs. (A10) and (A11), it provides an ad-
dition formula for Laguerre polynomials involving both subscripts and superscripts.

The Laguerre polynomials may be derived from a generating function'

t k exp[- zt(1 —t) ']QQ p

(P+ k)! P (1 )1+k (A14)

valid for I t i ( 1. This expression allows us to derive a generalization of Bloch's theorem on the probability
distribution for harmonic oscillators. " Consider the quantity

p, n -i(u+pa&), ~ p (p+n)! 1 2, -i(Xa+pa )
(pea e Ip)

p=0 p=0
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M (X, iz) = exp(--,'X!z)(-ip, ) Q f I, (».p, )[(P+n)!] 'p (p+n)! 1/2, . n p n

p o P' P 7P
p 0 P

= (- ip, ) exp[- —,'».&z(1+ t)(I —f)-']/(I —f)"+

If f is taken as exp(- P!zu&), then a simple calculation with Eqs. (17) and (A15) gives

n -i(&&a+ &&za ) } &

n -i(»a+ pa )& (
. )n [, (, )]/(

Pfzzu)n-
v

(A15)

(A16)

both of which were used in evaluating the ensemble averages in Sec. II.
(A17)

APPENDIX B

In Sec. II, the average transition probability was evaluated by assuming that the phonon transfers neg-
ligible energy to the vortex [Eq. (40)]. Although this approximation is clearly valid for inelastic pro-
cesses involving a single quantum of the internal oscillation modes, it requires a detailed justification for
the multiquantum processes contained in

Hfz
"&. In particular, we consider the probability

Pfz
"& per

unit time for a scattering event IYz-Kf, summed over all final internal states (n'} and averaged over all
initial internal states (n}

~ .&'& = 2«-' Z(„}Z(,}6(E -E,. &&(n}lp. l(n}& &("}IH "'l(.}&l',

where the energy Ef —Ez is given by Eq. (37)

E —E. = Izc(K —K. ) Q+5m (n' n). —
i

(al)

(a2)

The energy-conserving 5 function may be rewritten

2&z5(E —E.) = Il ' 1 dt exp[i(E — E)t/I], z (a3)

and Eq. (al) becomes

x &( }nl pl(n})&(n} H . I(n'}&&(n'}IH . I(n}& = Iz j die ~ &(n}lp I(n}&

x Q &(n} IH . I(n '}&&(n'}I exp(iH t/ri)H . exp(- iH t/'@II(n}&
(1) , , (I)

i v

ct(Kf Kz) T (" (1)p (1)( )}
-2

&.
~ zct(Kf Kz)& (1)g (1)-( ))~ OO v fi fi i fi (a4)

Here the second line is obtained by noting that the states !(n}&and !(n'}&are eigenstates of the unperturbed
vortex Hamiltonian H„,and Hfzzz& (i) is a time-degendent oPerator

H ."&(t) = exp(iH t/a)H . z'& exp(- zH t/Iz)
fi v fi v

obtained with the substitution

-ivyt 1 g i~At
Q~ Q~ 8 Q~ Q~ 8 ~

(a5a.)

(a5b)
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The ensemble average in Eq. (B4) may be evaluated with the techniques used in Eqs. (42)-(45)

(H . JI . (t)) =
~

V ~'fdz dz'e f II (exp[i(Xe a +X*e a )]k

.
(

ikz -'L&kt ~ -ikz i&kt f)] )
~ ~

2 f ~
— ( y- .)( — )

ikz i&kt -ikz ' . ikz i-cokt ikz '-
x g (exp[- i I

XI' sin(kz —kz'- co t)](exp[-iX(e e —e )a —ix*(e e —e )a ])}k k k k

=
I V I'L Jdre "f i exp[- Ixl'E(g t)]

Here E(f, t) is defined

E(f, t) = Q coth( —,'I3ko )[1—cos(kf —&u t)]+i+ sin(k& —&u t),

(B6)

(B7)

and a simple calculation shows that I A. I F may be written in terms of the time-dependent operator u(ft),
[compare Eq. (B5)]

I XI'E(K, t) = —,
'

I

l —1.
I
'(Iu(W, t) —u(0) I')+ —,

' Il —1.['(u(g, t) ~ u(o) —u(o) u(l, t)). (B6)

Equation (B6) is thus seen as a natural generalization of Eq. (44); the conservation of energy merely in-
troduces an additional Fourier transform, which gives

= L V ~'k fdtdge ~ ' e ~ ' exp[- I&I'F(0 t)]. (B9)

The logarithmic factor in Eq. (13) prevents an exact evaluation of Eq. (B7), and it is necessary to in-
troduce the same approximations used in Eq. (19)

= (wk'/4m) ln(L/a) = (hk /2m) ln(L/a) = hk2/2m", (Blo)

where m* = m[ln(L/a)] (B11)

is an effective mass. In addition, the statistical factor coth( —,phek) may be replaced by its classical limit
2/Pkek. We, therefore, obtain

F(g, t) = F, (g, t)+ iF, (g, t),

where F (g, t) = (2/Pk)g w '[1—cos(kg —tu t)]

F (0, t) = Q sin(kf —&u t)

(B12)

(B13a)

(B13b)

are the real and imaginary parts of I . They have simple symmetry properties

F,(g, t) = E,(I 0 I, It I ),

E,(g, t) = sgntF, (l 0 I, I t I ),
(B14a.)

(B14b)

which permits us temporarily to take both g and t as positive. The evaluation of I', is straightforward

E, = (I/2m)Im J dk exp[-i(hk't/2m* —kf)] = (L/2m)Im exp(if'm*/2kt)
~ 2

x f dk exp(- i[k(ht/2m*)"' —P(m*/2ht)"']')= (L/2m)(2m+/ht)'~'Im e f dxe (B15)

where o =
I gl( m/2h t I)"I'. (B16)

The remaining definite integral may be evaluated by rotating the contour through ——,m in the complex
plane, and we find for all g and t



QUANTUM THEORY OF SUPERFLUID VORTICES. III 141

P, (r, t) = (L/2v) sgnt(2m*/k I t I
)"'sin(o' ——,

'
m).

The real part F, is more difficult. It is first convenient to integrate by parts

I. 4m j &&&, & (&&
tak') m f & &,(&

Ifkt), (&&
Rlk')

(Bi&)

F, +— @, dkk 'sin k~ —
2

(818)

where g and t are again assumed positive. The definite integral in the second term can be rewritten

Qk , . Nk
dkk 'sin kf — = ImP dkk 'exp —i —kg2m* 2m*

2 OQ 2
= Ime PJ dxx. exp[- i(x-o)']=Ime Pf dx(x+o) 'e

20' oo 2 2 ~
-gX

=2Im e Pf dxo(o —x )-'e (819)

where P denotes the Cauchy principal value at x = o. We evaluate the integral by considering a contour
integral taken along the positive real axis, indented below the point z= o

2 2 i -gz 2 2 ~
-txj dao(o -z ) 'e = Pf dxo(o —x ) 'e —,'ime—

0

This contour can be rotated by ——, m, since the arc at infinity makes no contribution

(820)

2

f dao(o —z )-' e
' OO 2 2 g

-Q
= exp(-i ,'m)f duo—(o +u ) 'e

OQ 2 2 1 2 ~ 1= exp(- i —,m) f dy(y + 1) ' exp(- o' y ) = —, m exp(o —i 4 n) erfco . (821)

-~i2 -t 2

Here erfco = 2m f dt e
s, g (822)

is the complementary error function and the integral in Eq. (821) has been evaluated by differentiating the
next to last line with respect to o'. A combination of Eqs. (818)-(821)yields

E,(f, t) = 2Lm*l & I/Pk —(4L/Pk)(m*l tl /2wk)" 'sin(o' ——,
'

m)[I —m o e erfco),2, 1/2 o'
(822)

which is correct for all g and t.
The final calculation of P ~ & can be simplified by introducing two characteristic wave numbers [com-

pare Eqs. (34) and (46)]

q = 2L IA. I'm "/Ph'=-2v ~1 —l.
~

'/plPPln(L/a)f i

Q = (L I X I '/Ph) '(4m */mhc) = kq '/mm *c= 2(u /wc .
Q'

The substitutions x=qg, y =cgt then gives

(824)

(825)

."& = L( V ~'(k'cqQ) ' Jf dxdyexp[-i(k —k.)x/q+i(Ã -K.)y/Q]

2

x exp(- Ixl+(2ly I)' 'sin(o ——,
' v)[1 —w'~'oe erfco] —iPkcQ —,'sgny(2ly I) '~'sin(o ——,

'
m)]; (826)

where o'= x'/2vly I is independent of q and Q. Since Ilf —lil & kJ3T/hc = —,
' x10' cm ', Eqs. (824) and

(825) show that q & 19' cm ' and Q& 10 cm '; consequently, the dimensionless parameter Pkcg is very
small (Phcg & 10 '), and we may approximate Eq. (826)
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g 1 p
.&'& =4I,

I
V I'(k'cqQ) 'J 1 dxdycos[(k —k. )x/q)cos[(K —K. )y/Q]f i f i

2

x expI- lxl+(2ly I)'~'sin(v ——,'m)[1 —s' 've erfcv]}. (H27)

This integral cannot be evaluated exactly, but it is sufficient to obtain a qualitative description of the de-
pendence on the parameters Ikf —

ki I/q and IKf —Ki I/Q. The function 1 —n'"vev'erfcv decreases mono-
tonically from 1 to 0 as o increases from 0 to ~, while sin(v' ——,

' v) oscillates rapidly as soon as v ex-
ceeds (2s)"'. Hence, we shall take

2

sin(v ——,
' n)[1 —n'~'o e erfcv] = sin(- —,

' s)8(2n' —v ) = —(1/v2 )8(2n'- v ), (B28)

where 8(x) is the usual step function. With this approximation, the x integration can be performed ex-
plicitly

'" = 41-1 V, I'«' cQ ) 'q[q'+ (k —k )'] ' J dy cos [(K -K. )y/Q]

x (exp(- y'~ ') —exp(- 2''I ') [exp(- y'~ ') —1] [u sin(2suy' ') —cos(2 n'uy' ')]]., (H28)

where u —=
I kf —ki I/q„The remaining integral is a peaked function of IKf —Ki I that falls off for IKf —Kil

& Q; this car. be shown by making the crude approximations exp(-y' ') = 8(1 —y) and exp(- 2ny' ') = 8(1
—4s'y), and a simple calculation then gives

.'" = (4&I V, I

'/n'c) (q/[q'+ (k - k. )']] sin(IK -K. /Q)/IK -K,. I
. (H30)

As discussed below Eq. (37), we see that the energy transfer is restricted to values =ScQ =k~q & 10-" erg,
which is much smaller than the energy of a thermal phonon (=10 "erg). Since I V, I' is a slowly varying
function of IKf —Kil and lkf —kil, the last two factors in Eq. (B30) may be approximated by Dirac 5

functions [compare the discussion below Eq. (56)]

P . '" = (2v/k)'Lc 'I V I'5(k —k. )5(K -K. ),

thereby justifying the approximation introduced in Eq. (38).

(B31)
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Field and Plasma in the Lunar Wake
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A theory is presented to explain the observed variations of the magnetic field and plasma in
the vicinity of the moon. Under the guiding-center approximation, solutions for the plasma
flow near the moon are obtained from the kinetic equation. The creation of a plasma cavity
in the core region of the lunar shadow disturbs the interplanetary magnetic field. Maxwell's
equations are used to study perturbations of the magnetic field in the lunar wake. The ac-
celeration drift current, which was omitted from the earlier work, is included in the present
theory in the calculation of the totalelectric current in the lunar wake. Numerical solutions
of Maxwell's equations are obtained. When the interplanetary magnetic field lines penetrate
into the lunar body, the sudden change in magnetic permeability disturbs the magnetic field
at the lunar limbs. Propagations of this disturbance with magnetoacoustic speed form a Mach
cone downstream, which is sometimes observed as the exterior increase of field magnitude in
the lunar penumbra. Perturbations of the magnetic field are restricted to the region inside the
Mach cone; the region outside remains undisturbed. The numerical results agree extremely
well with experimental data from the Explorer-35 spacecraft.

I. INTRODUCTION

Measurements' ' of the interplanetary magnetic
field and plasma in the vicinity of the moon have
been made from lunar orbit on the Explorer-35
spacecraft. The purpose of this paper is to pre-
sent a theory which can explain the observed vari-
ations of the field and plasma in the lunar wake.

When the solar wind interacts with the moon, no
shocks are observed in the vicinity of the moon.
Figure 1 shows a simultaneous measurement of
the interplanetary field and plasma on Explorer 35
when the moon is outside the earth's bow shock.
The major effect of the moon on the solar-wind
plasma is the creation of a plasma cavity in the
umbral region of the lunar shadow. In this cavity
the magnitude of the magnetic field increases,
i. e. , the field is observed to be stronger than the
undisturbed interplanetary field. On either side
of the umbral increase, the field decreases, i. e. ,
the field becomes weaker than the undisturbed
condition. These penumbral decreases occur at
the location where the plasma density is about
half of the undisturbed plasma density, and they
are often bounded on the exterior by additional
small increases in the field magnitude. A positive
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FIG. 1. Simultaneous measurements of field and

plasma obtained on August 5, 1967, from lunar orbit
on the Explorer-35 spacecraft. The trajectory of the
spacecraft is shown projected on the ecliptic plane and

positionally correlated with the data through UT annota-
tion. The x axis is parallel to the sun-moon line.


