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The ammonia molecule is treated in this calculation with the nitrogen fixed and with the
electrons and protons described by Slater orbitals. The Hamiltonian includes the kinetic-en-
ergy operators of the protons. One minimal basis configuration was used for the electrons,
and twenty configurations involving six orthogonal spin orbitals constructed from the s, p,,
py, and ?, basis orbitals were used for the protons. Proton delocalization was found to be
significant, and the kinetic energies of the protons were found to be about 3 kcal/mole. The
calculation yielded a protonic spectrum similar to the electronic spectrum. A ground-state
energy of —55.44 hartrees was obtained.

INTRODUCTION

The Hamiltonian usually used in molecular quantum mechanics is, in hartrees,
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where the 7 and j indices refer to the electrons, the a and b refer to the nuclei, and Z, represents the
nuclear charge. When a molecular problem is solved using the variational theorem, the wave function is
often given the following form:
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where the ¢;’s are one-electron functions. The sum is over all distinct permutations among the n elec-
trons, and (- 1)P is + 1 if there is an even number of pair exchanges, — 1 if it involves an odd number.

The Hamiltonian of Eq. (1) assumes that the nuclei are fixed. However, there is no reason to assume
this, since the kinetic-energy operator for the nuclei can be included in the Hamiltonian by changing Eq.
(1) to
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and Eq. (2) to
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and, for nuclei of half-integer spin,
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where the 77,’s are one-nucleus functions, 7, is the number of electrons, n, is the number of a nuclei,
and m, is the mass of the a nucleus.

The Hamiltonian Eq. (3) has a higher ground-state energy than that of Eq. (2) since the kinetic energy is
a positive quantity, but the ground-state energy of neither Hamiltonian corresponds to the ground-state
energy of a given molecule because both are approximate. However, H should have a ground-state energy
closer to that of a given molecule than the ground state of H’. There is also a computational advantage in
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using Eqs. (3) and (4) rather than (1) and (2) because multicenter molecular problems can be reduced to
one-center problems.

In order to test the usefulness of H and ¢, a calculation was done on the ammonia molecule with the
nitrogen atom fixed. The Hamiltonian, therefore, was
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where 7, is the distance of the a proton from the nitrogen, #; is the distance of the i electron from the
nitrogen, and m is the mass of the proton. The 7’s and ¢’s of Eq. (4) were taken to be one-proton Slater
functions and one-electron Slater functions centered on the nitrogen, i.e.,
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Since the 10 electrons form a closed shell, a single determinant using a basis set of s, s # Px, Py, and p;
Slater functions was used to describe the electrons. The protons, however, do not form a closed shell.
Furthermore, experimental evidence suggests that the protonic structure would be best described by three
orthogonal orbitals. In order to span three dimensions, the set of S, bx; by, and p, Slater functions were
used to construct three orthogonal proton orbitals.

There are 20 different ways of arranging three protons in the six spin orbitals. Since a protonic spec-
trum would have been interesting, it was decided to include all 20 spin configurations. Therefore, the
wave function used had the following form:
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where the &;’s have the form

P
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where the 77’s are three of the six spin orbitals. The wave function was optimized with respect to all the
orbital parameters and the mixing coefficients of the proton functions. The 1s and 2s electron functions
were Schmidt orthogonalized.

RESULTS AND DISCUSSION size of the protonic parameters. Table II gives

the mixing coefficients of the proton orbitals.

The best sets of parameters are given in the
first and third lines of Table I. Two things are
worth noting in this table. One is that the elec-
tronic parameters of this calculation are very
similar to the electronic parameters obtained by
Rutledge and Saturno, ' which are given on the
second line. This result supports the Born-
Oppenheimer approximation. The other is the

Note that the p, coefficient is zero. Since the p,
coefficient is zero and the s, p,, and by are or-
thogonal, the use of the sp-type hybrid orbitals
does not change the energy or the wave function.
However, it was decided to leave the coefficients
as they stand to make the interpretation of the
wave function more conventional.

Now consider Fig. 1 where the square of the Dy

TABLE I. Orbital parameters of the electron and proton Slater functions.

’

Px Py Pz
n ¢ n ¢ n ¢

s s
Type n ¢ n

Electron 0.9880 6.581 1.996

Rutiedge and

Saturno (Ref. 1) 0.9880 6.580 2.021

Proton 125.2 63.19

1.516 1.181 1.516 1.181 1.506 1.188

1.506 1.231 1.506 1.231 1.545 1.210

125.2 63.19 125.2 63.19 124.7 63.06
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TABLE II. Mixing coefficients of the proton orbitals.

Orthogonal Coefficients
orbital s Py py ?,
1 1/V3 2/V6 0.0 0.0
1/v3 =1/v6 1/VZ 0.0
3 1/v3 -1/Vv6 -=1/VvZ 0.0

electron function and the square of the proton
function which lies along the x axis are plotted.
The plot of the electron function is as would be
expected. Its maximum lies in the bond closer to
the nitrogen than to the proton. Examination of
the proton function shows that its maximum is
nearly at the equilibrium internuclear distance
and that it is not a § function. In fact, the proton
has a reasonable probability of being anywhere
from 1.8 to 2.1 bohrs. However, this proton de-
localization is not nearly as striking as that shown
in Fig. 2. This figure gives the square of the
three proton orbitals in the x-y plane at » =1, 980
bohrs as the angle ¢ goes from 0 to 2r. Note that
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each maximum is separated by 120 deg as one
would expect. Figure 3 gives the square of the
proton orbital as a function of the angle 6 at
7=1.980 bohrs and ¢=0, 120, or 240 deg. Note
again the smeared protonic charge. The delocal-
jzation above and below the x-y plane includes the
equilibrium positions of the protons which are
used in the fixed nuclei approximation to describe
the spectrum of ammonia.

The eigenfunctions and eigenvalues are given in
Table III. Note that the eigenvalues are almost
all equally spaced apart by about 0. 1 hartree.
This spectrum is clearly not the vibrational or
rotational spectrum. However, it is interesting
to note the similarity in Fig. 4 between the cal-
culated spectrum and the experimental spectrum.
Are some of the observed lines protonic excita-
tions? The vibrational structure will probably
arise from the proton-spin-orbit and/or proton-
orbit-electron-spin interactions. A future publi-
cation will consider this possibility. Vibrations
and rotations could still be considered in this
model since the nitrogen is considered fixed. But
a true c. m. -transformed Hamiltonian, which we
are investigating with simpler molecules, such as

FIG. 1. Square of the p, electron
orbital and the square of the proton or-
bital directed along the x axis at 6= 3,
¢=0, and x=0~3.2 bohrs.
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H,, would not give the classical picture of a vi-
brating rotating molecule. The evidence in favor
of this statement may be seen in Sharma’s work
on the excitonic and positronium molecules. ®

This calculation shows that the kinetic energy
of a proton is 4.49 X107 hartrees and of a p elec-
tron 1. 25 hartrees. The proton kinetic energies
amount to about 3% of the bond energy of ammonia.
Furthermore, these kinetic energies imply mo-
mentums of 4. 06 and 1. 58 (in atomic units) for a
proton and a p electron, respectively. Therefore,
the de Broglie wavelength of a proton is about
one-third that of an electron in the ammonia mol-
ecule.

TABLE IIl. Protonic eigenvalues and eigenfunctions of ammonia.
Eige‘nvaluesa
(hartrees) Eigenfuvnctionsb
—54.98668 (20) 0.40825[(11°2) = (11’2") = (123’) + (133’) + (12'3) — (233')]
(19) 0.40825[(112) = (11’3) — (1722’) + (1’33') + (22'3) — (2’33') ]
—54.99475 (18) —0.52365(11'2") +0.51659(11’3) —0.04712(122’) —0.05449(123")
—0.05177(12'3) + 0.06155(133’) + 0.1063(1°23) + 0.4621(22’3) — 0.47188(233")
(17) —=0.52365(11"2") +0.51659(11’3") —0.04712(1’22’) + 0.05449(1'2'3)
+0.05177(1’23’) +0.06155(1°33") — 0.1063(123) +0.4621(22’3") — 0.47188(2’33")
(16) 0.23126(11’2) +0.24662(11’3) —0.57069(122’) +0.09124 (123’)
—0.09281(12’3) = 0.56912(133’) —0.00157(1"23)
(15) 0.23126(11°2°) +0.24662(11’3’) =0.57069(1'22’) —0.09124(1'2’3)
+0.09281(1’23’) = 0.56912(1’33") - 0.00157(12'3")
-55.08547 (14) —0.40825[(11'2) +(11'3) + (122°) +(133") + (22’3) + (233")]
(13)  +0.40825[(11’2")+(11’3") + (1'22") + (1”33") + (22’3") + (2"33")]
-55.18763 (12) 0.46753[(12'3) + (233’) = (11'2)] —0.28597[(113) + (123’) — (22'3)]
—0.18156[(122) + (1'23) = (133')]
(11) 0.46753[(11’2") + (1’23’) = (233")] — 0.28597[(1’2'3) + (22’3’) = (11'3")]
—0.18156[(12°3") + (1'33’) — (1'22")]
(10) 0.43504[(133’) — (122’) ~(1723)] +0.37476[(133") + (123") — (22’3)]
+0.06282[(12'3) + (233") = (11’2)]
(9) 0.43504[(12/3’) + (1'33") = (1722)] +0.37476[(11’3") = (1’2’3)
—(123")] +0.06282[(2'33") — (112’) — (1723)]
—-55.3149 (8) —0.32943(11'2’) =0.33247(11’3') +0.01177(12’3") + 0.09791(1'22")
+0.56399(1/23’) = 0.57576(1°2’3) + 0.08613(1’33’) +0.24330(22’3’) + 0.23456(233’)
(7) 0.32943(11°2) +0.33247(11’3) +0.01177(1’23) — 0.09791(1'22")
+0.56399(123) —0.57576(123") —0.08613(133’) — 0.24330(22’3) — 0.23456(233")
(6) 0.09074(11°2) —0.07890(11'3) +0.32737(122’) + 0.31882(123")
+0.33921(12’3) —0.33066(133’) —0.65804(1”23) + 0.23993(22’3) — 0.24848(233’)
(5) 0.09074(11’2) —=0.07890(11’3’) +0.32737(1'22’) —0.31882(1'2’3)
—0.33921(123’) —=0.33066(1°33") +0.65804 (12’3’) + 0.23993(223’) — 0.24848(2'33’)
-55.44135 (4) 1.0(123)

(3)
(2)
1

1.0(12'3")
0.57735[(123") + (12’3) + (1"23) ]
—0.57735[(123") + (1'23’) + (1'2’3)]

2Rutledge and Saturno got —55.68 hartrees using the fixed nuclei approximation (see Ref. 1).
bThe symbol (11’2) represents a Slater determinant with a proton of spin % in orbital one, a proton of spin -3 in
orbital one, and a proton in orbital two with spin 3. The other symbols have a similar meaning.
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FIG. 4. Calculated protonic spectrum and experimental

spectrum from G. Herzberg, Electronic Spectra of Poly-
atomic Molecules (D. van Nostrand Co., Inc., New York,
1966), p. 609.

CONCLUSION

This calculation gives a molecular structure for
the ammonia molecule which is radically different
from the usual one. The molecule appears as an
inner ellipsoid of electronic charge surrounded
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by a belt of protonic charge. A spectrum of
protonic states emerges similar to the electronic
states. The vibrational and rotational states do
not appear and must be due to terms not included
in the Hamiltonian.

Other parts in this series on protonic structure
will consider the molecules CH,, H,O, HF, B,H,,
C,H,, LiH, and H,, the problem of vibrational and
rotational states, hydrogen bonding, proton tunnel-
ing, and rearrangement scattering involving pro-
tons. We also hope to improve our results by
including more than a minimal basis for the elec-
tronic configurations, larger basis sets for the
protonic configurations, and excited electronic
states. Since this calculation indicates that there
is a protonic spectrum similar to the electronic,
we are investigating the possibility that there may
exist protonic bands in solid hydrides.
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