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In recent papers by Shaw and Harrison and by Shaw, the model potential due to Heine, Abarenkov, and
Animalu has been reformulated and optimized. This optimum-model potential is employed to obtain energy—
wave-number characteristics, from which the phonon dispersion relations for beryllium, magnesium, and
zinc are computed. The results of these calculations are compared with experimental results for high-sym-
metry directions. The fit is unsatisfactory for Be, somewhat better for Mg, and fairly good for Zn. The non-
local part of the optimum-model potential does not play a significant role for Be and Mg, but is quite im-
portant in the case of Zn. By using values higher than unity for m* (the effective mass of the electron, in a.u.),
the fit to experimental results could be substantially improved in the case of Mg. On employing m* as an
adjustable parameter, a remarkably good fit to the experimental data for Mg was achieved with #*=1.60.

I. INTRODUCTION

N recent years, there has been an increasing interest
in the pseudopotential approach in the theory of
simple metals, and in its application to computations of
phonon dispersion relations. Pioneer calculations in lat-
tice dynamics were carried out by Harrison! and Toya.?
Following these early attempts, Cochran® performed
a semiempirical type of calculation, where he used the
measured phonon data of Na to obtain the empirical
pseudopotential for that metal. Another relatively early
calculation was performed by Sham.? Since then, there
have been many more publications relevant to this sub-
ject, and it would be, perhaps, the task of a review
article to attempt an exhaustive summary of contribu-
tions in this field. A significant general observation,
however, is that the success of this approach in predict-
ing experimental values for phonon-dispersion relations
is remarkably good for the alkali metals Na and K, and
less so in increasing order for metals such as Al and Pb.
The valence of the metal seems to be a major factor in
the degree of such success.” It is interesting to point
out that also in the case of Li the agreement between
experiment and theory has been quite poor.$
Most of the calculations in the past have been applied
to monatomic cubic crystals. This fact is of no particular
relevance to the pseudopotential approach as such, and
the reason for this is perhaps that for this structure nu-
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merical calculations are simpler. In the present cases
however, we confine ourselves to hexagonal metals, and
it would be worthwhile to give a somewhat more detailed
account of earlier similar calculations of these metals.
The first such computation was carried out by Roy and
Venkataraman,” who applied the pseudopotential ap-
proach to Mg, which is a hcp metal. RV unfortunately
included two errors in their published article, and there-
fore we do not refer to their fit to the experimental data
as given in this paper.” In a subsequent addendum,?
however, RV corrected these errors and presented a new
fit of their calculations to experiment.? The agreement
between theory and experiment in this addendum is
fair, the calculated longitudinal modes being some 209,
too low in frequency, and the transverse modes some
10% too high. The inclusion of two disposable param-
eters significantly improved the fit for the longitudinal
modes, but worsened it for the transverse phonons.

In another paper by Brovman, Kagan, and Holas,®
the pseudopotential approach was used for the calcula-
tion of phonon-dispersion relations in Mg, Be and Zn.
Comparison between theory and experiment in the case
of Mg shows that the computed longitudinal and trans-
verse frequencies are some 30 and 109, too high, respec-
tively. In the case of Be, the agreement between theory
and experiment! is even worse for the longitudinal
modes, the calculated frequencies being higher by almost
a factor of 2. In the case of Zn, the theoretical results are

7 A. P. Roy and G. Venkataraman, Phys. Rev. 156, 769 (1967),
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of Neuirons in Solids and Liguids (International Atomic Energy
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p. 165.
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972 GILAT, RIZZI,
very poor, for two of the branches yield imaginary fre-
quencies for most of the range in the directions of
A(0,0,0,1), 2(0,1,1,0), and T and 7" (1,1,2,0). The rest
of the modes bear more resemblance to reality, though
they are about 309, too low when compared with ex-
perimental data.!? BKH improved, verysignificantly, the
agreement between experiment and theory for all three
metals by allowing for four disposable parameters for
each metal. BKH claim that in the case of these metals,
as well as in the case of 8-Sn,!® one must include many-
body forces which arise from multiple scattering of con-
duction electrons by ions. These forces are most sig-
nificant for short-range interactions and should, there-
fore, show up as sizable contributions tonearest-neighbor
interactions in the framework of the Born—von Karman
theory.

During the course of time, there have also been some
significant new developments in the theory of pseudo-
potentials itself. In a series of articles!*~'” by Heine,
Abarenkov, and Animalu (HAA), a new approach based
on the quantum defect method?® was formulated. In this
approach, the metallic ion is considered to be a sphere of
radius Ry, and the effective potential, or the model po-
tential as termed by HAA, is given by

V(= —Xl: AE)P; (r<Ru)

=—Ze/r (r>Ru), (1.1)
where 4;(E) are parameters depending on the angular
momentum / and on the energy E of the conduction
electrons which interact with this potential. The P;
are projection operators which sort out from the total
wave function of the electron the partial wave charac-
terized by angular momentum quantum number /. The
parameters A; reflect the atomic structure of the ions
embedded in the metal. For ions with empty f shells
1< 2, and this is the range of angular momenta to which
HAA apply their model. Ry is chosen in a somewhat
arbitrary way, so that it is as close as possible to Z/4.
The logarithmic derivative of the wave functions as well
as the potential V(r) experiences a discontinuity at
r=Ry. For a better description of the model potential,
the reader is referred to the original papers!*—*7 or to
Harrison.’® One consequence of the model potential
which is of importance in this context is that when
Fourier-transformed into momentum space, it yields
local as well as nonlocal contributions. This complicates,
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13 E, G. Brovman and Yu. Kagan, Zh. Esperim. i Teor. Phys.
52, 557 (1966) [English transl.: Soviet Phys.—JETP 25, 365
1966)7].
( u V):I Heine and I. V. Abarenkov, Phil. Mag. 9, 451 (1964).

15 A, O. E. Animalu, Phil. Mag. 11, 379 (1965).

16 T, V. Abarenkov and V. Heine, Phil. Mag. 12, 529 (1965).

17 A, O. E. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965).

18 F, S, Ham, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1955), Vol. 1, p. 127.

19 W, A. Harrison, Pseudopotentials in the Theory of Meials
(W. A. Benjamin, Inc., New York, 1966).
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to some extent, the computations in comparison with
the simpler local pseudopotentials used previously.

In a more recent paper by Shaw and Harrison,? the
HAA model potential has been reformulated so that
a minor arbitrariness in the original HAA model could
be avoided. They also chose Ry in such a way that the
logarithmic derivative of the wave function is continu-
ous at Ry In their paper, Shaw and Harrison also cal-
culate the charge-density distribution of the conduction
electrons over the ionic core volume and show that one
must correct for the ion valence Z. In a still more recent
paper by Shaw,?! a few additional modifications of the
model potential are considered. These are described in
Sec. II.

Throughout the present work we use the formalism
developed by Harrison.!? We also try to use Harrison’s
notation as far as possible. In Sec. II, we give a descrip-
tion of the theoretical background needed for the calcu-
lation of the pseudopotential. In Sec. III, we present
the results of the computations of the pseudopotential.
In Sec. IV, we describe the calculation of the phonon
dynamical matrix as based on the pseudopotential ap-
proach. The computational results of phonon dispersion
relations for Be, Mg, and Zn are given in Sec. V, and in
Sec. VI, we summarize the paper.

II. OPTIMUM MODEL POTENTIAL

Our present computations are based on a so-called
optimum model potential recently proposed by Shaw.2!
This potential is an optimized variant of the HAA model
potential*~*7 and differs from it in a few respects.

(a) The ionic core radius in the HAA model is given
by a single parameter Rj;, whereas Shaw allows for
different R;, depending on the angular momentum /.

(b) The model parameters 4;(E) in the HAA model
are computed at E=Ep, where Er is the conduction-
electron Fermi energy. Shaw, in contrast, takes into
account also the energy dependence of 4,(E) in its first
(linear) approximation, i.e.,

A(E) =AY Er)+3(R—kr?)(041/dE)pr, (2.1)

where &7 is the Fermi wave-number, and the relation is
given in atomic units.??

(c) The optimum model potential used by Shaw?! is
given by

Z Z
wg(r) = —'~-—Z @(Rz—f’)(A z—->P1, (2.2)
r 1 r
where @(R;—7) is a step function defined by
OR—r)=1 (r<Ry)
=0 (r2Ry), (2.3)

« 20 % W. Shaw, Jr., and W. A. Harrison, Phys. Rev. 163, 604
967).

#“ R. W. Shaw, Jr., Phys. Rev. 174, 769 (1968). We are indebted
to Dr. Shaw for sending us a report of the above and some extra
calculations prior to publication.

2 Throughout this paper we use atomic units, unless it is else-
wise specified. The a.u. of energy is 2 Ry.
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and P, are projection operators given by

l
Pi= 3 |V V.
1

m=—

24

In comparison with (2.2), HAA use as the model poten-
tial for » <Ry the expression

wo=—(4o—As)Py—(A1—A2)P1—A42.  (2.5)

(d) Shaw optimizes his model potential by choosing

fOI‘ Rz
R(E)=Z/A(E). (2.6)

This choice is consistent with the smooth behavior of
the wave function at »=R;, but it also provides for con-
tinuity in woe(r) at this point. This choice avoids the
long-range oscillations in momentum space which are
characteristic of the HAA model potential.

Once given a certain effective (model) potential in
r space, one can apply the formalism described by
Harrison!® in order to obtain the unscreened form factor
wo(k,q), which, in the present case, consists of local as
well as nonlocal contributions?!':

wo(k,q) =v(@)+va() +f(k,q), @7

where % is the conduction-electron wave-number vector
specifying the electron state, and q is the wave vector
involved in the scattering of an electron. By the non-
local and local contributions we mean, respectively, the
k-dependent and k-independent terms that enter into
(2.7). The terms themselves are

v(q) +va(q) = —4wZ*/Qug?, (2.8)

which is the Coulomb part of the potential. @, is the
atomic volume, and Z* is the effective valence of the
ion already including the ‘“depletion-hole”® charge
density p.

Z*=Z(1—p/Z). (2.9)
The nonlocal part of the unscreened form factor is given
by

4nZ
Jk,q)= e ; (21+1)Pi(cosf)R.2(E)

X/ dx x(x—l)]z(k’sz)]z(ksz) y (2.10)

where 7i(y) is the spherical Bessel function of order /.
The angular momentum quantum number / can have
the values /=0, 1, 2 for all metals with an empty 3f
shell. P;(cosh) is the Legendre polynomial of order /, and
6 is the angle between k and k’=k-+q. Our next step,
following Harrison,' is to screen wo(k,q). This is ac-
complished by finding the screening field w:(¢) and add-
ing it to wo(k,q). The resultant screened form factor
w(k,q) is now defined by

w(k;Q) =w0(k,(l)+w1(‘]) . (211)

LATTICE DYNAMICS OF hcp METALS

973

Had wo(k,q) consisted of a local contribution only, it
would have been rather easy to find w(k,q) simply by
dividing wo(k,q) by the Hartree dielectric function e(q)
given by

@=1 4 ak
€q= —— e e
72g? Ji<up k2—|k+q|?
ka 4kF2—q2 2k1a+q
= _( n ‘+1). (2.12)
mq* \ 4kpq 2kr—q

In the present case, however, w(g) is given by

4 wo(kyq)
f k.
m2e(q)q® Jx<up B2 — | ki4-q|?

Substituting for we(k,q) from (2.7), one obtains

wi(g) = (2.13)

1—¢(g)
wi(g) = @ (@) +ralg)]+e(@, = (2.14)
where g(g) is given by
4 f(k,q)
= %  (2.15)
«0 7r"e(q)42/k5kpk2—lk+q[2 (

The screened form factor is now explicitly given by

w(k,q) =[2(q)+va(9) 1/ e(9)+ f(k,q)+g(g). (2.16)

It should be pointed out that all the assumptions and
approximations intrinsic in Harrison’s formalism are
implicitly taken for granted in this calculation. Of
these, it would be, perhaps, of significance for what fol-
lows to mention the assumption that the potential
Wo(r) can be expressed as a sum of pair potentials of
ions. Such an assumption @ priori excludes interactions
of more complicated nature, such as many-body forces
and exchange interactions between neighboring ions.
The main benefit from this assumption is the possibility
of writing the Fourier-transformed potential as a lattice
sum of products of form and structure factors. The first
comprises the physical contents of the problem, whereas
the latter includes structural information only. This
so-called diffraction model is already inherent in our cal-
culations, where w(k,q) plays the role of the (screened)
form factor.

In order to be able to compute phonon-dispersion
relations, we need still another function, the so-called
energy—wave-number characteristic F(g). This function
is obtained rigorously by Harrison!® and by Shaw,2-25
and here we only indicate its origin and meaning. Recall-

23 The derivation of F(g) is thoroughly discussed R. W. Shaw
J. Phys. C (to be published).

24 R. W. Shaw, Jr., Stanford University Report, 1968 (unpub-
lished). This report contains a description of the numerical com-
putations, a computer code, and listings of results for eight metals.

% R. W. Shaw, Jr., thesis, Microwave Laboratory Report No.
1666, Stanford University, 1968 (unpublished).
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ing that the main idea behind the pseudopotential ap-
proach is to obtain an effective potential that can be
treated as a small perturbation in the Hamiltonian of
the conduction electron with respect to the kinetic en-
ergy, one performs a perturbation expansion of the
energy E(k) and stops after the second-order contribu-
tion. This term is the lowest one in the expansion that
contains scattering contributions of the electrons from
the state k to k-+q. One then treats this term in the
diffraction model'® by separating each term in the sum
over q to form and structure factors, respectively. The
form factor is the function F(g) that we need for our
calculation, and is given by

lw(k,q) |2
a3k

490 /
k<rp R2— ! k+ql 2

(2m)?

Flg)=
o

——wi(g) 2. (2.17)
8

Given w(k,q) and wi(g), the computation of F(q),
though tedious, is straightforward. For the present cal-
culations we choose these functions to be given by the
optimum model potential of Shaw,? that is, by Egs.
(2.14) and (2.16).

Although we postpone the discussion of the theoretical
background for the computation of the phonon dynami-
cal matrix until Sec. IV, it ought to be mentioned here
that, in principle, our task of calculating the pseudo-
potential for this purpose is accomplished with the
derivation of F(g). This function contains all the infor-
mation that one can obtain within the framework of
the present theory about the effect of the conduction
electrons on lattice dynamics in simple metals. #(g) has
the property that it diverges like 1/¢% as ¢ — 0. For this
reason, it might be more convenient to represent F(q)
in a different form as suggested by Shaw.2* Let Fy(q)
be set Fy(0)=1, and be referred to as the normalized

energy-wave-number characteristics; then F(g) is given
via Fn(q), and vice versa by

Fu(q) = —(Qog®/ 20 2*)1(g) . (2.18)

Before concluding this section, there are two more
points to which we would like to draw attention. The
first involves the problem of how to include exchange
and correlation of free electrons in the present calcula-
tions. As is well known, this problem is yet largely
unsolved, and only crude estimates exist to account for
these effects in the calculations of €(g). Therefore, we do
not attempt to include this effect in the present calcula-
tion. It should be mentioned, perhaps, that HAA 1417
include exchange and correlation in the spirit of
Hubbard?® in their expression for (g).

The second point that we would like to discuss
briefly is the influence of the effective mass m* of the
electron on the present computations. The fact that
m*~1 will be reflected in the screening properties of the
conduction electrons, and one can readily account for
this in the present formalism. The only way m* enters
this formulation is via the energy-wave-number rela-
tion, i.e.,

E=Fk*/2m*. (2.19)

This means that whenever a perturbation summation
occurs, the energy differences E(k)—E(F’) must be
rescaled with respect to %, in accordance with (2.19).
It can also be deduced that the nonlocal part w(k,q) is
not affected?” by employing m*>1. Let us, therefore,
denote quantities affected by m*>%1 by a subscript m*.
Then e,+(q) is given by

em+(q) =1+m*[e(g) —1]. (2.20)

26 J. Hubbard, Proc. Roy. Soc. (London) A240 539 (1957);
A243, 336 (1958).

%" The energy-dependent functions 4;(E) do not depend on m*,
This can be deduced from Eq. (2.1) after a little reflection.
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TasBLE 1. Various constants used in the present calculations, Whenever not otherwise specified, the units are a.u.

at. M wt a(&) C(;&) Q kr Z*s  gm*d Aome  gime fyac (aAo/aE)EF“ (aAl/aE)EF“ (aAz/aE)EF“
Be 9.013 2.281 3.577 54.36 1.0289 2.1244 1.05 1.000 0 0 —0.202 0 0
Mg 24312 3.2028 5.1998 156.07 0.7239 2.1514 1.20 0.776 0.912 0 —0.286 —0.058 0
Zn 65.37 2.6648 4.9467 102.16 0.8338 2.1461 1.17 0984 1380 0.860 —0.355 —0.484 0
a See Ref. 21. b See Ref. 29. °See Ref. 17.

Likewise, from Eq. (2.14), win(¢) should be given by

Wim(q) =———wi(q) .

enx()

wn+(k,q) and Fx(q) can also be readily obtained through
Egs. (2.12) and (2.17).

III. NUMERICAL CALCULATION OF Fy(q)

Given the theory outlined in Sec. II, it is now possible
to obtain numerical values for F(g), or rather for Fx(q).
Before resorting to numerical calculation, it would be
profitable to perform a few transformations of variables
in order to obtain more convenient expressions. These
substitutions have been proposed by Harrison!® and
actually employed by Shaw.?*-25 We define a set of new
variables 7, z, and v as

n1=q/kr, z=ku/kr, v=Cki/kr, 3.1

where ki, and %, represent, respectively, the parallel and
perpendicular components of k with respect to q. The
major part of the computation involves integration over
the Fermi sphere that occurs in the evaluation of g(g).
Making the above substitutions, these integrals can be
expressed in the following forms:

8 (1—22)172
gln)= / f,zmvdv, (3.2)
wkrnPe(n) J 1 25+n
QOkF (1—22)1/2
F(n)= / / w2(v,3,1)vdv
—1 ZZ"I"O

— (Qok p*n?/8m)wi%(n) .

These expressions are more accessible to numerical
calculations. Care must be taken, however, in properly
treating?® the singularity occurring at z=—%1.

All the numerical computations described in this
paper? were performed on the IBM 360/65 computer
situated at C.C.R., Euratom, Ispra. Although we use
essentially the same procedure as Shaw,?® there are
some minor differences in the numerical techniques em-
ployed. This might give rise to some small numerical
deviations of Shaw’s results?! with respect to ours. We
performed the calculations of w(k,q) for Be, Mg, and

(3.3)

28 A report describing the FORTRAN IV programs that were used
in these computations is under preparation and will be mailed on
request by the authors as soon as it is available.

(2.21)

Zn. For the case of Be and Mg, our results agree with
Shaw’s numbers to better than 19,. The relative agree-
ment is perhaps not as striking as the absolute agree-
ment, the latter being of the order of 10~ This makes
the relative agreement excellent for large values of
w| (kp,q) |, while for small |w(kr,q)| the relative agree-
ment remains 19). In view of the approximations in-
herent in the theory, and inaccuracies occurring in the
different numerical techniques employed, these devia-
tions are definitely insignificant. The function Fy(g)
was calculated for the same metals, and the agreement
with Shaw’s data?? is similar to that of w(k,q). In Fig.
1 we present the graphical results of Fy(g) for Be, Mg,
and Zn. In order to cope with the wide range of orders
of magnitude spanned by Fy(g), we use a logarithmic
vertical scale. These numerical results are later used for
the computations described in Sec. IV.

In addition to Fx(g), we made another set of compu-
tations, where the effective mass of the electron, m*,
was different from 1. The data for m* are taken from
Weaire?® and included in Table I. The difference be-
tween Fyn«(q) and Fy(q) is quite significant, but is still
too small to show up in Fig. 1. In Table I we list the
numerical parameters and constants pertinent to the
present calculations.

IV. LATTICE DYNAMICS

In constructing the phonon dynamical matrix, we
follow the customary approach of expressing the matrix
elements as a sum of three contributions, namely,

D(q)=D%*+D°+D*, 4.1)

where the superscripts R, C, and E symbolize the core
repulsion, Coulomb, and electronic contributions, re-
spectively. First we try to justify the neglect of DZ,
which arises from overlap interaction between core elec-
trons of nearest-neighbor ions.

Very little is known of how to obtain reliable estimates
of this interaction by derivation from first principles.
Moreover, in the framework of the present theory, it is
required that the effective potential may be expressible
as a sum of pair potentials, which might not be the case
if core-repulsion interactions are present. It is hoped,
therefore, that these interactions are small—in fact,
negligibly small. Estimates of ion radii*® for the ions of

2D, Weaire, J. Phys. Cl, 210 (1968).

3 L. Pauling, J. Am. Chem. Soc. 49, 765 (1927); see also Hand-

book of Chemistry and Physics, (The Chemical Rubber Publishing
Co., Cleveland, 1967/68), 48th ed., p. F-143.



976 GILAT, RIZZI,
Be?t, Mg?t, and Zn?t are considerably smaller than
half of the respective interionic distances in these metals,
and thus it is believed that there is justification for this
assumption and DZ is, therefore, neglected in (4.1). This
point, however, is further discussed in Sec. VI. Before
proceeding to discuss and evaluate the remaining two
contributions D¢ and DZ, it would be worthwhile to
elaborate further on some general properties of the
phonon dynamical matrix. The reason for this is that we
are dealing with crystals possessing more than one atom
in their primitive unit cell. This fact calls for some cau-
tion when writing down the expressions for the dynami-
cal matrix. Let D,s(kx’,q) represent a general element of
the dynamical matrix, where o, 8=x, y, z are the Car-
tesian coordinates, and k,k’=1, 2, - - -, % label the differ-
ent »# atoms in the unit cell, where for the present case
n=2. The matrix elements can be written in the general
framework of the Born—von Kédrman theory as

Dok’ ,q) = (M M o)~ 2 2 Pap(lc,l'x’)
l

Xexp{iq-[x()—r(1) 1},

where ®q(k,l'x’) is the (e,8) component of the force-
constant tensor of an atom situated at (/,x) with respect
to an atom at (V,«’), where r(!) and r(/') are lattice
points. M is the mass of the «th atom. We adopt here
the notation used by Maradudin ef ¢/.3* Owing to trans-
lational symmetry, ®qs(lx,/'x") do not depend on I or
V, but only on their difference /—'. Because of general
properties of invariance under arbitrary translation, the
force constants must satisfy the relation®!

S sk, V') =0.

1A'

(4.2)

(4.3)

Equation (4.2) includes terms for which /—/'=0 and
k=«". Such terms, which would be interactions of atoms
with themselves, obtain their meaning from Eq. (4.3),

20200 _ (v @)a(v+a)s —|=+q|?
D os®(kx,q) = eXp(
oM LT |rtq)? dn?
VA

exfe(n|x()]) | 20 exp(—n[()|?)
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and are, as a matter of fact, the reaction of an atom to
the force exerted upon it by the crystal as a whole. Be-
cause of mathematical difficulties, it would be desirable
to avoid such terms, and this can be easily achieved by
subtracting (4.3) from (4.2). When doing so, we also set
I’=0 for the sake of simplicity, and obtain

1
D ok, q) =—— 2 Pap(lk,0x) (e P —1)
M,

X

1
—— 2 Pap(lk,0¢'),
Mx 115134

(4.4)

while for k>« we retain the form of (4.2) with /=0.

Eq. (4.4), though appearing to be less simple than
(4.2), is by far more convenient, since it avoids the term
®,5(0k,0x). There is still another reason which is more
practical for favoring Eq. (4.4). In our computation
and, in fact, in any calculation, we make some approxi-
mations and practically never sum over all the force
constants of the crystal. Equation (4.4) automatically
guarantees, in this case, that crystal equilibrium exists
no matter how poor the approximation may be. In
other words, if we let ¢ — 0, Eq. (4.4) ensures that there
still exist three acoustic modes with frequency tending
to zero, whereas with (4.2) no such behavior necessarily
occurs.

We now turn to the problem of evaluating D¢ and
DZ. The Coulomb part D¢ representing electrostatic
interaction between bare ions can be expressed by em-
ploying Ewald’s method for lattice sums as described
by Kellermann.?? The detailed expressions for D¢ have
been worked out by RV,7 but not in the spirit of Eq.
(4.4). In a subsequent addendum,® RV modified the ex-
pressions for D¢ and they are compatible with (4.4).
In writing the expression for D¢, we use much the same
notation as RV, but we use atomic units rather than
the conventional cgs units.
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31 A, A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press

Inc., New York, 1963), Suppl. 3.

2 E, W. Kellermann, Phil. Trans. Roy. Soc. London A238, 513 (1940).
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In these expressions, = is a reciprocal lattice vector,
7 is a convergence parameter (not to be confused with
the 5 used in Sec. III), Ry2 is the distance vector between
the two atoms in the unit cell in the hcp structure, r(lk)
is the vector position of the (/,x) atom, r(l«’) is given by

r(lk’) =r(l)+Ryer s 4.7)
and
2 z
fe( )=1—-‘——/ —¥’dy. (4.8)
erfc(x ), e Vdy

In deriving D¥ we exactly follow the method of RV.7
Since nothing new is added to it here, we satisfy our-
selves with merely indicating their method and quoting
our final expression, which differs in a few respects from
RV’s expression. In obtaining DZ, one may take ad-
vantage of Harrison’s approach!® in employing structure
factors and actually insert the lattice positions of the
atoms in S(q). In doing so, the instantaneous position of
the atom as a function of time is used. Assuming that
atomic displacements from equilibrium positions are
small compared to interatomic distances, it is possible
to expand the structure factor in a power series in these
displacements, and make use of the harmonic approxi-
mation. After somewhat laborious manipulations,
D.s"(xr’,q) is expressed as a function of Fu(g):

2o Z*? (z+q)o(z+4a)s
D op®(kr,q) = — <————“F ~(|=+al)
Q()M T ' ‘E+q| 2
——Ta—:ﬂFN([ﬂcl)(l—l—cose-ng)), (4.9)
2w Z*2 ] «(%
Do) = (t+@)a(v1+q)s
Q(}M T I‘C‘i‘ql 2

XFn(|z+q|)eim R, (4.10)

On comparing our expressions for D with those of
RV, we observe a few striking differences, but only one
of them is truly significant. The trivial departures from
RV’s expressions are that we employ Fu(g) rather than
F(qg) [E(g) in RV’s notation ] and that we express (4.9)
and (4.10) in a somewhat more compact manner. The
reason for employing Fy(g) rather than F(g) is that it is
desirable to have a form factor that has the same value
at ¢=0 for both the Coulomb and the electronic parts,

| () |2

iy exp(—n*|x(lkx’) | 2)):l RPN CX)

respectively. As a matter of fact, the function e~ ¢/4"
can be regarded as the form factor for the Coulomb part,
and we obviously have

lim e~ ?/*"*=lim Fy(g)=1.
q=0 q=0

(4.11)

The more serious departure from RV’s expressions is
in the coefficients of the sums in these expressions. The
coefficient that appears in the RV paper is wrong, as can
be clearly demonstrated via the following argument.
Let ¢ — 0, and let us examine the behavior of Dag?(k,q).
The only term that does not tend to zero is the one with
+=0 and a =@, which indicates a LA mode. Since never-
theless D°4D¥ must tend to zero as ¢ — 0, one has to
look for exactly the same contribution but with opposite
sign in D .g%(xkx,q). This condition determines the coeffi-
cient of D to be that given above. This point is also
indicated by Harrison.!* Failure to adjust the coeffi-
cients of D¢ and DZ in this manner leads to a divergence
in the LA modes at ¢=0. This is presumably the reason
why, in the RV paper, the LA mode along the [0001]
direction behaves peculiarly. In their addendum,® RV
implicitly corrected this error, as can be deduced from
the graph of the same LA mode.

V. NUMERICAL COMPUTATIONS OF v;(q)

Using the expressions for the dynamical matrix ele-
ments given in Sec. IV, a Fortran program was written?
to calculate phonon-dispersion relations for Be, Mg,
and Zn along high-symmetry directions: A(0,0,0,1),
2(1,0,1,0), T and 7" (1,1,2,0), and other directions. The
numerical computations were performed on the IBM
360/65 computer at Euratom, Ispra. In all three cases
of Be, Mg, and Zn, several different normalized energy-
wave-number characteristics were tried. First we at-
tempted to include exchange and correlation in a way
similar to that of HAA. This effect on the dispersion
relations v;(q) was of the order of 19 of the values of
v;(q). The only appreciable effect that could be traced
was the way it affected the slope of acoustic v;(q) at
g~0. This effect is mentioned by Harrison!® and can be
visualized by analyzing its contribution to dv;/dq for
which it is significant at ¢~0, but its effect on »; itself
is much less pronounced.

More noticeable than the above correction is the in-
fluence of varying m*, the conduction electrons’ effec-
tive mass. Here the difference in the phonon frequencies
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could be as much as 109. The values for m* used in
these computations were taken from Weaire.? We
elaborate further on this in the separate description for
each metal.

The accuracy of the calculations is better,than®10—4.
A test of the precision is provided by the relation®® for
the Coulomb part of the dynamical matrix, namely,

drZ*?
Z DaaC(KK;q> = (51)
a QoM
and
" Duallci, q) =0. (5.2)

These relations are satisfied to an accuracy of 1 part
in 10% Further details of the computation are given
individually for each metal.

A. Be

In calculating »;(q) for Be, the convergence parameter
n for the Coulomb part was chosen to be 1.75/a (in
A-1), where ¢ is the basal lattice parameter for Be. This
number was found to give rapid convergence for the
Coulomb lattice sum. The number of reciprocal lattice
points used for the calculation of the electronic part was
determined by the range of ¢ for which Fy(g) was sig-
nificantly larger than zero [i.e., for Fy(g)>10—5]. In
the case of Be, the range was ¢/k =06, which corresponds
to 403 different = values. The number of neighbors in
direct space was chosen to be 158. The results are shown

in Fig. 2. The dashed line represents the computation
for which m*=1, and for the solid line m*=1.05. The
experimental points are taken from Schmunk et al.1! for
the A and Z directions and from Schmunk?® for the 7"
direction. In these experiments the time-of-flight tech-
nique was used for the measurement of inelastic coherent
scattering of neutrons. In order to achieve more clarity
in the presentation of the data, the graphs are split some-
what arbitrarily into two sets of dispersion relations. In
the upper set we show LA modes as well as higher optic
modes; in the lower set the four remaining branches are
shown. The classification in terms of irreducible repre-
sentations is according to Iyengar ef al.3* The disagree-
ment between the experimental and calculated values
of »;(q) is very striking in the upper graphs, the latter
being some 609, higher. The situation is evidently better
in the lower part of the graph, where the calculated
values are only some 159 too high. Varying m* did very
little to improve the agreement. The over-all profile of
the calculated dispersion relations much resembles that
of BKH,¥ the present results being some 109, lower
than those of BKH. It might be of interest to compare
the T'st mode (LO mode at ¢=0) to the plasma fre-
quency, given in cgs units by

vp=2Z%e/ ()12,

3 R, E. Schmunk, Phys. Rev. 149, 450 (1966).

34 See Ref. 9; see also L. J. Raubenheimer and G. Gilat, Phys.
Rev. 157, 586 (1967) for a classification of the modes that are not
treated in Ref. 9.

(5.3)
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In the case of Be, »,=52.3X10'2 cps and »(T'st) =31.9
X102 cps for m*=1, so that »(I's*) =0.61v,, which is
a rather large fraction of »,.

B. Mg

The calculation of v;(q) for Mg was carried out along
the same lines as for Be. The convergence factor 7 is
1.8/a(A¥). The range of the argument of Fy(q) is
q/kr=1, which corresponds to 245 different = vectors.
The number of neighbors in the direct lattice is 158. The
graphical results for »;(q) are shown in Fig. 3; the dashed
line corresponds to a unit effective mass, and the solid
line to m*=1.20. The experimental results for the in-
elastic scattering of neutrons are taken from papers by
Iyengar et al.,’ who used the triple-axis spectrometer
technique, and by Squires® and Pynn and Squires,3
used time-of-flight technique. As in the case for Be, we
represent the data in two sets of graphs. Also presented
are two modes, U, and U, (see Ref. 34), along the U
direction. The fit of calculated phonon frequencies to
the measured ones is excellent for all TA modes. In
these cases, varying m* has very little effect on »;(q).
For other modes, the agreement is less good. The worst
agreement is found for longitudinal modes (upper part
of Fig. 3), where the calculated values are about 309,
higher than the observed frequencies. Upon setting
m* =1.20, the agreement improved somewhat, as can be

3 G. L. Squires, Proc. Phys. Soc. (London) 88, 919 (1966).

3 P. Pynn and G. L. Squires, in Inelastic Scattering on Neutrons
in Solids and Liquids (International Atomic Energy Agency,
Vienna, 1968), Vol. I, p. 215.

rEr A« A

seen in Fig. 3. It is interesting to point out that our re-
sults agree very well with those of BKH, but are almost
a factor of 2 higher than those of RV 8 for the longitudi-
nal modes. In the case of Mg, v,=20.3X10'2 cps and
»(T'5+) =9.55X102 cps [for m*=1.20, »(I';*)=8.81
X102 cps]. The ratio v(I'st)/v,=0.47 is better than
for Be, but still relatively high. It was observed that the
influence of m* is to improve significantly the fit between
calculation and experiment. We, therefore, tried to use
m* as an adjustable parameter and chose it to be m*
=1.60. In Fig. 4 we present the fit between experiment
and the calculation including this one adjustable pa-
rameter. This fit proves to be excellent—much better
than that obtained by RV,® who used two adjustable
parameters.
C. Zn

For Zn, we choose 7 to be 1.75/a(A-). The range of
q for Fy(q) is ¢/kr="7, which corresponds to 417 differ-
ent = vectors. The number of neighbors is 134. Graphs
for Zn are given in Fig. 5, in the same manner as for Be
and Mg. Experimental results are taken from Borgonovi
et al.,'2 who used the triple-axis spectrometer in their
measurements. It is observed from Fig. 5 that although
we still had three acoustic phonons at I'(¢=0) (as is
implied by the discussion in Sec. IV), there was a small
range of wave vectors q for which the model predicts
imaginary frequencies for some of the acoustic modes.
This implies that elastic constants predicted by the
model are unrealistic. It should be added, though, that
the absolute value of these frequencies is very small as
compared to the range of frequencies shown in Fig. 5.
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Apart from this weak point of the model, it is surprising
how good the fit to experimental results is for most of
the optical branches, longitudinal as well as transverse.
It is believed that the nonlocal contribution to the
pseudopotential in Zn plays a much more significant
role than in the cases of Be and Mg. This observation
receives further support on comparing our calculations
with those of BKH, who used a purely local pseudopo-
tential. In their calculations, some of the branches are
imaginary for most of the range of q, and the absolute
values for these imaginary frequencies is of the same
order as the real frequencies.

The attempt to employ m* =1.17 shifted the curves
to some extent, as can be observed in Fig. 5; the over-all
agreement to experimental results became slightly
better as a result. It is possible that the value of m*=1.1
as given by Animalu ef al.}” might improve this agree-
ment still further. In the case of Zn, we have v,=14.3
X 1012 cps, compared to »(T'3t) =5.13X10'2 cps; and the
ratio »(T's7)/r,=0.36. It is of interest to point out
that for m*=1.17 we obtain »(I'st) =4.35X10*2 cps. On
setting m*=1.10 and interpolating, we obtain »(I's*) =
4.67X10"2 cps, in excellent agreement with experiment.

VI. DISCUSSION AND SUMMARY

In trying to draw conclusions from the calculations
described in this paper, it seems quite difficult to discuss
the three metals simultaneously on the same footing.
It will be much more useful if we discuss each metal
individually. Nevertheless, before resorting to such a

discussion it would be worthwhile to make a few gen-
eral remarks. Since the objective of this article is to try
to calculate from first principles a reliable pseudopoten-
tial from which one could predict phonon-dispersion
relations, we shall mainly concentrate on the question
to what extent and why we fail or succeed in this project.

As was discussed earlier in this paper, computations
prior to the present one’:3:19 were not very successful.
One possible reason for this could be that in these cal-
culations the pseudopotential was taken to be purely
local. It seems to be the case, much to our disappoint-
ment, that the nonlocal part had a significant effect on
phonon-dispersion relations only in the case of Zn. It
can be concluded, therefore, that one ought to look else-
where for explanations as to why one does not obtain
good representation of data by applying pseudopoten-
tials. One possible explanation was already pointed out
by Kagan and Brovman,!®% who use many-body tech-
niques for the expansion of the electron energy. They
find that among the terms entering this expansion are
expressions representing three- (or more) body forces
acting between ions via the conduction electrons. Each
of these terms, however, contains a factor of the order
of (V/Ep)"1, where V is an interaction energy of the
order of magnitude of the pseudopotential interaction,
and an n-body force is considered. Now (V/Ep)”™! can
be considered as a factor of smallness, roughly being of

3 Yu. Kagan and E. G. Brovman, in Inelastic Scattering of
Neutrons in Solids and Liquids (International Atomic Energy
Agency, Vienna, 1968), Vol. I, p. 3. We are indebted to Dr. Kagan
for sending us an English translation of this article.
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the order of 10~~1, Brovman and Kagan claim, there-
fore, that many-body forces should be rather negligible
except for =3 and for nearest-neighbor interactions
only. If one accepts this argument at its face value, it
means that the diffraction-model formalism set up by
Harrison® is no longer justifiable in a strict sense, since
it explicitly assumes pair interactions between ions. It
could still be salvaged, however, if these Brovman-
Kagan forces could be considered as small perturbing
interactions in comparison with the usual pair interac-
tions. Recalling that in Sec. V we neglected overlap
interactions between nearest neighbors, it seems to us
that in view of the argument of Brovman and Kagan it
is possible that forces between nearest neighbors might
not be negligibly small, although they stem from other
causes.

A second possible explanation for the partial failure
of the pseudopotential approach was pointed out to us
by Harrison, and is concerned with the adequacy of
second-order perturbations that one usually employs in
these calculations. It is obvious that in computing prop-
erties such as phonon-dispersion relations in a metal
which are, apart from the Coulomb terms, determined
solely by this approximation, one should be aware of the
error that is induced by neglecting higher-order pertur-
bations. Now these higher-order contributions are not
necessarily insignificant, and moreover, they depend,
like the second-order perturbation, on the particular
choice of the pseudopotential. A desirable choice of

38 W. A. Harrison (private communication).

a pseudopotential should therefore give an exact can-
cellation of the third-order terms to justify the use of
the second-order approximation. There is, however, one
snag in this approach, and it relates to the possibility
that such a cancellation in calculating one property such
as phonon-dispersion relations does not automatically
imply cancellation of third-order contributions when
another property is computed. One is therefore in need
of certain adjustments in the pseudopotential approach
that will guarantee that second-order perturbations be
adequately correct for the purpose of calculating any
relevant property.

Another possible factor which might have an effect
on the present computation, but which is within the
framework of the present theory, is the effect of the
shape of the Fermi surface on screening. Obviously, in
none of these metals do we encounter an ideal Fermi
sphere, and yet in all these calculations we use a scalar
dielectric function as well as integration over a sphere of
radius £r to obtain the appropriate screening field. It is
hard to estimate how large an effect it would have if one
used the appropriate shape of the Fermi surface for
such integrations. This is, of course, a task which is
almost impossible for practical reasons, and it will
probably be long before anybody seriously attempts
such a calculation. A crude way, however, to compensate
for such shape effects of the Fermi surface (and the loss
of the convenient concept of Fermi radius as a result),
could be via the use of some average effective mass m*.
Physically, the effect of m*> 1 is to increase the inertia
of the electron gas and then cause a less efficient screen-
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ing of the model potential. This obviously results in a
net increase in the negative contribution of the elec-
tronic part to the dynamical matrix, as is actually ob-
served in the calculation. An m* suitable to these cal-
culations could be different from the average m* pre-
dicted from other electronic properties of the metal. In
this sense it might not be completely meaningless to
try to use m* as an adjustable parameter, as we actually
did for Mg. In employing m* as a free parameter, it
should be noted that it can also implicitly account for
many-body effects as well as higher-order perturbation
corrections. We now discuss the individual results for
each metal.

Be. The worst fit to the experimental data among
the three present computations is for Be. It is perhaps
not so surprising that this is the case, since the model
potential has almost no inner structure for Be. This is
so because Be?* has only two 1s electrons, and therefore,
its ionic core is spherically symmetric. This means that
when expanding the plane wave in terms of s, p, and d
waves, we get only the contribution of the s wave, which
does not depend on the angle between k and k-q.
Physically this means that the Be?* ions are treated by
the model as perfect spheres with no inner structure,
and all the model provides for is the radius of this
sphere. A similar situation is probably encountered for
Li*, and an attempt to find a reasonably good pseudo-
potential to represent the phonon data has failed so
far.5 It is therefore believed that the nonlocal part of
the model potential which essentially retains the inner
structure of the ion cannot be of much significance, and
this explains, perhaps, why our results fit so well those
of BKH." Employing m*=1.05 rather than 1 also had
very little effect on the results.

Mg. In the case of this metal, one would expect a
greater contribution arising from the nonlocal part of
the model potential. It is therefore all the more sur-
prising how close our results happen to be to the BKH
results. We are inclined, therefore, to conclude that in
the case of Mg also, the nonlocal contribution to the
model potential seems to be of secondary importance.
On the other hand, it is found that for the case of Mg,
varying the effective mass to m*=1.20 had a very pro-
nounced effect on improving the fit to the experimental
data. The experimental value for m* obtained from
electronic-specific-heat data,® and supported by mag-
netoacoustic measurements?® for Mg, is m*=1.33. If we
used this value in our computation, »(I'st) would be
equal to 8.31X10'2 cps, in comparison with 7.30X 102
cps for the experimental value. By adjusting the value
of m*=1.60, we were able to obtain a very good fit
indeed. Since our computation is for 7’=0°K, and an-
harmonic effects are therefore neglected, we cannot hope

3 J. G. Duant, in Process in Low Temperature Physics, edited
by C. J. Gorter (North-Holland Publishing Co., Amsterdam,
1955), p. 210.

40 J. C. Kimball, P. W. Stark, and F. M. Mueller, Phys. Rev.
162, 600 (1967).
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for better agreement with room temperature data. This
good fit may, of course, be quite accidental and in any
case m*=1.60 seems to be too large a value. It is pos-
sible, therefore, that other corrections, such as exchange
and correlation, are hidden in it. On the other hand, the
fact that we were able to obtain such a good fit by em-
ploying only one adjustable parameter that does not
play any essential role in the structure of the model,
seems to us quite significant. As mentioned above, m*
could be regarded as some weighting factor compensat-
ing replacement of the Fermi surface by an equivalent
sphere, and it is a property of the electron gas only. This
success might cast some doubt on the assertion of
Brovman and Kagan!®:37 that many-body type forces
should play an important role in the theory, since it is
hardly conceivable that such an effect would be taken
into account by using one free parameter only.

Zn. This metal is, much to our surprise, the only one
of the three in which the optimum model potential could
yield a fairly good agreement with experimental data.
It is surprising because Zn is probably not as ‘“‘simple”
a metal as Mg. According to Shaw?! the energy band of
the 3d state is very close to the Fermi level, and this
makes a linear extrapolation of 4:(E) to A41(Er) quite
dubious. We did so, nevertheless, in the absence of a
better procedure. The result is that a somewhat dubious
Fy(g) for Zn provides a fairly good representation of the
phonon spectrum of Zn. Another finding is that the non-
local contribution to the potential is probably respon-
sible for this relatively good fit. This can be deduced
from comparing our results with those of BKH, who
used an entirely local pseudopotential and were not
able to obtain realistic results. Our calculations are also
found to be sensitive to the value of m*. Only in the case
of Zn do we encounter, as BKH do, an instability of
some of the acoustic modes near ¢=0. The reason for
this instability is most probably associated with the
unusually high ¢/a ratio of Zn. As a matter of fact, we
actually tried to compute the phonon-dispersion rela-
tion for Zn, using the ideal ¢/a=(8/3)'/2 with the same
@y and m*=1. The resultant »;(g) were appreciably
different from those shown in Fig. 5: The longitudinal
modes became much too high, and the transverse modes
fitted the experimental results very well. However, the
most significant result of this attempt was the complete
disappearance of unstable modes from the phonon
spectrum.

In conclusion, it might be said that although con-
siderable progress has been made in the field of the
pseudopotential theory of simple metals, one still needs
a better theory that can predict phonon-dispersion
relations at 0°K to within experimental error. As long
as such a satisfactory theory does not exist, one
could resort to empirical computation of Fy(g) from
phonon data, as demonstrated by Cochran? for the case
of Na or to adjust parameters as we do with m*. Such
empirical Fy(g) could be helpful in computing other
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electronic properties and might be of some help towards
the development of a better theory.
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Cohesive Force of Metals
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If the Hellmann-Feynman theorem is applied to metals, using present-day Bloch-type functions, one finds
a self-repulsion of the structure. A substantial concentration of electrons along the bonding directions is

required if the self-repulsion is to be zero.

N the course of a study of solid cohesion, we have
come across a deficiency in present-day electronic
wave functions for molecules and solids. It seems that
the generalized force conjugate to a change in the lattice
parameter does not come out equal to zero for the
generally accepted wave functions, but has an appre-
ciable value with the sign corresponding to self-repulsion.
If the generalized force opposing a deformation is
computed by differentiation of the cohesive energy the
above paragraph obviously is not correct. However, the
force can be calculated directly by the use of a theorem
of Hellmann! and of Feynman.? The calculation is even
considerably simpler than the calculation of the energy
because the theorem tells us that we may compute the
force by simple electrostatics, treating the electrons as
smeared out negative charges according to their wave
functions.
If one works out from this theorem the generalized
force dU/dq opposing a lattice distortion in a simple
crystal lattice of cubic symmetry one finds

oUu
_(9;=7N6/ [Z5(x)— p(f)]_[‘:; |1;—1]

]dr. 1)

Here Ze is the nuclear charge, NV the number of atoms
in the crystal, p(r) the electron density, ¢ a parameter

* Permanent address: University of Oregon, Eugene, Ore.
TPermanent address: University of Maryland, College Park,
IPermanent address: University of Massachusetts, Boston,
Mass.

1H. Hellmann, Emfuhrung in die Quantenchemie (Franz
Deutlcke Lelpzlg, 1937), p.

?R. P.F eynman, Phys. Rev 56 340 (1939).

measuring the lattice distortion, and wo the Wigner-
Seitz cell surrounding the one nucleus placed at the
origin. The summation over r; proceeds over the lattice
of all other nuclear positions. In taking the derivative
with respect to ¢, we must treat only these quantities
1; as dependent on that parameter.

Formula (1) implies that a charge distribution which
is uniform or spherically symmetric within the Wigner-
Seitz cell automatically leads to self-repulsion of the
structure. This is because the total charge within the
sphere inscribed in the cell acts as a slightly positive
point charge placed at the center; the negative charge
in the corners then forms a 16-pole with this central
charge. The mutual orientation of these 16-poles is such
as to lead to repulsion. Wemay verify this idea by adopt-
ing the following crude model for alkali metals: a
spherically symmetrical core bearing one positive
charge and not reaching the cell boundary, surrounded
by a valence electron cloud distributed uniformly over
the cell.? For such a model, Eq. (1) is easily evaluated
and yields

AU/ da=— (Ne*/a?) X 0.045, (2)
where a is the length of the elementary cube edge. We

can convert this quantity to an internal pressure p. It
equals

p=(e¥/a*) X0.030. (3a)
In lithium this number equals
»=4800 atm. (3b)

3W. G. McMillan and A. L. Latter, J. Chem. Phys. 29, 15
(1958). The model used here is a special case of the wider class of
models proposed by them.



