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Unitary Pole Approximation and Binding Energy of
the Trinucleon*
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The unitary pole approximation {UPA) uses the two-body binding energy and wave functicn to determine
the form factor for the UPA separable t matrix. We develop the UPA for Tabakin's 1965 spin-independent
model potential for the trinucleon, and obtain a trinucleon energy within 0.2 MeV of his result. We then
develop the UPA for Tabakin s 1964 spin-singlet potential, and for the Schrenk-Mitra singlet. We combine
these with Yamaguchi shapes and also a modified Hulthen shape for the spin-triplet central and tensor
potentials. These choices give trinucleon energies within 0.3 MeV of the experimental value, provided that
we fit the deuteron with 4/& D state. We further study the dependence of trinucleon energy on the percent
D state in the range 0 78% &P.n & 7%. We also use Tabakin's recent rank-1 separable fit to singlet phase
shifts. This separable potential gives a trinucleon energy 1.5 MeV higher than the singlet choices above
because of its relatively weak attraction in off-shell t-matrix elements.

I. INTRODUCTION

X the past several years many physicists have cal-
.. culated the binding energy of H' using separable
two-body forces that agree with properties of the
two-nucleon system at low energies. ' ' The use of a
tensor rank-1 separable potentiap reduces the Faddeev
equations for the H' ground state to three coupled
one-dimensional integral equations. Table I presents
a sample of the results found for the energy; we see
that many workers obtain values within an MeV of
the experimental value of —8.48 MeV. (See Noyes'
for further calculations, references, and discussions. )
Of course, extensive calculations have also been made
with local potentials. 4 '

These calculations suggest five different sorts of
questions. ' (i) How good is the separable approxi-
mationP Should we use rank-2 or even higher-rank
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separable potentials? (ii) How sensitive is the three
body energy to numerical values we use for the singlet
effective range ro or for the percent of D state in the
deuteron I'D? (iii) What shape should we use for the
separable potentials? (iv) How large are various cor-
rections to the energy (e.g. , those due to interactions
in other states than the 'S and coupled 'S-'D treated
above, or due to relativistic corrections, or to many-
body forces)? (v) How well do other results of the
separable approximation agree with experiment? (The
Coulomb energy and form factors of the trinucleon8;
the absence of particle-stable excited states of the
trinucleon'; the scattering lengths for the e-d system' '
and scattering results at higher energies. ' ')

In this paper we shall ignore the last two questions.
Ke give a tentative answer to the first question on
the validity of a rank-1 separable approximation by
reference to recent work" on separable approxima-
tions to a local central square well. A particular sep-
arable approximation which we call the unitary pole
approxima, tion (UPA) gives off-shell values of the
two-body t matrix in remarkably close agreement with
those for the assumed local potential, while a two-
term Weinberg-Rotenberg series" is still more accurate.
(We shall not discuss here the philosophical problems"
involved in attempting to give meaning to the sub-
jective word "good" in our original question. ) Simi-
larly, Fuda" finds rapid convergence of the binding
energy of a model trinucleon for a central local square-
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TARSI,K I. Some published results on triton binding energy. All calculations use Yamaguchi triplet rank-1 separable potential including
tensor force (see Yamaguchi, Ref. 7), but they vary in the percent D state PD,' r0 is the singlet effective range. See Eq. (1) for an
explanation of the shape m=3 of Karchenko et al. ; r, is the radius of Dabrowski and Dworzecka's core. See Noyes, Ref. 4, for further
calculations.

Workers
Singlet potential

form (F)
Pg)

('Fo)

Triton
energy
(MeV)

Bhakar and Mitra
Phillipsb
Phillip sb
Phillip sb

Phillipsb
Phillip sb
Kharchenko'
Kharchenko'
Schrenk and Mitra~
Dabrowski'
Experiment

rank-1 Yamaguchi
rank-1 Yamaguchi
rank-1 Yamaguchi
rank-1 Yamaguchi
rank-1 Yamaguchi
rank-1 Yamaguchi
rank-1 Yamaguchi
rank-1, m=3
rank-2
rank-2, r, =0.25

2. 15
2.7
2. 7
2.7
2.5
2.85
2.7
2.7
2. 7
2.5
2.7&0.1'

5.5
7
4

4

4

—10.4—9.2—8.6—8.05—9.7—8 ~ 9—9.18—8.59—9 ~ 21—8.81—8.48

a Reference 1 ~

Reference 3.
0,Reference 2.

~ Potential G1, Ref. 19.
Reference 20.
Houk and Wilson, Ref. 25; Noyes, Ref. 4.

well potential, as the two-body t matrix is expanded
in a Weinberg-Rotenberg series.

A one-term or two-term separable approximation is
less satisfactory for a local potential of Yukawa or
Hulthen shape. ' See Ball and Wong'4 for the speed of
convergence of the Weinberg-Rotenberg series results
for Yukawa shape, and Sitenko et al." and Lu" for
Hulthen shape. One of us (E.H. ) has recently de-
veloped a more rapidly converging and more con-
venient series, called the unitary pole expansion"; its
first term is the UPA (Yamaguchi shape for a Hulthen
potential) which gives a three-body energy about
1~~ MeV greater' than that for a local Hulthen po-
tential. The unitary pole expansion" converges par-
ticularly rapidly if the local potential has a soft core:
e.g., the Malfielt-Tjon" spin-independent potential, or
the Reid'~ singlet potential. Here the difference be-
tween the UPA and the exact energy is an order of
magnitude smaller than the 1~ MeV difference for the
Hulthen potential.

Kok et ul. 18 find that a separable and local potential
with the same two-body phase shifts differ by some
1-,' MeV in the three-body energy; in this case the
separable potential gives the lower value.

As shown in Table I, Schrenk and Mitra" and also
Dabrowski and Dworzecka" have used rank-2 sepa-
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2O J. Dabrowski and M. Dworzecka, Phys. Letters 28B, 4
(1968).

rable potentials for the '5 state, together with single-
rank Yamaguchi shape for the triplet system. They
solve four coupled one-dimensional integral equations.
Stagat" has worked out the 3Ã coupled integral
equations for the general case of rank-2V separable
potentials. One of us (T.J.B.) has recently been able
to solve" these six coupled equations for X=2 using
the rank-2 separable tensor potentials of Tabakin"
and Mongan. '4 We note that a rank. -2 separable po-
tential permits fitting 5 phase shifts that change sign
at high energy, and also permits fitting the three
triplet-phase parameters.

Of course numerical methods are used to solve the
three (or more) coupled integral equations. We study
our accuracy by varying the size of mesh used in our
numerical work.

Phillips' pays special attention to the dependence
of the trinucleon binding energy on the values as-
sumed for the singlet effective range r, (2.5, 2.70,
and 2.85 F) and for the percent D state PD (4, 5.5,
and 7%). His steps for the singlet effective range ro

are somewhat larger than its experimental error, 4 "
and each step in ro changes the binding energy by
about 0.4 MeV. Each step in ID changes the binding
energy by about 0.5 MeV; it is difficult to estimate
the experimental value and its experimental error AI'~.
The value of the deuteron's quadrupole moment de-
mands" PD&0.45%.

In this paper we limit ourselves to a singlet ef-
fective range value of 2.70 F; we treat values of ID
from 0.78 to 7%, thus extending Phillips's range.
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(1969)."T. L. Houk and R. Wilson, Rev. Mod. Phys. 39, 546 (1967);
40, 672 (1968).
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Noyes4 discusses the uncertainty in calculations of
the trinucleon energy due to (i) use of the separable
approximation, and (ii) values used for the param-
eters ro and PD. We agree that the uncertainty in I'z
is a major difTiculty in accurate calculation of the
two-nucleon t matrix, and therefore of the three-
nucleon energy. The error due to our use of the UPA
is hard to assess quantitatively. In any case, the
UPA represents a first term in the 3 matrix for the
unitary pole expansion as a means of calculation of
the three-body energy for any 'assumed two-nucleon
potential.

Previous workers with rank-1 separable potentials
have generally chosen the Yamaguchi shapes. ~ How-
ever, Kharchenko et al.2 has treated singlet potentials
with form factor

g(&) = (&'+P') " (&)

Of course v=1 is the Yamaguchi singlet shape. The
binding energy changes by 0.6 MeV when e changes
from 1 to 3, keeping the singlet effective range param-
eters fixed.

We determine the shape of g(k) by the use of the
UPA. ' ' In the UPA we start with knowledge of the
two-body binding energy and ground-state wave func-
tion. We then construct a (rank-I) separable potential
with identical binding energy and wave function and
use this separable potential to find off-shell values of
the two-body t matrix, and, finally, the binding energy
of the trinucleon. By use of the UPA we can limit
ourselves to rank-1 separable potentials, and still in-
clude much of the effects of a strong short-range
repulsion in the two-body interaction.

In Sec. II we develop the UPA for Tabakin's
model" of a central rank-2 separable potential with
a short-range repulsion. We also develop the UPA
for the 'S unbound state, using Tabakin's" and
Schrenk-Mitra's" rank-2 separable potentials, and for
a modified Hulthen potential with centrifugal repul-
sion. In Sec. III, we give our results for the trinucleon
binding for several different rank-1 separable tensor
potentials. We include Tabakin's recent' rank-1 sepa-
rable potential for the 'S state, even though we believe
that this potential gives a poor approximation to the
off-shell t matrix. In the Sec. IV we discuss our results
and compare them with those of other workers. The
Appendix summarizes our Gauss-Gegenbauer method
of numerical integration.

II. UNITARY POLE APPROXIMATION

We first apply the UPA"" to a model central
potential with a two-body bound state. We choose
Tabakin's" model spin-independent central potential,

for which he has determined the trinucleon energy,
so that by comparison we can find the accuracy of
the UPA. Also, Tabakin has compared the energy
for his potential, which includes a strong short-range
repulsion, with that for a Yamaguchi potential with
the same effective range parameters. We determine
what fraction of the effect of Tabakin's short-range
repulsion is included when we replace the Yamaguchi
shape by the UPA for Tabakin's potential.

Suppose the energy 8 and the two-body momentum-
space wave function (p I 8) are known. The UPA
separable potential has the form [with unknown form
factor f„(p) and strength X„)

(P I
v

I
&)= —~-f-(p)f-(K. (2)

We use units K=M= I. We substitute (2) in the
momentum-space Schrodinger equation, and solve" for
the form factor f„(p) and strength X„ in terms of
the two-body binding energy 8 and the momentum-
space wave function of the bound state (p I

8). The
1 matrix corresponding to Eq. (2) is

&(P, ~; ) = —f-(P)f-(f) iD-( ),
f-(P) = N(P'+8—) (P I 8)

(3)

(4)

D„(s) =X '+4~ f-'(P) P'dP

S 2

g(p) =(p'+P) ', h(p) =p-' sinpc.

This potential gave Tabakin the following t matrix:

t(p, k; s) =N(p, k; s) /D(s),
where

N(p, k; s) = —p,—'—M(s) jg(p) g(k)
—I-(s) I g(P) h(&)+g(&) h(P) ]+9 '+~(s) jh(P) &(&)

(g)

The normalization N in (4) is arbitrary, and the
strength X„ is determined by the relation D ( 8) =0. —

If the ground-state wave function (p I 8) has the
Hulthen form, we recover the Vamaguchi form for
f„(p); this merely amounts to taking Yamaguchi's
original calculation" and reading it backwards from
the conclusion to the first equation.

We obtain something new for f„(p) if we choose
another form for (p I 8), e.g., that for a local square
well" or that for Tabakin's rank. -2 separable poten-
tial, which includes an attractive part plus a hard-
shell repulsion:

(p I
v

I u) = —~g(p) g(u)+~, a(p) h(u),
where

~ C. Lovelace, Phys. Rev. 135, 81225 (1964) .
M. G. Fuda, Nucl. Phys. A116, 83 (1968)."F. Tabakin, Phys. Rev. 137, 375 (1965)."F. Tabakin, Phys. Rev. 174, 1208 (1968).

D(s) = [X '+J(s) j P., '—M(s) j+I.'(s). (9)

'' Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).
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TABLE II. 3-matrix parameters for Tabakin's model potential.

t-matrix

Tab akin
Yam aguchi

0.4332
0.1822

1.324
1.149

9.780
0

0, 182
0

~ See Ref. 29 and Eq. (6) for notation. The Vamaguchi potential has
the same effective range parameters as Tabakin's potential.

The functions J(s), I (s), and M(s) are given by the
integrals

J(s) =
"g'(P) 4~P'dp

s 2

L(s) = "g(p) h(p) 4~p'dp

$2

M(s) = "h'(p) 4~P'dp

s 2
(12)

I.( J3)—
f-(P) =g(P)+, h(p)

=g(p) —0.612h(p),

2L( 8)L(s)—
J„(s)=J(s)+-

C

(14)

The parameters in the potential (6) were adjusted
by Tabakin to fit a set of phase shifts, which were
obtained by averaging the '50 and '5~ phase shifts.
He obtained the Yamaguchi-form t matrix by letting
X,—&0 and readjusting X and P so as to fit the param-
eters 8=0.43 MeV and effective range 2.34 F. We
construct the UPA to the Tabakin t matrix by fol-
lowing the theory outlined previously. Our t matrix,
therefore, has the same residue at the bound-state
pole as Tabakin's. It is given by

~n-(P k; ) = —f-(P)f. (k)/L~='+J-( ) 7, (13)

where

Tabakin's t matrix and the UPA to it yield the same
deuteron wave function. This implies that these two
t matrices have the same low-energy off-shell matrix
elements. It is seen from Table III that they have
the same on-shell matrix elements up to about 80
Mev (lab). (Note that the UPA phase shift does not
go through zero. ) All of this indicates that the UPA
is a reasonable one. The Yamaguchi t matrix agrees
with the other two on the energy shell only up to
approximately 20 MeV (lab).

We now compare the three-body binding energies
that arise from these three t matrices. Our numerical
method for solving the Faddeev equation is discussed
in the Appendix. Tabakin" has obtained a numerical
solution for the ground state for his t matrix and for
the Yamaguchi t matrix. We have checked his result
for the Yamaguchi t matrix, and have obtained a
numerical solution for the UPA, Eq. (13). The three-
body energies resulting from the three t matrices are
—9.36 MeV for Yamaguchi's, —8.60 MeV for the
UPA, and —8.40 MeV for Tabakin's. Assuming Ta-
bakin's t matrix is the most realistic, we see that the
Yamaguchi t matrix, which contains no repulsion and
fits only the low-energy data, overbinds the Triton
by 0.96 MeV, or about 11%. On the other hand, the
UPA yields a three-body binding energy which differs
from Tabakin's result by only 0.2 MeV, or 2—,'%. All
of this indicates that the UPA appears to be a rea-
sonable one, whereas a t matrix which is adjusted to
fit only the effective range parameters cannot be ex-
pected to give satisfactory results for the three-body
binding energy.

We now consider the singlet rank-2 separable po-
tentials of Tabakin" and Schrenk and Mitra. "The '5
state has an antibound state instead of the bound
state for which we developed the UPA. If the func-
tions J(s), L(s), and M(s) LEqs. (10)—(12)7 are
known in analytical form, we may use the same

TABLE III. Phase shifts (in radians), calculated from Eqs.
(6)—(18) using the parameters given in Table II.

L( 8)—
M s

P.;&—M( —8)7'

=J(g) —1.224L(s) +0.374M (s),

X, '=X '—X. ' =2270 (16)
L'( —&)

P,, '—M( —B)7'

The parameters appearing in the three t matrices
(Tabakin, Yamaguchi, and UPA) are given in Table II.
The phase shifts 6 are calculated from the standard
relation

( ik+k cot—8) '= —2m't(k, k. k'+is) (17)

and are presented in Table III. By construction,

Energy (lab)
(MeV)

0.0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340

Tab akin

3.142
1.157
0.8766
0.6991
0.5686
0.4657
0.3813
0.3101
0.2488
0.1951
0.1474
0.1048
0.06617
0.03099—0.0013—0.03108—0.05873—0.08451

UPA

3.142
1.160
0.8842
0.7129
0.5894
0.4944
0.4185
0.3564
0.3046
0.2609
0.2236
0.1916
0.1640
0.1400
0.1191
0.1010
0.08512
0.07131

Yamaguchi

3.142
1.170
0.9111
0.7564
0.6483
0.5672
0.5035
0.4521
0.4095
0.3737
0.3432
0.3169
0.2939
0.2737
0.2558
0.2399
0.2256
0.2127
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0.0 1.0
I I

O. I

-0.5
O.

0.0
l.O

C

20 a
I

-0.2
A

-I.O—

Fro. 1. (a) Diagonal elements of the two-body I matrices t(p, p; s) for energy s= —0.4Ii'/M versus momentum p in E '. See Table
IV. (b) Values of t(1 5, p; —. 1.0) versus momentum p. The solid curve a presents values for Tabakin's (Ref. 23) rank-2 separable
6t to singlet phase shifts, the dashed curve b shows the UPA, Eq. (19), and the dotted curve c shows the recent (Ref. 30) Tabakin
equation (21) .

equations for a bound state and for an antibound
state provided that we are careful concerning certain
signs in the latter case. We have already made this
extension of the UPA in our work on the square
well, " changing 8'' for a bound state to read —8''
for an antibound state.

We consider erst Tabakin's" fit to the 'S phase
shifts: He used a rank-2 separable potential of the
form (6) with the same g(p), but with h(P) of (6)
replaced by

hr (P) =P'$(P —d) '+ b'j—'$(P+ d) '+b'j-' (]8)

with P '=0.834 F, b '=0801 F, d '=0.694 F. The
strengths X and X, in (6) are given by Tabakin. "

As in Eq. (14), the UPA form factor f„(p) is a
linear combination of g(p) and hr(p):

f (P) =g(P) —0.2863hz(P). (19)

The number —0.2863 comes from an evaluation of the
coefficient of hr(p) in (14), at the pole on the second
sheet. Also, 1/X„=5.66.

We illustrate the accuracy of the UPA for this case
in Table IV and Fig. 1 where we compare several
examples of Tabakin's" singlet t matrix for negative
energy with the UPA value based on (19). While
Tabakin's t matrix changes sign /corresponding to
the short-range repulsion hr(p)$ our UPA values do
not. We note that our UPA fit to Tabakin's" model
t matrix did not fit his on-shell values at high energy,
but did 6t the t matrix well in regions relevant to
the three-body energy. We hope that the UPA will
work as well in the present case.

The UPA for the Schrenk-Mitra" singlet t matrix

is found in an analogous manner. The second term
h, (p) in their rank-2 separable potential (their set G1)
has the form p'(p'+b') '. The UPA expression re-
placing (19) is

f-(p) =g(p) —1308p'(p'+b') ' (20)

s' M. Bolsterli, Phys. Rev. 182, 1095 (1969).

with b=2.317 F '. The strength is 1/X„=4.49.
Another method of fitting 'S phase shifts by a one-

term separable potential was recently suggested by
Tabakin. " He uses a form factor 5(p) which goes
through zero at p=k, :

g(P) ~(k 2 P2) (P2+d2) (P2+bs) —1(P4+g4) —1 (21)

with o,2= 400 F ', @=4.05 F ', b= 1.09 F ' k = 1.7 F '
and d=1.68 F ~. The denominator function in the ex-
pression for tanb(k) is adjusted so that it also goes
through zero at k, . Tabakin argues that the phase
shift b(k) then has a node at k=k„as desired.

We use Tabakin's" singlet form factor, despite two
objections to his proposal. First, since the denominator
function goes through zero at energy s=Pk, s/M, his
fit involves a resonance in the continuum around
280-MeV lab energy in disagreement with experiment.
Tabakin's choice S(k,) =0 means that the resonance
does not couple directly to the continuum. However,
Bolsterli32 argues that other processes, such as cou-
pling to the electromagnetic field, would give the
resonance a small but nonzero width, so that the
resonance should show up in phase-shift measurements;
that is, 8(k) would rapidly change from zero through
sw to s (instead of going through zero). We suggest
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Tom, z IV. Comparison of singlet two-body t matrices.

0.0 —0.2 —0.4 —1.0 —2.0 —3.0

(0.5, 0.5; s)
t b(0. 5, 0.5; s)
t '(0.5, 0.5; s)
t (0.5, 1.5; s)
t b(0. 5, 1.5; s)
t '(0.5, 1.5; s)
t (0.5, 2.5; s)
t b(0. 5, 2.5; s)
t '(0.5, 2.5; s)
t '(1.5, 1.5; s)
t b(1.5, 1.5; s)
t '(1.5, 1.5; s)
t "(1.5, 2.5; s)
t b(1 ~ 5, 2.5; s)
t '(1.5, 2 ~ 5; s)
t a(2. 5, 2.5; s)
t b(2. 5, 2.5; s)
t '(2. 5, 2.5; s)

—9.74—9.74—10.1—3.82—3.83—1.66—i.50—1.51
6.39—1.43—1.51—0.271—0.522—0.594
1.04—0.17—0.23—4, 02

—1.41—1.41
1.28—0.55—0.55—0.21—0.22—0.22
0.81—0.15—0.22—0.034—0.019—0.086
0.132
0.033—0.033—0.51

—1.19—1.19—1.04—0.47—0.47—0.17—0.19—0.19
0.66—0.12—0.18—0.028—0.007—0.073
0.107
0.037—0.029—0 ~ 41

—1.00—1.00—0.78—0.40—0.40—0.13—0.16—0.16
0.49—0.094—0.16—0.021
0.002—0.061
0.080
0.041—0.024—0.31

—0.91—0.91—0.61—0.37—0.36—0.10—0.15—0.14
0.38—0.082—0.14—0.016
0 ~ 006—0.056
0.065
0.043—0.022—0.25

—0.87—0.88—0.52—0.36—0.34—0.08—0.15—0.14
0.33—0.078—0.14—0.014
0.008—0.053
0.053
0.044—0.021—0.21

Rank-2 separable, Tabakin, Ref. 23.
Rank-1 separable UPA, Eq. (19).

' Rank-1 separable, Tabakin, Ref. 30; t (p, 0, s) has momenta P and 0
in F ' and energy s in units of A'/M.

that the resonance should also show up in other
processes involving oR-shell t-matrix elements, such
as p-p bremsstrahlung with the resonance as a Anal

state, or magnetic dipole photodisintegration of the
deuteron leading to the resonant '5 state.

Our second objection is that Tabakin's" form factor
corresponds to a spatial wave function with a node
at low energy (in the '5 case, an antibound state).
This 2s state carrot be the lowest state for a local,
or approximately local, potential. "Thus Tabakin's fit
will give off-shell t-matrix elements near the pole on
the second sheet very different from those for an
approximately local potential. This difference is illus-
trated in Fig. 1 and Table IV, where we compare
Tabakin's" off-shell values of t(p, k; s) with those
for Tabakin's" rank-& separable potential, and for the
corresponding UPA, Eq. (19).

While the UPA does not give the node in the phase
shift 6(k) at k=k„given by Tabakin" and Eq. (21),
the UPA agrees much better with Tabakin's" t(p, k; s)
at the negative s relevant to our problem.

Mongan'4 has recently given a similar objection to
Tabakin's' recent prescription. Mongan compares the
Noyes f(p, k) function for Tabakin's" t matrix with
that for Reid's soft-core singlet potential. "

For the central term C(p) in the spin-triplet po-
tential, we attempt to take account of possible soft-
core effects in the nucleon-nucleon interaction by
constructing the UPA to a Hulthen type of potential
modified to include a centrifugal potential which sup-
presses the configuration-space wave function near the
origin. The form factor is

c (p) = (p +p )- -c,(p'+ ')(p'+p ')-', (22)

'3 A. Messiah, Quantum Mechanics (Wiley-Interscience, Inc. ,
New York, 1961),Vol. 1, Chap. III, Sec. 12.

3'T. Mongan, Phys. Rev. (to be published).

where n is related to 8 in the usual manner, and
Cq=2P~(n+P~) ' P~ .is determined from the effective
range. The second term in the form factor causes the
reduced wave function u(r) to behave as r' near the
origin, whereas the Hulthen potential gives a behavior
linear in r.

III. RESULTS FOR TRINUCLEON ENERGY

Following Yamaguchi s notation we wI'lte the spln-
triplet rank-1 separable potential as

(p
l
1'l &)= —~a (p)g (&),

g (p) =C(p)+(8) '"5 (S)2'(p) (23)

where 51~ is the tensor operator, and p is a unit vector.
We denote the singlet form factor as 5(p).

We calculate the trinucleon energy E for three dif-
ferent cases: (i) the Yamaguchi shapes for 5(p), C(p),
and T(p), with parameters already used by Khar-
chenko' and Phillips, ' (ii) changes of values of Yama-
guchi triplet parameters to study variation of E with
deuteron percent D state I'n, and (iii) changes of the
singlet shape 5(p) and the central-triplet shape C(p)
from Sec. II. Ke also use Tabakin's'" rank-1 singlet.

The purpose of the first calculation is merely to
determine the accuracy of our numerical procedures
for ending the energy eigenvalue for three coupled
integral equations as outlined in the Appendix. We
treat the case of singlet effective range r0=2.70 F
and P~=4%, for which Kharchenko et al.2 and Phil-
lips' give 8= —9.18 and —9.2 MeV, respectively, as
shown in Table I.

We first use a 10-point Gauss-Gegenbauer calcula-
tion for each integral equation, and obtain E= —9.01
MeV. Since our number is not in good agreement
with Kharchenko et al. and Phillips, we repeat the
procedure using 16-point Gauss-Gegenbauer, and again
find E= —9.01 MeV. The spectator functions also
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agree very well for the coarser and finer mesh. We
believe that our numerical accuracy for 10-point in-

tegration is much better than O. j. MeV in the energy.
(Kharchenko et al. and Phillips do not quote an
estimated calculational error). We use 10-point in-

tegration for results quoted below.
Pote added its proof. V. F K. harchenko has pointed

out that there are small diBerences between the Phillips
parameters and the Kharchenko parameters used to
give the results quoted in our Table I. Our value
E= —9.01 MeV uses Phillips's parameters. S.Bhatt and
L. Laroze at Rensselaer have followed Kharchenko's
suggestion and have calculated E, using 16-point Gauss-
Gegenbauer quadrature, and Kharchenko's parameters:
They obtain E= —9.18 MeV, in precise agreement with
his published result. We thank V. F. Kharchenko for
his help.

As discussed in the Introduction, and shown in
Table I, Phillips' has calculated E(Pri) for I'ri 4, ——
5.5, and 7%, i.e., the "accepted range" for the

Singlet
S(p)

Triplet central
~(P)

Yam aguchi
UPA for Tabakin'
UPA for Schrenk-Mitra
New Tabakin'
Yamaguchi
UPA, Tabakin~
Yam aguchi
UPA, Tabakin
Yamaguchi
UPA, Tabakin

Experiment

~See Ref. 23.
b See Ref. 19.
e See Ref 30

Yamaguchi
Yamaguchi
Yamaguchi
Yamaguchi
Modified Hulthdn
Modi6ed Hulth6n
Yamaguchi
Yama guchi
Modified Hulthen
Modified Hulthen

—9.01—8.76—8.65—7.07—8.69—8.55—7.94—7.83—7.67—7.65—8.48

TABLE VI. Three-body energy E for diferent form factors.
The Yamagucbi shapes use Eq. (24) with triplet parameters from
Table V. The UPA's for Tabakin (Ref. 23) and Schrenk and
Mitra (Ref. 19) are given in Eqs. (19) and (20), respectively.
The modified Hulth6n C(p) is given in Eq. (22) and Table VII.

TABLE V. Dependence on percent D state. The parameters
t, P0, and P~ Lsee Eq. (24) $ are chosen to fit the deuteron binding
energy, triplet effective range, deuteron quadrupole moment, and
percent D state ED.

Parameters used
~ (F ') Po (F+')

P~
(%)

Three-body
energy 8
(MeV)

0.055 1.400
0.1130 1.396
0.4698 1.370
1.689 1.313
4.54 1.239
Experimental value

0.5130
0.6715
1.0694
1.528
1.952

0.78
1.0
2.0
4.0
7.0

—10.60—10.45—9.97—9.01—7.94—8.48

percent D state. However, Mongan's recent fits'4 to
phase parameters and deuteron properties (binding
energy and quadrupole moment) use values of I'&
of 1% or even less, in agreement with the minimum
value" of 0.45%.

There are two different types of arguments giving
values of I'o. (i) other measurements on deuteron
properties, such as its magnetic moment, or the form
factor for elastic electron-deuteron scattering, and (ii)
calculations based on the assumption that the nucleon-
nucleon potential is given by one-pion exchange at
reasonable distances. 3' Both arguments indicate I'D

4%, but since the determination of PD is still subject
to controversy it seems worthwhile to explore the
region of low values for I'D. We fit the deuteron
binding energy and quadrupole moment, and also
triplet effective range, by varying )I. in (23) and Ps
in C(p) and t and P, in T(p) below, using Yama-

guchi's shapes~:

The values of the parameters in (24), and the result-
ing three-body energy, are given in Table V. (All
calculations here and below use a singlet effective
range rs 2.70 F.)——

In Table VI we return to the usual 4 or 7% D state
and use Yamaguchi's tensor shape T(p) from (24).
We examine the variation of the three-body binding
energy with the shapes of the singlet form factor
S(p) and the triplet central C(p). $0ur use of Ya-
maguchi shapes for both S(p) and C(p) duplicates
the results of Table V, but are shown again for com-
parison with other shapes. j

The 6rst four rows of Table VI treat diferent
singlet shapes: (i) Yamaguchi, (ii) the UPA for
Tabakin'ss' singlet, from Eq. (19), (iii) the UPA for
the Schrenk-Mitra's singlet, Eq. (20), and (iv) Ta-
bakin's's recent singlet, with a node in S(p), Eq. (21).

The remaining rows use all combinations of two
different singlet shapes (Yamaguchi and UPA for
Tabakin"), two different triplet central shapes LYa-
maguchi, and modified Hulthen, from Eq. (22)$, and
two different values for Pn (4 or 7%). The values

TABLE VII. Parameters for modified Hulthen potential. p~ is
used for the modified Hulthen central shape C~(p). See Eqs.
(22) and (23) .The parameters t and P~ are used in the Yamaguchi
tensor shape T(p), Eq. (24).

g5 D. V. %ong, Phys. Rev. Letters 2, 406 {1959};A. C. Phillips
(private communication) .

4/o 2.410
2.272

0.504
1.36

1.542
1.976
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of the parameter Psr for the modified Hulthen Car(P)
and the corresponding tensor T(p) are given in
Table VII.

IV. DISCUSSION

In Tables V and VI we give values of the three-
body energy ranging from —10.60 to —7.07 MeV as
we vary the shapes and parameters in the two-body
form factors S(p), C(p), and T(p). It is clear that
we can fit the experimental value of —8.48 MeV by
suitable interpolations, but it is equally clear that
adjusting several parameters to fit one experimental
number is not a satisfactory procedure.

We have so far given incomplete answers to the
five types of questions we raised. in the Introduction.
First, how good is the separable approximation? It
seems fairly good, since we are always within 2 MeV
of the experimental value of E confirming earlier
separable calculations shown in Table I. Second, how
sensitive is the three-body energy to values used for
ro or PD? Phillips showed that Ar0~0. 1 F gives AE—0.2 MeV. We find (Table V) that APrs=3% gives
DE~1.2 MeV.

Third, what shape should we use for the separable
potentials? We find that the UPA allows a simple
method of including much of the eQ'ect of a strong
short-range repulsion in the singlet and central triplet
potentials, giving approximately ~~ MeV for each or
—', MeV altogether. Our values E= —8.76 MeV and
E= —8.65 MeV (Table VI, rows 2 and 3, for UPA
expressions for S(p) agree well with Dabrowski and
Dworzecka's'o —8.81 MeV (they used a slightly smaller
singlet effective range), but disagree with Schrenk
and Mitra's' —9.21 MeV for a similar rank-2 sepa-
rable potential. $A calculation" by one of us (T.J.B.)
using the Schrenk-Mitra G1 potential gives E= —8.51
MeV, in reasonable agreement with the UPA result
—8.65 MeV of Table VI.7 The large change in P
(from —9.01 to —7.07 MeV) resulting from the re-
placement of Yamaguchi's S(p) by Tabakin's'o recent
S(p), and the disagreement of —7.07 MeV with other
rank-1 or rank-2 separable potentials, supports our
argument (Table IV and Fig. 1) that Tabakin's recent
S(p) provides a poor approximation to relevant" off-
shell t-matrix elements. " Table IV and Fig. 1 show
that Tabakin" gives less two-body attraction than the
UPA, and hence less three-body binding.

Though agreement with experiment cannot be taken
seriously at this stage, it also cannot be completely
ignored. We therefore note that, if one believes that
Prs~4%, then the most realistic separable potential
treated is the singlet UPA for Tabakin2' and a central

36 R. D. Purrington and R. 7V. Peacock )Bull. Am. Phys. Soc.
14, 512 (1969)j use Tabalrin's recent Sip) and also his triplet
potential (Ref. 30). They 6nd a very low triton binding energy.
$1Vose added sN proof. Also see V. A. Alessandrini and C. A. Garcia
Canal, Nucl. Phys. A133, 590 (1969); J. E, Beam, Phys.
Letters 30B, 67 (1969).j

triplet modi6ed Hulthen; the calculated —8.55 MeV
is within 1% of the experimental —8.48 MeV.

Our use of a separable approximation to the true
t matrix introduces poorly known errors into our cal-
culations of the three-body energy. It is unclear whether
these errors are of order4'" 1 MeV, or an order of
magnitude smaller. " Our lack of knowledge of the
value of ID introduces' an error of order 1 MeV in
the three-nucleon energy.

It is also of interest to compare our calculations for
the 7% D state with the recent variational results of
Delves e7, al.sr for the Hamada-Johnston potential.
The last row in Table VI, for UPA Tabakin" and
modified Hulthen gives E= —7.65 MeV, while Delves
fiends E= —6.7~0.7 MeV. We have included much,
but not all, of the effects of the hard core in the HJ
potential, so that this extra repulsion might account
for much of the difference of 1.0~0.7 MeV between
the two calculations.

We do not present results bearing on questions (iv)
and (v) of the Introduction. The present results show
that some rank-1 separable potentials that are con-
sistent with known properties of two-nucleon systems
are also not inconsistent with the three-body energy.
But we have not yet established the validity of the
separable approximation.
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APPENDIX: NUMERICAL METHODS

The Faddeev equations for the one-term separable
tensor potentials used reduce to a three-coupled one-
dimensional integral equation":

y, (p) =is+ E,, (p, k, E)y;(k)dk. (A1)

f(k) dk, (A2)

where f(k) has the asymptotic behavior

f(k) ~ k',

f(k) ~k 4,

as k~0

as k—+~. (A3)

3~ L. M. Delves, J. M. Blatt, C. Pask, and B. Davies, Phys.
Letters 28B, 472 (1969).

Here is=1 and the kernels X,;(p, k, P) depend on the
three-body energy K The form of the kernels E;,
depends on the choice of form-factor functions S(p),
C(p), and T(p) in (23). Equation (A1) gives us
integrals of the form
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TAar, K VIII. Positions and weights for n-point Gegenbauer quadrature. See Eqs. (A2), (A3), and (A7). The n positions are given by
k; and then weights by ro, for the infhnte interval: fo"f(k)dk~g;, w;/(kf).

n= 10 n=16

1 ~

2.
3.
4
5.
6.
7.
8.
9

10.
11.
12.
13.
14.
15.
16.

0.09899409345
0.2981916005
0.6825422627
1.465110741
3.353548518

10.10161278

0.1386181340
0.2720070362
0.5280526456
1.133491133
3.059069375

14.14495215

0.04378098847
0.1236163405
0.2539473905
0.4570761906
0.7748434802
1.290583228
2. 187819056
3.937823493
8.089545409

22. 84096442

0.05922128689
0.1024149443
0.1618227592
0.2510869418
0.3975126219
0.6620990380
1.201840759
2.509297149
6.702110243

30.89631720

0.01958871105
0.05379905793
0.1059194898
0.1794099499
0.2795360297
0.4142529218
0.5957004078
0.8428531032
1.186446364
1.678696182
2.413984180
3.577356383
5.573826874
9.441133094

18.58768608
51.04981117

0.02608494414
0.04270701293
0.06210103142
0.08574346994
0.1158108085
0.1556044983
0.2103760850
0.2889024229
0.4066749330
0.5928441983
0.9067571465
1.482086354
2.663839198
5.535375069

14.75536153
67.97953523

This behavior suggests

f(k) =k'g(k)/(1+k)' (A4)

so that g(k) should be a much smoother function
than f(k) and hence could be integrated numerically
with greater accuracy. Transforming the integral (A2)
to the interval —1(x(1,by using k= (1+@)/(1—x),
we find

Standard numerical analysis then tells us to look for
the polynomials which are orthogonal on —1&x&1
with weight functions

p(x) = (1—x')'. (A6)

n

I Qw f(k).
i 1

(A7)

3s U. W. Hochstrasser, in Handbook of Mathematical Functions,
edited by M. Abramowitz and I. A. Stegun (Dover Publications,
Inc, , New York, 1965), Chap. 22.

These functions are the Gegenbauer polynomials" of
order ~. The integration points are then the zeros of
these polynomials and the weights are related to their
derivatives. That is, we approximate the integral (A2)
by the finite sum

The positions fc, and weights zvi are tabulated in
Table VIII for m=6, 10, and 16.

Gegenbauer integration constitutes an improvement"
over the usual Gaussian integration formula by a
factor of from 2 to 10, depending on the type of func-
tion considered. For the calculations in this paper we
have generally used 10-point Gegenbauer integration
for the momentum integrations. In one calculation
we repeated our work with 16-point Gegenbauer. LThe
angular integrations to find the kernels in (A1) were
done by 10-point Gaussian integration. ]

We now replace the three-coupled integral equa-
tions by matrix equations of dimensionality 3X. The
kernels of the integral equation (A1) contain the
three-body energy 8 as a parameter; we must de-
termine E so that the integral equation holds. We
guess an E, and solve for ti(E) in. Eq. (A1). If tt(E)
is not unity (to better than 0.01%), we guess another
E and repeat as needed. The value of tj, (E) is found
either by Jacobi diagonalization of the matrix equa-
tion; or by the faster process of successive matrix
multiplications to find the largest eigenvalue p. We
also tabulate" the spectator functions x;(p).

The numerical procedure is quite fast if we use the
Rensselaer IBM 360—50 computer with 16-digit ac-
curacy. We can make four successive determinations
of tt(E) in 6 min, using 10-point Gauss-Gegenbauer
integration; i.e. , the matrix replacing (A1) is 30&&30.

"R. Stagat, Ph. D. thesis, Rensselaer Polytechnic Institute,
1969 (unpublished) .


