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A new, separable expansion of the two-body t matrix is presented. Such an expansion reduces the Faddeev
equations to coupled equations in one continuous variable. The leading term of the expansion is the separable
approximation suggested by Kowalski and Noyes. Any separable approximation to the t matrix obtained
by truncating the expansion is exact half-oG the energy shell, exactly satisfies the oG-shell unitarity relation,
and duplicates the exact t matrix in the neighborhood of two-body bound-state arid resonance energies. The
rate of convergence of the expansion is tested by means of examples. Two terms give a good approximation
to the 5-wave part of the t matrix arising from a square-well potential, which fits the low-energy two-nucleon
scattering data in an average way. It is also shown that the first term of the expansion gives a very good
approximation to the t matrix arising from a pure hard-core potential. Results are given for the binding
energy of a system of three identical spinless particles interacting via square-well potentials with and without
hard cores. The two potentials have the same scattering length and effective range, The potential without
a core produces a three-body binding energy of 10.1 MeV; the potential with a core produces a three-body
binding energy of 8.00 MeV.

I. INTRODUCTION

N recent years, considerable attention has been
. . focused on the three-body problem. This has been
stimulated mainly by the discovery of the Faddeev'
equations and Mitra's' demonstration that separable
two-body potentials' reduce the three-body problem
to a finite number of coupled one-dimensional integral
equations. The separable-potential approach in nuclear
physics has been partially justified by Lovelace, 4 who
showed that the existence of the low-energy singlet
virtual bound state and the triplet bound state implies
that the low-energy two-nucleon t matrix is approxi-
mately separable. The separable approach has also been
considered by Amado, ' but from the point of view of
field theory. The question naturally arises as to whether
or not the use of separable potentials leads to physical
results which diGer from those obtained by using the
more conventional potentials such as the Hamada-
Johnston' or Yaler potentials. It has been shown by
Tabakin' and Mongan' that it is possible to fit the two-
nucleon data using separable potentials; therefore, it
appears that the two-nucleon system cannot be used to
distinguish between the two classes of potentials. It is
reasonable to inquire into the possibility of using the

' L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960)
t English transl. : Soviet Phys. —JETP 12, 1014 (1961)).

2 A. N. Mitra, Nucl. Phys. 32, 529 (1962).
'The concept of a separable potential was introduced by

Wheeler (J. A. Wheeler, Phys. Rev. 50, 643 (1936)g. It was
first shown that separable potentials lead to a reasonable descrip-
tion of the two-nucleon system by Yamaguchi LY. Yamaguchi,
Phys. Rev. 95, 1628 (1954)g.

4 C. Lovelace, Phys. Rev. 135, 81225 (1964).
~ R. D. Amado, Phys. Rev. 132, 485 (1963).' T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).
7 K. E.Lassila, M. H. Hull, Jr., H. M. Ruppel, F.A. McDonald,

and G. Breit, Phys. Rev. 126, 881 (1962) .
8 F. Tabakin, Ann. Phys. (N. Y.) 30, 51 (1964).' T. R. Mongan, Phys. Rev. 175, 1260 (1968).

three-nucleon system to distinguish between the various
potentials which have been proposed. Calculations
using the rank-2 separable potentials of Tabakin and
Mongan are under way by at least one group. ' If the
forces in all but the '50 and 'Si-'D~ two-body states
are neglected, such calculations amount to solving six
coupled integral equations. Calculations with local, or
almost local, potentials appear to be much more dif-
ficult. The main purpose of this paper is to present
a method which should be of practical value in solving
the three-body problem with realistic local potentials.

For simple local-potential models, there has been
success in treating the three-body problem. Osborn"
has carried out a direct numerical solution of the
Faddeev equations assuming exponential or Yukawa
potentials acting between each pair of particles.
Another approach to treating local potentials is to
construct a separable expansion of the two-body I,

matrix in terms of the eigenfunctions of the kernel
of the I.ippmann-schwinger equation. Keinberg" was
the erst to suggest expanding the $ matrix in terms
of these functions, so that in this paper the expansion
will be referred to as the XVeinberg expansion. The
eigenfunctions and related expansions have been
studied by several authors. " In particular, Ball and
Kong" have used such an expansion to calculate the
low-energy properties of a system of three identical
spinless particles interacting via Yukawa potentials.
It has also been shown that the Keinberg expansion
can be used even if the potential contains a hard

"J.S. Leviriger (private communication)."T. Osborn, Stanford Linear Accelerator Report No. SLAC-79
(unpublished); J.W. Humberston, R. L. Hull, and T. A. Osborn,
Phys. Letters 278, 195 (1968)."S.Weinberg, Phys. Rev. 131, 440 (1963).

3 K. Meetz, J. Math. Phys. 3, 690 (1961); M. Rotenberg,
Ann. Phys. (N.Y.) 19, 262 (1962); S. Tani, ibid. 3'7, 411 (1966);
3'7, 451 (1966); Phys. Rev. 1'74, 2054 (1968) .

'4 J.S. Ball and D. Y. Wong, Phys. Rev. 169, 1362 (1968).
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core""" The expansion has been used to calculate
the ground-state energy of a system of three identical
spinless particles interacting via the 5-wave part of
a square-well potential with a hard core.'

At positive energies, the Weinberg expansion has
the disadvantage that it does not satisfy the off-shell
unitarity relation, the importance of which has been
pointed out by I ovelace. 4 A separable approximation
which does satisfy the off-shell unitary relation has
been proposed by Kowalski' and Noyes. ' This ap-
proximation has the further advantage that it is exact
half-off the energy shell; i.e., when the initial or final
momentum corresponds to the energy of the system.
One of the purposes of this paper is to develop a
separable expansion for the part of the t matrix ne-
glected in the Kowalski-Noyes approximation (KN).
The KN approximation has a serious drawback if the
energy at which it is used is in the neighborhood of
an energy at which the on-shell scattering amplitude
vanishes. When this happens the KN approximation
can have an unphysical singularity. A remedy for this
situation, when the vanishing of the on-shell ampli-
tude is brought about by the presence of a hard core
in the potential, is presented in this paper.

In Sec. II a new separable expansion of the t matrix
is given which is of practical value when the relevant
energies are not near a point at which the on-shell
amplitude vanishes. As pointed out above, the Q.rst
term of the expansion is the KN approximation. This
expansion has the advantage that no matter what
order it is truncated at, it has the following properties:
It is exact half-off the energy, it exactly satisfies the
off-shell unitary relation, and it reproduces the be-
havior of the exact t matrix when the energy is near
a two-body resonance or bound-state energy.

The rate of convergence of the expansion presented
in Sec. II is tested in Sec. III, using two examples.
In the 6rst example, the expansion is used in a cal-
culation of the ground-state energy of a system of
three identical spinless particles interacting via square-
well potentials. It is found that a two-term expansion
gives a binding energy which is accurate to about 1 j~.
The rate of convergence of the expansion is compared
to that of the Weinberg expansion. For the example
considered, the Weinberg expansion converges slightly
faster. It is also shown in Sec. III that the expansion
of Sec. II can be used for the t matrix arising from
a pure hard-core potential. The rate of convergence
of the hard-core expansion is tested by using it in a
calculation of the ground-state energy of a system of
three identica, l spinless particles interacting via the
S-wave part of a square-well potential with a hard

M. G. Fuda, Phys. Rev. 174, 1134 (1968).
'6 M. G. Fuda, Phys. Rev. 178, 1682 {1969).

K. L. Kowalski, Phys. Rev. Letters 15, 798 {1965)."H. P. Noyes, Phys. Rev. Letters 15, 538 {1965).

core. It appears that a one-term separable approxi-
mation to the hard-core I, matrix gives very- accurate
results. The two potentials considered in Sec. II
(square-well without core and square-well with core
whose radius is 0.4 I') have the same scattering length
and effective range. The importance of the core is
illustrated by the two final results for the three-body
binding energy; the potential without the core produces
a binding energy of 10.j. MeV, whereas the potential
with the core produces a binding energy of 8.00 MeV.

In Sec. IV a modification of the expansion presented
in Sec. II is given, which is appropriate for use with
hard-core potentials. This expansion has all the de-
sirable features of the Sec. II expansion, but avoids
the difficulty brought about by the vanishing of the
on-shell t matrix. Discussion and conclusions are given
in Sec. V. Throughout this paper a system of units
is used in which 5' and the mass of the nucleon are 1.

II.A SEPARABLE EXPAN SION FOR THE t MATRIX

Vr(s) = V —V
~

Mm) (klm
~

V ( ktm) '(Mm
~

V. (2.2)

B0 is the kinetic energy operator, V is the two-body
potential, and

~
klm) is the eigenstate of Bo whose

coordinate representation is

(r
~

ktm) = (2m') "'j (kr) Vg„(r).

j& is the usual spherical Bessel function of order 1,
and V~ is a spherical harmonic. "The eigenvalues g„
and eigenfunctions, which are the solutions of (2.1),
can easily be found if the t matrix arising from the
potential XV is k.nown; P is an arbitrary parameter.
The t matrix is obtained by solving either of the
equations

T (s, X) =XV+XV Go(s) T (s, X)

=XV+T(s, ) )Go(s) XV. (2 &)

"The Bessel functions and Hankel functions used in this paper
are normalized as in A. Messiah, QNaetunz 3fechanics {John
Wiley R Sons, Inc, , New York, 1965).

In this section, a separable expansion for the t
matrix is developed. This expansion is of greatest
practical value when the energy range of interest does
not include, or lie near, a point at which the on-shelL
scattering amplitude vanishes. Throughout this section
and the following ones, attention will be focused on
only a single partial wave; therefore, the subscript l
will be omitted whenever possible.

It is convenient to begin by considering the eigen-
value equation

Go(s) V~(s) I + (s))= I +.(s) )n. (s) (21)
where

Go(s) =(s—&o) '
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Using the identity

L1+G,(s) T(s, &,)j L1—G, (s) & V) =1, (2.5)

which follows immediately from (2.4), it is easy to
show that the solution of (2.1) is

commutes with the square and the s component of
the orbital-angular-momentum operator. It follows
immediately from (2.3), (2.9), and (2.11) that%'„(r; s)
must vanish at large distances, since

4„(r; s) ~ (2'') "'r ' exp Li(kr —-', lz.) )V~~(r)
I +„(s))= —Gp($) T($ X„) I klm), (2.6)

where

and
I +„) is normalized so tha, t

In„(s))= I
klm) —

I e„(s)), (2.13)
(klm

I
V I klm) '(klm

I
V

I O„(s) )=1. (2.8)

X (klm I T(s, X„) I klm) (.2.12)

Rather than proceed with
I 4„), it is convenient to2.7

introduce

4'„(r; s) =kF&(r) j&(kr&)h&+&(k'r&) P&„' (r')

where
X (r'

I
T($ ~ ) I

klm&dr' (2 11)

s=k'+ip,

h~&+& is a spherical Hankel function, 'P and r&(r&) is
the smaller (larger) of r and r'. Only one partial
wave appears in (2.11), since the operator Gp(s) V&(s)

20 This expansjon can be found, for example, in Appendix 8 $11
of Ref. 19.

In deriving this result it is necessary to assume
that »„ is not an eigenvalue of the operat;or Gp(s) V,
because if it is, T(s, P,„) blows up. Weinberg" ha, s
studied integral equations of the form of (2.1) and
discusses this possibility. This possibility wiB not be
considered here. The eigenvalues rj„(s) can be found
from the equation

(klm
I T(s, X„) I

klm) =0, (2.9)

which follows from (2.4), (2.6), and (2.8), assuming

g„ is not zero. This equation shows that the invei. se
of the eigenvalues (the &„) can be interpreted as the
set of potential strengths which lead to the vanishing
of the on-shell scattering amplitude at the energy s.
With the normalization implied by (2.3), the on-shell
t matrix can be expressed in terms of the phase-shift
b) by the relation

(klm
I T(s, X) I

kim)= —(2''k) ' expI ib~(k, X)j
X sin L8&(k, &)). (2.10)

Thus, the vanishing of the scattering amplitude im-
plies that 8~ is an integral multiple of m.

In order to further study the properties of the
eigenfunctions

I +„) and the eigenvalues»„, it is con-
venient to rewrite (2.1) as a differential equation in
the coordinate representation with appropriate bound-
ary conditions. The boundary conditions on

I
4'„) are

most easily obtained by considering (2.6). Using the
well-known expansion for the free-particle Green's
function Gp(s), 'p it is easy to show that in the co-
ordinate representation (2.6) becomes

I s—Hp —X„Vj I Q„(s) )=0. (2.15)

Thus
I Q„(s) ) is a, solution of the Schrodinger equation

with a potential whose strength X„has been chosen
so that at large distances the wave function becomes
a free wave; i.e.,

Q„(r; s) ~ L(2vrp)" "kr5 '-sin(kr —~pin) V~~(r). (2.16)

If we use the differential equation corresponding to
(2.15) and the boundary condition (2.16), it is easy
to show that

(fl.(s) I
V

I
fl. ($) &

= (fl. ($) I
V

I
fl. ($) &&... (2.17)

and, assuming the eigenfunctions form a complete set,
that

V= g V
I

Q, (s) ) (Q„(s) I
V

I a(s) ) '(0„
I

V. (2.18)
v=p

It is also easy to show that all the A., are real. It is
important to note that one of the eigenfunctions

I 0„)
is a free wave with eigenvalue A,„equal to zero. This
eigenfunction and its eigenvalue will always be labeled
with v equal to 0; i.e.,

I Qp(s) )= I Bm&, A, p
——0. (2.19)

Combining (2.1), (2.2), (2.13), (2.17), and (2.19),
it follows that

Go($) V
I
fl. (s) ) =

I I
fl. ($) )—I klm&g n. (s), .WO. (2.20)

When p is zero, the right-hand side of (2.20) is not
well defined, since qp is infinite.

Corresponding to the separable expansion (2.17) of
the potential, there is a separable expansion of the
l matrix. Using (2.4), with X equal to 1, and (2.17)-
(2.20), it is a, straightforward matter to show that
the separable expansion of the t matrix is

T(s) = T(s) I klm) (klm
I
T(s) I

klm)-'

X (klm I T(s)+Tg(s), (2.21)

which, from. (2.6), is

n ($) ) =L1+Gp(s) T(s, ~.)j I
klm). (2.14)

From (2.4), (2.14), and the fact that
I

klm) is an
eigenstate of Hp, it follows that
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where

(2.22)

The fzrst term on the right-hand side of (2.21) is the
separable approximation suggested by Kowalski and
Noyes. '" "The expansion (2.21) and (2.22) has several
important properties. First, any truncation of the ex-
pa, nsion of Tz(s) leads to a separable approximation
which is exact half-ofI the energy shell, where by
half-off the energy shell is meant

(pimI T(k2+i, ) Ikim& «(kim
I
T(k'yz. ) I pram&

This property follows immediately from (2.17) and
(2.19). The second important feature of the expansion
is that it leads to separable approximations which
exactly satisfy the off-shell unitary relation. " In order
to see this, consider the off-shell unitary relation in
the form

T(s) Tt(s) = —4z—r'ikT(s)
I

klm& (klm
I
Tt(s)

4zr'ikTt(s) —
I

klm) (klm I T(s), (2.23)

where s=k'+is, and the dagger means adjoint. From
(2.23), it is a straightforward matter to derive the
relations

T(s) I
Mm) (klmI T(s) I klm& '

=T (s) I
klm&[(klm I T(s) I

k&m&*j ',

(khan
I T(s) I

klm) '(klm
I T(s)

=[(kim
I T(s) I

ktm&*$ z(lcm
I
Tz(s). (2.24)

By introducing

F(s) &
= T(s) I

kim& (klm
I T(s) I k™&'

and using (2.24), Eq. (2.21) becomes

T(s) =
I F(s) & (ktm

I
T(s) I ktm& (F(s) I+Tz(s).

~ith the observation that T, (s) is Hermitian and
vanishes half-off-shell, it follows from (2.25) and (2.26)
that any trunction of (2.22) leads to an approxima-
tion for T(s) which exactly satis6es the off-shell

unitary relation (2.23). It is also easy to show, using
the results of Lovelace, 4 that the first term on the
right-hand side of (2.26) reproduces the exact t matrix
when the energy s is near a bound state or resonance

energy. The expansion given here has an obvious
drawback if one wishes to use it in the neighborhood
of an energy at which the on-shell t matrix vanishes,
since when this occurs the 6rst term on the right-
hand side of (2.26) can have an unphysical singu-

"The o8-shell unitarity relation is in Ref. 4 and is derived in
Ref. 19) Chap. XIX.

larity. One easily check. s that this is compensated for
by an unphysical singularity in Tz(s); however, this
situation could make the use of the expansion in
numerical work rather awkward. A partial remedy
for this problem can be given, but before doing so it
is instructive to look. at some applications of the
expansion as it stands.

V(r) = —Vo,

=0)

0&rgb

r) b. (3.1)

For this potential it is easy to determine the half-
off-shell t matrix; it is also easy to find the solutions
of (2.15) with the boundary condition (2.16). The
result for the S-wave part of the expansion is given
by the following relations:

w=kb,u=pb, v=gb,

(koo
I T(s) I

koo)= (b/2zr'w)

x= (Vob'+w")"',

x sin(w) cos(x) —w cos(w) sin(x)
X exp( —iw),

x cos(x) iw sin(x)—
(poo

I
F (s) ) = (zv/u) [Vob'/(x' u') ]-

x sin(u) cos(x) —u cos(u) sin(x)
X ~ )

x sin(w) cos(x) —w cos(w) sin(x)

(poo I
T,(s) I

goo)= —(b/2zr') P g„(u, w)g„(v, w)

Vob' 4s„(w) sin's„(zv)

1—zz„(zv) 2s„(zv) —sin2s„(w)
'

u cos(u) —w cot(w) sin(u)
g„(u, w) =

u[s, '(w) —u'j

z).(w) = Vob'/[s„'(w) —w'3.

The s„are those solutions of

s„(w) cots„(w) =w cotw

which are real and positive when the energy is real
and negative. It is clear from the remarks made at
the end of Sec. II that the expansion should converge
rapidly if T(s) is almost half-off the energy shell;
however, in the Faddeev equations, one deals with
the fully-off-shell t matrix. In order to test the rate
of convergence of the expansion of the square-well
t matrix in an off-shell situation, it is convenient to
consider the problem of finding the ground-state energy
of a system of three identical bosons interacting via
the 5-wave part of the potential (3.1). This problem
is solved by inserting the expansion given above into

III. SOME EXAMPLES

A convenient example to consider is the square-mell
potential given by
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TABLE I. Binding energy for various seParable aPProximations bosons interacting vja the P-wave part of the potential
to the t matrix arising from potential {3.3).

r&0.4 F
Number of
terms in the
expansion

liinding energy (MeV)
Expansion I' Expansion IIb

= —63.85 MeV,

=0,

0.4 F&r&1 73.7 I (3.4)

r&1.737 F.
8.82
9.96
|0.05

9.87
I0.04
10.07

Given by (3.2).
Given by Eqs. (9) and (10) of Ref. 15.

the Faddeev equations. The resulting infinite system
of coupled, linear integral equations is then truncated
and solved numerically. The potential parameters
were chosen to be

Vo= 27.17 MeV, 5 2.1I4 F. (3.3)

"As far as this author knows, the hard-shell potential was erst
used in nuclear physics by Puff (R. D. PuR, Ann. Phys. (N. Y.)
13, 317 (1961)g.

This well has a scattering length a of 10.85 F, an
effective range ro of 1.95 F, and produces one two-
body bound state at —0.435 MeV. Table I gives the
results for the binding energy as a function of the
number of terms retained in the expansion (3.2). This
expansion is referred to as expansion I in the Table.
Also shown are the results obtained using the Wein-
berg expansion for the t matrix (expansion II in the
table). The formulas for this expansion will not be
given here since they have been given before. " It is
seen from Table I that the one-term Weinberg ex-
pansion (expansion II) does better than the expansion
given by (3.2); however, the two- and three-term
expansions yield binding energies which differ from
each other by less than 1%. Both two-term expansions
yield binding energies which are within 1% of the
exact result (using more than three terms produces
no significant effect). It appears that, at negative
three-body energies, the Weinberg expansion does
slightly better than the one given by (3.2); however,
at positive energies, the situation could very easily be
reversed. Calculations will soon be carried out to test
the expansions at positive energies.

Another example of interest is the expansion of the
t matrix arising from a pure hard-core potential. This
expansion is obtained from (3.2) by letting

Po—&—oO .

Since this limit is so easy to take, there is no point
in presenting the limiting forms here. It is interesting
to note that the first term of the expansion turns out
to be the t matrix arising from a hard-shell potential. "
The rate of convergence of the expansion for the hard-
core t matrix has been examined by using it in a cal-
culation of the ground-state energy of three identical

T(s) =t(s)+lo1(s),

where 1(s) is the solution of

t(s) = U+UGp(s) t(s),

(3.6)

(3.7)

1' (s) =$1+1(s)Gp(s)jr(s) L1+Gp(s)1(s) j. (3.8)

The t-matrix-like operator r(s) is the solution of

v (s) =W+ WE(s)r(s),
where

E(s) = (s —. Hp —U) —"

=Gp(s)+Gp(s) t(s)Gp(s).

(3 9)

(3.10)

Discussions of this separation technique can be found

TABLE II. Binding energy for various separable approximations
to the t matrix arising from potential (3.4).

Case Et(i) ' Binding
energy
(MeU)

7.76
7.73
7.96
8.00

~ N is the total number of terms in the expansion of the t matrix.
Nt is the number of terms in the expansion of the pure hard-core t

matrix, i,e., the hard-core limit of (3.2).
N](1) is the number of terms in the expansion of the operator t ( ) (s ),

which is given by (3.6)—(3.10). Formulas for t(1) (s) are given by (4.6)
of Ref. 16.

"H. Enge, Introduction to Euclear Physics (Addison-Wesley
Publishing Co., Inc. , Reading, Mass. , 1966) .

'4 The justification for the averaging procedure is given in
J. M. Blatt and V. F. Weisskopf, Theoretic'cal 2Vucleur Physics
(John Wiley R Sons, Inc. , New York, 1952) .

This potential has the same scattering length and effec-
tive range as the potential (3.3) . It was obtained from
Enge's" spin-dependent central potential by the usual
averaging procedure, '4 which weights the triplet- and
singlet-potential strengths equally, In order to use the
hard-core limit of the expansion (3.2) in the calculation
described above, it is necessary to divide the poten-
tial V into two parts,

(3 5)

where U is the pure hard-core potential and 8" is the
part of the potential which is outside the core. Cor-
responding to this separation of the potential, one
has the separation of the t matrix
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in Refs. 16 and 25. The hard-core limit of (3.2) was
used for the operator t(s) and a Weinberg-like ex-
pansion was used for r(s). The separable expansion
of t("(s) which arises from the Weinberg expansion
of r(s) is given in Ref. 16. The results for the three-
body binding energy obtained by truncating the sepa-
rable expansions for t(s) and r(s) in various ways
are given in Table II. Comparison of cases 1 and 2
shows that the expansion for the pure hard-core t
matrix converges very rapidly. The rapid convergence
of the Weinberg series for the operator t(u(s) is illus-
trated by cases 1, 3, and 4. In Ref. 16, a Weinberg
series was also used for the pure hard-core t matrix.
Comparison of Table II of the present paper with
Table I of Ref. 16 shows that the Weinberg series
for the hard-core t matrix had not fully converged.
The expansion (2.22) and (2.26) for the hard-core
t matrix is much more rapidly convergent than the
Weinberg series. The results of Table II indicate
that it should be possible to obtain accurate results
for the three-body binding energy for spin-dependent
potentials with hard-cores, that is, at least for central
spin-dependent potentials.

IV. HARD-CORE POTENTIALS AND
SEPARABLE EXPANSIONS

It is well known that a potential consisting of a
hard core surrounded by an attractive well produces
phase shifts which change sign. At the energy where
the sign change occurs, the on-shell t matrix vanishes,
and, in general, the first term on the right-hand side
of (2.26) Lsee also (2.25)) will have an unphysical
singularity. In this section a modification of the ex-
pansion presented in Sec. II is given; the modified
expansion has no unphysical singularities in the energy
range of interest for nuclear physics.

The starting point for developing the modified ex-
pansion is the separation of the t matrix given by
(3.6)-(3.10). The basic idea is to use the expansion
presented in Sec. III for the pure hard-core t matrix

[ the operator t(s) in (3.6)), and to make another
separable expansion for the operator r(s) Lsee (3.9)),
which, in turn, will lead to a separable expa&nsion for
the operator t("(s) Lsee (3.8)). Unphysical singulari-
ties do appear in the expansion for the hard-core
t matrix when k ' sinkc vanishes (c is the core radius);
however, for c equal to 0.4 I, the singularity of lowest
energy is at 2558 MeV, an energy well above the range
of interest for conventional nuclear physics calcula-
tions.

We now turn our attention to constructing a sepa-
rable expansion for the t-matrix-like operator r(s).
This will be done in close analogy to the method

2' M. G. Fuda, Phys. Rev. 166, 1064 (1968).

=0 r &c. (4.4)

The superscripts (+) have been dropped, since they
are no longer necessary. By introducing, in analogy
to (2.4), the operator

r(s, X) =XW+XWR(s)r(s, X)

=XW+r (s, X)R(s) XW, (4.5)

it is easy to show that with suitable normalization

[ C„(s))=—R(s)r(s, X„) [ klm),
where

(4.6)

The inverse eigenvalues X„are the solutions of

Atm I.(s, X.) I
ktm) =o (4.'t)

The behavior of
[ C„(s) ) in configuration space can be

determined by using the expression for the resolvent
R(s) in configuration space. This is

(r [
R(k'+is)

[
r') = —k Q ji(kr() k)(+&(kr))

l,m

«& «& (&&~)»&«& (&&r') )k)(+' (kc)

X l'&„(r) P~ *(r'), r and r')c
=0 r or r'&c. (4 8)

Using (4.4)-(4.8), it can be shown that

and
{r I

C'.(s)& =o 0&r&c (4 9)

{ I~.()&-0
Rather than proceed with [ C„&, it is more convenient

presented in Sec. II. Consider the integral equation

R(s)lfri(s) I C"(s) &=
I C"(s))x,(s), (41)

where the resolvent R(s) is given by (3.10), and

i&fbi(s) = i&lr —Pr
[ kim) [ k$m

[

H'r
[ kim) —i Lktm [

g (4 2)

[ klm) is an eigenstate of the Schrodinger equation with
a hard-core potential. In operator form, the eigen-
states corresponding to outgoing and incoming spher-
ical waves are given by

[
klm)'+' =

[ 1+0 (k'&if) t (k'&it) )
X [ klm& exp Laker'(k)), (4.3)

where 8~'(k) is the pure hard-core phase shift. The
phase factor is introduced so as to make the incoming
and outgoing eigenstates the same. In configuration
space the eigenstates are given by

(r [ klm) = (2m) '"$ji(kr) is~(kc) j~(kc) r—ii(kr))

X [
ki(+&(kc) [-'l',„(r),
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to deal with

i Z„(s) ) =
i
klm] —

i
C „(s))

=- [1+2(s)r(s, X„)7
~
klm], (4.10)

which from (4.4), (4.5), (4.8), and (4.3), is, in con-
6guration space, the solution of the differential equa-
tion

r)c (4.11)[k'+V' —X„W(r)7 Z.(r; s) =0,

with the boundary conditions

Z„(r=c; s) =0,

Z„(r; s) (r
~
klm].

T~ 00

(4.12)

(~ (s) I
W

I ~.(s) ) = (~ (s) I
W

I
~.(s) )&„. (4.14)

The separable expansion (4.13) for W leads in turn
to the following expansion for the t-matrix-like oper-
ator r(s):
r(s) =r(s)

~
klm] [klm

~
r(s)

~

klm] '

&& [klm
~
r(s)+ri(s), (4.15)

where

ri(s) = Z W
I
~.(s))

" "
(~.(s) I

W
(~.() I Wl ~,())-'

v=1 1—X.(s

(4.16)

The eigenfunctions and eigenvalues have been labelled
so that

(4 17)[
Z, )=

[ kim], Z, =0.

By using (3.6), (3.8), (4.3), and assuming tha, t

s =k'+ip,

it is easy to show that

T(s)
/

klm) =t(s)
I

klm)

+[1+t(s)Gp(s)7r(s)
~
ktm] exp[i'&" (k)] (4.18)

(klm
~
T(s) = (klm

~
t(s)

+ exp [ibad'(k) 7 [klm
~

r (s) [1+Gp(s) t(s) 7. (4.19)

From (4.14)—(4.19), it is clear that any truncation
of the series (4.16) for ri(s) will lead to an approxi-
mation for the total t matrix T(s), which is exact
half-off the energy shell. This assumes that the exact
expression for t(s) is used in constructing t~" (s) [see
(3.8)7, and that an expression for t(s) which is exact
half-off the energy shell is used for the erst term on
the right-hand side of (3.6), i.e., the approximation

Preceding as in Sec. II, it is then easy to show that

W= P W
~
Z„(s)) (Z„(s)

~
W

~
Z„(s) ) '(Z„(s)

~

W (4.13)
v=0

used for the complete f matrix should be

T, (s) = t, (s) +[1+t (s)G, (s) 7 r, (s) [1+G,(s) t (s) 7,

(4.20)

whL'i'e lg, (s) ls the scpai'able expallsloll loi 111c hal'd-

core t inatrix discussed in Sec. III, t(s) is the exact
expression for the hard-core t matrix, and r (s) is a
sepa, rable approximation to r(s) obtained by trun-
cating the series for ri(s). It will now be shown that
the separable approximation (4.20) exactly satisfies
the off-shell unitary relation (2.23).

It is a straightforward matter to show that the
operator r(s), which is the solution of (3.9), can be
written in the form

r(s) =W+WG(s) W, (4.21)

=R(s)+G(s) WE(s). , (4.23)

From (4.21)—(4.23) it follows that r(s) satisfies a
relation analogous to the off-shell unitarity relation
(2.23); i.e.,

r(s) r(s) = 4—7r'ikr(s)
~

klm—][klm
~

r (s)

= —4m-'ikr'(s)
~

klm] [klm
~
r(s). (4.24)

By using (4.24) it is easy to show that r(s) satisfies
relations analogous to (2.24). These relations, which
it is not necessary to write out, allow one to write
(4.15) in the form

r(s) =
( A(s)) [klm

( r(s) (
klm] (A(s) (+r, (s), (4.25)

where

~
A(s) ) =r(s)

~

klm] [ktm
~
r(s)

~
klm] '. (4.26)

It follows from (4.14), (4.17), (4.25), and the fact
that ri(s) is Hermitian, that any truncation of the
series (4.16) for ri(s) leads to a separable approxi-
mation for r(s) which exactly satisfies (4.24). In order
to proceed, it is convenient to write (4.24) in the form

r.(s) r.t(s) = 4m—'ikr. —(s) [1+G,(s) t (s)]
X

/

klm) (klm
J
[1+t"(s)Gp" (s) ]r,t(s)

= —4n-'ikr. "(s)[1+Gpt(s) t" (s) 7

&&
~

klm) (klm
~
[1+t(s)Gp(s)]r, (s). (4.27)

This form follows immediately from (4.3); the sub-
script a indicates that a separable approximation is
being used for r(s). Let t, &'&(s) stand for the second
term on the right-hand side of (4.20); i.e., let

t."'(s) = [1+t(s)Go(s) 7 .(s) L1+Go(s) t(s) 7 (4 28)

G(s) =(s IIp V) '—. '— (4.22)

This result follows immediately from the resolvent
identities

G(s) =R(s)+E(s)WG(s)
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Now, since t(s) is the exact hard-core t matrix and
therefore satisfies (2.23), it is easy to show that

G, (s)t(s) =G, (s)t (s)
—4ir ikL1+Go(s)t(s) j ~

klan) (klutz
~

tt(s). (4.29)

From (4.27)-(4.29) it follows immediately that

t, i'&(s) —t"&(s) t= 47r—'ik [t(s)+t,o&(s) ]
&& i klan) (klan

i Lti(s)+t.&"t(s)]

+47r'ikt(s)
~

klan) (klan
~

t"(s). (4.30)

Since the right-hand side of (4.30) involves only half-
off-shell operators, t(s) can be replaced by t, (s), where
t, (s) is a separable approximation for the hard-core
t matrix which is exact half-off the energy shell, and
satisfies the off-shell unitary relation (2.23). Using
(4.20) and (4.28), (4.30) becomes

T, (s) T,t(s) =——47r'ikT, (s)
~

k&n) (klm
~
T,t(s). (4.31)

Thus, it has been shown that the separable approxi-
mation (4.20) is exact half-off the energy shell and
exactly satisfies the off-shell unitary relation (2.23).
Furthermore, (4.20) should have no unphysica, l sin-
gularities due to the vanishing of the on-shell t matrix.

V. DISCUSSION AND CONCLUSIONS

A new separable expansion for the two-body t ma-
trix has been developed, which has a number of de=

sirable features. The expansion when truncated at any
order gives an approximation to the t matrix which
is exact half-off the energy shell, exactly satisfies the
off-shell unitary relations, and reproduces the behavior
of the exact t matrix in the vicinity of two-body bound-
state and resonance energies. By its very nature, the
expansion is expected to converge rapidly at positive
energies, when one of the momenta is not too far
from its on-shell value. At negative energies it is
expected that the nearness of the three-nucleon binding
energy to the deuteron binding energy and the energy
of the singlet virtual state will lead to a rapid con-
vergence of the results for the three-nucleon binding
energy. The first example /see Table Ij of Sec. III
bears out the conjecture about the behavior at nega-
tive energies, and it appears that two terms give a
good approximation for the t matrix arising from a
purely attractive potential. The second example of
Sec. III )see Table II) indicates that the leading
term of the' expansion gives an extremely good ap-
proximation to the hard-core t matrix. Adding in the
second term of the expansion changes the result for
the three-body binding energy by less than ~%. It
also appears from the results of Table II that a three-

term separable expansion of the t matrix arising from
potentials with hard cores can give three-body binding
energies which are accurate to about one percent.
Of course, one cannot draw firm conclusions from two
examples. Other applications of the expansion are now
being considered. In particular, calculations at posi-
tive energies are being planned.

As mentioned previously, unphysical singularities
appear in the expansion if the energy is in the neigh-
borhood of an energy at which the on-shell t matrix
vanishes. Of course, this is possible in nuclear physics,
since the phase shifts change sign at high energies.
The expansion of Sec. II can still be used in principle,
since the appearance of an unphysical singularity in
one term of the expansion is compensated for by the
appearance of an unphysical singularity in another
term of the expansion. However, handling this can-
cellation of singularities in a practical numerical cal-
culation could be awkward. The expansion of Sec. IV
avoids this difhculty in the case of hard-core poten-
tials by using one expansion for the part of the total
t matrix arising from a pure hard-core potential and
another expansion for the rest of the total t matrix.
The modified expansion leads to separable approxi-
mations which have the same desirable features as
the expansion of Sec. II. The modified expansion has
not been used yet in numerical calculations; however,
it certainly will be used in the near future.

The question naturally arises as to whether or not
the expansions presented here will be of practical value
in calculations using realistic local-potential models.
The reader is reminded that the calculations of Sec. III
deal only with spin indeperiderit -central forces. If the
results presented in Table II are at all typical, it
appears that calculations with spin-dependent central
forces are feasible. If three-term expansions are adequate
for spin-independent central forces, six-term expansions
should be adequate for spin-dependent central forces.
Using a six-term expansion in the Faddeev equations
leads to a system of six coupled, linear integral equa-
tions. Such a system of equations can certainly be
handled on present-day computers. It is not yet clear
whether or not calculations with tensor forces are
practical. It may be necessary to use some form of
perturbation theory in order to treat such forces.
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